Package ‘paf’

February 20, 2015

Title Attributable Fraction Function for Censored Survival Data
Version 1.0
Depends R(>= 2.13.0), survival
Date 2014-01-23
Author Li Chen
Maintainer Li Chen <lichenuky@uky.edu>
NeedsCompilation no
Repository CRAN
Description Calculate unadjusted/adjusted attributable fraction function of a set of covariates for a censored survival outcome from a Cox model using the method proposed by Chen, Lin and Zeng (Biometrika 97, 713-726, 2010).
License GPL-2
Date/Publication 2014-02-05 16:55:54

R topics documented:

paf .. 1
plot.paf .. 3

Index

paf Calculate attributable fraction function for censored survival data

Description

Fit a Cox model and calculate the unadjusted/adjusted attributable fraction function of a set of covariates based on the Cox model using the method proposed by Chen, Lin and Zeng (2010).

Usage

paf(formula, data, cov)
Arguments

 formula a formula object for the Cox model considered, which has the same format as that in the coxph function of the survival package.
 data a data.frame in which to interpret the variables named in the formula.
 cov the set of covariates whose attributable fraction function is of interest.

Details

This function calculates the unadjusted/adjusted attributable fraction function for the set of covariates specified in cov which must also be included as covariates of the Cox model. The function calculates the unadjusted attributable fraction function if the Cox model does not include other covariates; otherwise the function calculates the adjusted attributable fraction function adjusting for other covariates in the Cox model.

Value

 time unique uncensored event times at which the attributable fraction function jumps.
 est the estimates of unadjusted/adjusted attributable fractions at unique uncensored event times.
 se the standard errors of the estimated attributable fractions.
 low the lower confidence limits of the attributable fractions.
 upp the upper confidence limits of the attributable fractions.
 fit.cox coxph object from the fitted Cox model.

Note

The Breslow method is used to handle ties. The function will do missing-data filter automatically.

Author(s)

Li Chen

References

See Also

plot.paf.
Examples

```r
# simulated data set from a Cox model
data = data.frame(n = 1000,
x1 = as.numeric(runif(n)>0.5),
x2 = x1 + rnorm(n),
t = exp(-x1 - 0.5 * x2) * rexp(n, rate = 0.1),
c = runif(n, 0, 3.4),
y = pmin(t, c),
delta = as.numeric(t<=c),
status = data.frame(time=y, status=delta, x1=x1, x2=x2))

# calculate the attributable fraction function of x1 adjusting for x2
result = paf(Surv(time, status) ~ x1 + x2, data=test, cov=c('x1'))
result$cox

# calculate the unadjusted attributable fraciton function of x1
result = paf(Surv(time, status) ~ x1, data=test, cov=c('x1'))
```

plot.paf

Plot method for paf objects

Description

Plot the attributable fraction function obtained by the paf function.

Usage

```r
## S3 method for class 'paf'
plot(x, conf.int = TRUE, lty = 1, col = 1, ylim = NULL, xlab = "Time",
      ylab = "Attributable Fraction Function", ...)
```

Arguments

- `x`: an object of class paf which is retured by the paf function.
- `conf.int`: determines whether confidence intervals will be plotted. The default is TRUE.
- `lty`: an integer specifying line type.
- `col`: an integer specifying color type.
- `ylim`: a vector specifying the lower and upper boundaries for y values.
- `xlab`: label given to the x-axis with "Time" as default.
- `ylab`: label given to the y-axis with "Attributable Fraction Function" as default.
- `...`: other arguments allowed for the general plot function.

Author(s)

Li Chen
References

See Also

par, paf.

Examples

```r
# simulated data set from a Cox model
n = 1000
x1 = as.numeric(runif(n)>0.5)
x2 = x1 + rnorm(n)
t = exp(-x1 - 0.5 * x2) * rexp(n, rate = 0.1)
c = runif(n, 0, 3.4)
y = pmin(t, c)
delta = as.numeric(t<c)
test = data.frame(time=y, status=delta, x1=x1, x2=x2)

# calculate the attributable fraction function of x1 adjusting for x2
result=paf(Surv(time, status) ~ x1 + x2, data=test, cov=c('x1'))
# plot the attributable fraction function
plot(result)
```
Index

* Topic **survival**
 - `paf`, 1
 - `plot.paf`, 3

 `paf`, 1, 4
 `par`, 4
 `plot.paf`, 2, 3