Package ‘palasso’

April 19, 2021

Version 0.0.8
Title Paired Lasso Regression
Description Implements sparse regression with paired covariates (Rauschenberger et al. 2020 <doi:10.1007/s11634-019-00375-6>). For the optional shrinkage, install ashr (<https://github.com/stephens999/ashr>) and CorShrink (<https://github.com/kkdey/CorShrink>) from GitHub (see README).
Depends R (>= 3.0.0)
Imports glmnet, Matrix, survival
Suggests knitr, testthat, rmarkdown
Enhances ashr, CorShrink, pROC, edgeR
VignetteBuilder knitr
License GPL-3
Encoding UTF-8
Language en-GB
RoxygenNote 7.1.1
URL https://github.com/rauschenberger/palasso
BugReports https://github.com/rauschenberger/palasso/issues
NeedsCompilation no
Author Armin Rauschenberger [aut, cre]
Maintainer Armin Rauschenberger <armin.rauschenberger@uni.lu>
Repository CRAN
Date/Publication 2021-04-19 16:50:02 UTC

R topics documented:

- .args ... 2
- .combine ... 2
- .cor ... 3
- .cv ... 4
Description

Checks the validity of the provided arguments.

Usage

ARGS

Arguments

Arguments supplied to palasso, other than y, X and max.

Value

Returns the arguments as a list, including default values for missing arguments.

Examples

NA

Description

This function combines local p-values to a global p-value.

Usage

.combine(x, method = "simes")
Arguments

- **x**: local p-values: numeric vector of length \(k \)
- **method**: character "fisher", "tippet", "sidak", or "simes"

Value

These functions return a numeric vector of length \(p \) (main effects), or a numeric matrix with \(p \) rows and \(p \) columns (interaction effects).

References

Examples

```r
# independence
p <- runif(10)
palasso:::.combine(p)

# dependence
runif <- function(n, cor=0){
  Sigma <- matrix(cor, nrow=n, ncol=n)
  diag(Sigma) <- 1
  mu <- rep(0, times=n)
  q <- MASS::mvrnorm(n=1, mu=mu, Sigma=Sigma)
  stats::pnorm(q=q)
}
p <- runif(n=10, cor=0.8)
#combine(p)
```

.cor
Correlation

Description

Calculates the correlation between the response and the covariates. Shrinks the correlation coefficients for each covariate set separately.

Usage

```
.cor(y, x, args)
```

Arguments

- **y**: vector of length \(n \)
- **x**: matrix with \(n \) rows and \(p \) columns
- **args**: options for paired lasso: list of arguments (output from .dims and .args)
Value

list of vectors

Examples

NA

.cv

Cross-validation

Description

Repeatedly leaves out samples, and predicts their response.

Usage

`.cv(y, x, foldid, lambda, args)`

Arguments

- `y` : response: vector of length `n`
- `x` : covariates: matrix with `n` rows (samples) and `k * p` columns (variables)
- `foldid` : fold identifiers: vector of length `n`, with entries from 1 to `nfolds`
- `lambda` : lambda sequence: vector of decreasing positive values
- `args` : options for paired lasso: list of arguments (output from `.dims` and `.args`)

Value

Returns matrix of predicted values (except "cox")

Examples

NA
Description
This function extracts the dimensions.

Usage
.dims(y, X, args = NULL)

Arguments
y response: vector of length \(n \)
X covariates: list of matrices, each with \(n \) rows (samples) and \(p \) columns (variables)
args options for paired lasso: list of arguments (output from .dims and .args)

Value
The function .dims extracts the dimensionality. It returns the numbers of samples, covariate pairs and covariate sets. It also returns the number of weighting schemes, and the names of these weighting schemes.

Examples
NA

Description
Extracts cv.glmnet-like object.

Usage
.extract(fit, lambda, cvm, type.measure)

Arguments
fit matrix with one row for each sample ("gaussian", "binomial" and "poisson"), or one row for each fold (only "cox"), and one column for each lambda (output from .fit)
lambda lambda sequence: vector of decreasing positive values
cvm mean cross-validated loss: vector of same length as lambda (output from .loss)
type.measure ... loss function: character "deviance", "mse", "mae", "class", or "auc"
Examples

NA

.fit Model bag

Description

Fits all models from the chosen bag.

Usage

.fit(y, x, args)

Arguments

y response: vector of length n
x covariates: matrix with n rows (samples) and k * p columns (variables)
args options for paired lasso: list of arguments (output from .dims and .args)

Value

list of glmnet-like objects

Examples

NA

.folds Cross-validation folds

Description

Assigns samples to cross-validation folds, balancing the folds in the case of a binary or survival response.

Usage

.folds(y, nfolds, foldid = NULL)

Arguments

y response: vector of length n
nfolds number of folds: positive integer (>= 10 recommended)
foldid fold identifiers: vector of length n, with entries from 1 to nfolds
Description

Calculates mean cross-validated loss

Usage

\[\text{.loss}(y, \text{fit}, \text{family}, \text{type.measure}, \text{foldid} = \text{NULL}) \]

Arguments

- **y**: response; vector of length \(n \)
- **fit**: matrix with one row for each sample ("gaussian", "binomial" and "poisson"), or one row for each fold (only "cox"), and one column for each \(\lambda \) (output from \text{.fit})
- **family**: model family: character "gaussian", "binomial", "poisson", or "cox"
- **type.measure**: ... loss function: character "deviance", "mse", "mae", "class", or "auc"
- **foldid**: fold identifiers: vector of length \(n \), with entries from 1 to \(n_{\text{folds}} \)

Value

Returns list of vectors, one for each model.

Examples

\[\text{NA} \]
Description

Calculates the weighting schemes.

Usage

`.weight(cor, args)`

Arguments

- `cor` correlation coefficients: list of \(k \) vectors of length \(p \) (one vector for each covariate set with one entry for each covariate)
- `args` options for paired lasso: list of arguments (output from `.dims` and `.args`)

Value

list of named vectors (one for each weighting scheme)

Examples

NA

arguments

Arguments for "palasso"

Description

This page lists the arguments for the (internal) "palasso" function(s).

Arguments

- `y` response: vector of length \(n \)
- `X` covariates: list of matrices, each with \(n \) rows (samples) and \(p \) columns (variables)
- `max` maximum number of non-zero coefficients: positive numeric, or NULL (no sparsity constraint)
- `...` further arguments for `cv.glmnet` or `glmnet`
- `x` covariates: matrix with \(n \) rows (samples) and \(k \times p \) columns (variables)
- `args` options for paired lasso: list of arguments (output from `.dims` and `.args`)
- `nfolds` number of folds: positive integer \((\geq 10 \text{ recommended}) \)
foldid fold identifiers: vector of length n, with entries from 1 to nfolds

cor correlation coefficients: list of k vectors of length p (one vector for each covariate set with one entry for each covariate)

lambda lambda sequence: vector of decreasing positive values

family model family: character "gaussian", "binomial", "poisson", or "cox"

type.measure ... loss function: character "deviance", "mse", "mae", "class", or "auc"

fit matrix with one row for each sample ("gaussian", "binomial" and "poisson"), or one row for each fold (only "cox"), and one column for each lambda (output from .fit)

cvm mean cross-validated loss: vector of same length as lambda (output from .loss)

Methods for class "palasso"

Description

This page lists the main methods for class "palasso".

Usage

```r
## S3 method for class 'palasso'
predict(object, newdata, model = "paired", s = "lambda.min", max = NULL, ...)

## S3 method for class 'palasso'
coef(object, model = "paired", s = "lambda.min", max = NULL, ...)

## S3 method for class 'palasso'
weights(object, model = "paired", max = NULL, ...)

## S3 method for class 'palasso'
fitted(object, model = "paired", s = "lambda.min", max = NULL, ...)

## S3 method for class 'palasso'
residuals(object, model = "paired", s = "lambda.min", max = NULL, ...)

## S3 method for class 'palasso'
deviance(object, model = "paired", max = NULL, ...)

## S3 method for class 'palasso'
logLik(object, model = "paired", max = NULL, ...)

## S3 method for class 'palasso'
summary(object, model = "paired", ...)
```

Arguments

- **object**: `palasso` object
- **newdata**: covariates: list of matrices, each with \(n \) rows (samples) and \(p \) columns (variables)
- **model**: character "paired", or an entry of `names(object)`
- **s**: penalty parameter: character "lambda.min" or "lambda.1se", positive numeric, or NULL (entire sequence)
- **max**: maximum number of non-zero coefficients, positive integer, or NULL
- **...**: further arguments for `predict.cv.glmnet`, `coef.cv.glmnet`, or `deviance.glmnet`

Details

By default, the function `predict` returns the linear predictor (`type="link"`). Consider predicting the response (`type="response"`).

See Also

Use `palasso` to fit the paired lasso.

palasso
Paired lasso

Description

The function `palasso` fits the paired lasso. Use this function if you have paired covariates and want a sparse model.

Usage

`palasso(y = y, X = X, max = 10, ...)`

Arguments

- **y**: response: vector of length \(n \)
- **X**: covariates: list of matrices, each with \(n \) rows (samples) and \(p \) columns (variables)
- **max**: maximum number of non-zero coefficients: positive numeric, or NULL (no sparsity constraint)
- **...**: further arguments for `cv.glmnet` or `glmnet`

Details

Let \(x \) denote one entry of the list \(X \). See `glmnet` for alternative specifications of \(y \) and \(x \). Among the further arguments, `family` must equal "gaussian", "binomial", "poisson", or "cox", and `penalty.factor` must not be used.

Hidden arguments: Deactivate adaptive lasso by setting `adaptive` to `FALSE`, activate standard lasso by setting `standard` to `TRUE`, and activate shrinkage by setting `shrink` to `TRUE`.
Value

This function returns an object of class \texttt{palasso}. Available methods include \texttt{predict}, \texttt{coef}, \texttt{weights}, \texttt{fitted}, \texttt{residuals}, \texttt{deviance}, \texttt{logLik}, and \texttt{summary}.

References

Examples

```r
set.seed(1)
n <- 50; p <- 20
y <- rbinom(n=n,size=1,prob=0.5)
X <- lapply(1:2,function(x) matrix(rnorm(n*p),nrow=n,ncol=p))
object <- palasso(y=y,X=X,family="binomial") # adaptive=TRUE,standard=FALSE
names(object)
```
Index

* methods
 .combine, 2
 .args, 2, 3–6, 8
 .combine, 2
 .cor, 3
 .cv, 4
 .dims, 3–5, 5, 6, 8
 .extract, 5
 .fit, 5, 6, 7, 9
 .folds, 6
 .loss, 5, 7, 9
 .weight, 8

arguments, 8

coef, 11
c coef.cv.glmnet, 10
c coef.palasso (methods), 9
cv.glmnet, 8, 10
deviance, 11
d deviance.glmnet, 10
d deviance.palasso (methods), 9

fitted, 11
f fitted.palasso (methods), 9

glmnet, 8, 10

logLik, 11
logLik.palasso (methods), 9

methods, 9

palasso, 2, 10, 10
palasso-package (palasso), 10
predict, 11
predict.cv.glmnet, 10
predict.palasso (methods), 9

residuals, 11
residuals.palasso (methods), 9

summary, 11
summary.palasso (methods), 9

weights, 11
weights.palasso (methods), 9