Package ‘pcr’

April 1, 2020

Version 1.2.2
Title Analyzing Real-Time Quantitative PCR Data
Maintainer Mahmoud Ahmed <mahmoud.s.fahmy@students.kasralainy.edu.eg>
URL https://github.com/MahShaaban/pcr
BugReports https://github.com/MahShaaban/pcr/issues
Depends R (>= 3.4.0)
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Imports ggplot2
Suggests testthat, knitr, rmarkdown, covr, cowplot
VignetteBuilder knitr
License GPL-3
NeedsCompilation no
Author Mahmoud Ahmed [aut, cre] (<https://orcid.org/0000-0002-4377-6541>)
Repository CRAN
Date/Publication 2020-04-01 06:10:02 UTC

R topics documented:

ct1 .. 2
c2 .. 3
c3 .. 3
Description

A dataset containing the C_T values of two genes from a qPCR experiment. Samples were prepared from human tissues; Brain and kidney ($n = 6$) each. Primers for each genes were run in separate reaction tubes.

Usage

ct1

Format

A data.frame with 12 rows and 2 variables:

- **c_myc** C_T values of the target gene c-myc
- **GAPDH** C_T values of the control gene GAPDH

Source

See Also

- ct2
- ct3
ct2

Description
A dataset containing the C_T values of two genes from a qPCR experiment. Samples were prepared from human tissues; Brain and kidney ($n = 6$) each. Primers for both genes were run in the same tubes with different reporting dyes.

Usage
ct2

Format
A data.frame with 12 rows and 2 variables:

- c_myc C_T values of the target gene c-myc
- GAPDH C_T values of the control gene GAPDH

Source

See Also
ct1
ct3

ct3

Description
A dataset containing the C_T values of two genes from a serial dilution qPCR experiment. The original dataset shows only the averages and standard deviations of each of the 7 different dilutions (1, .5, .2, .1, .05, .02 and .01). These summaries were used to regenerate 3 replicates for each of the dilutions to be used in testing and examples of the different functions.

Usage
ct3
Format

A data frame with 21 rows and 2 variables:

- **c_myc** C_T values of the target gene c\-myc
- **GAPDH** C_T values of the control gene GAPDH

Source

See Also

- ct1
- ct2

ct4 C_T values from qPCR (Serial dilutions)

Description

A dataset containing the C_T values of two genes from a controlled serial dilution qPCR experiment. The data were prepared from four different dilutions (10, 2, 0.4 and 0.08) and two control groups; control and treatment ($n = 12$) each.

Usage

ct4

Format

A data frame with 24 rows and 2 variables:

- **ref** C_T values of the reference gene
- **target** C_T values of the target gene

Source

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395339/
Description

Analyzing real-time quantitative PCR data

Details

pcr_analyze

Apply qPCR analysis methods

Description

A unified interface to invoke different analysis methods of qPCR data.

Usage

pcr_analyze(df, method = "delta_delta_ct", ...)

Arguments

df
method
... A data.frame of C_T values with genes in the columns and samples in rows
A character string; 'delta_delta_ct’ default, 'delta_ct’ or 'relative_curve’ for invoking a certain analysis model
Arguments passed to the methods

Details

The different analysis methods can be invoked using the argument method with 'delta_delta_ct’ default, 'delta_ct’ or 'relative_curve’ for the double delta C_T, delta C_T or the standard curve model respectively. Alternatively, the same methods can be applied by using the corresponding functions directly: pcr_ddct, pcr_dct or pcr_curve.

Value

A data.frame by default, when plot is TRUE returns a plot. For details; pcr_ddct, pcr_dct and pcr_curve.
References

Examples

applying the delta delta ct method
locate and read raw ct data
fl <- system.file('extdata', 'ct1.csv', package = 'PCR')
c1 <- read.csv(fl)

add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)

calculate all values and errors in one step
pcr_analyze(c1,
group_var = group_var,
reference_gene = 'GAPDH',
reference_group = 'brain',
method = 'delta_delta_ct')

return a plot
pcr_analyze(c1,
group_var = group_var,
reference_gene = 'GAPDH',
reference_group = 'brain',
method = 'delta_delta_ct',
plot = TRUE)

applying the delta ct method
make a data.frame of two identical columns
pcr_hk <- data.frame(
 GAPDH1 = c1$GAPDH,
 GAPDH2 = c1$GAPDH
)

calculate fold change
pcr_analyze(pcr_hk,
group_var = group_var,
reference_group = 'brain',
method = 'delta_ct')

return a plot
pcr_analyze(pcr_hk,
group_var = group_var,
reference_group = 'brain',
method = 'delta_ct',
plot = TRUE)

applying the standard curve method
locate and read file
```r
fl <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- read.csv(fl)

# make a vector of RNA amounts
amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)

# calculate curve
standard_curve <- pcr_assess(ct3, amount = amount, method = 'standard_curve')
intercept <- standard_curve$intercept
slope <- standard_curve$slope

# apply the standard curve method
pcr_analyze(ct1,
  group_var = group_var,
  reference_gene = 'GAPDH',
  reference_group = 'brain',
  intercept = intercept,
  slope = slope,
  method = 'relative_curve')

# return a plot
pcr_analyze(ct1,
  group_var = group_var,
  reference_gene = 'GAPDH',
  reference_group = 'brain',
  intercept = intercept,
  slope = slope,
  method = 'relative_curve',
  plot = TRUE)
```

pcr_assess

Assess qPCR data quality

Description

A unified interface to invoke different quality assessment methods of qPCR data.

Usage

```r
pcr_assess(df, method = "standard_curve", ...)
```

Arguments

- **df**
 - A data.frame of CT values with genes in the columns and samples in rows.
 - Each sample are replicates of a known input/dilution given by amount.

- **method**
 - A character string: 'standard_curve' (default) or 'efficiency' for invoking a certain quality assessment model.

- **...**
 - Arguments passed to the methods.
Details

The different quality assessment methods can be invoked using the argument method with 'standard_curve' or 'efficiency'. Alternatively, the same methods can be applied by using the corresponding functions: pcr_standard or pcr_efficiency for calculating the amplification efficiency of a PCR reaction or the individual standard curves respectively. Unlike the amplification efficiency calculation when, using the double delta ct model, the standard curves are required in calculating the standard curve analysis model.

Value

A data.frame or a plot. For details; pcr_standard and pcr_efficiency

Examples

```r
fl <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- read.csv(fl)

amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)

# calculate the standard curve
pcr_assess(ct3, amount = amount, method = 'standard_curve')

# calculate amplification efficiency
pcr_assess(ct3, amount = amount, reference_gene = 'GAPDH', method = 'efficiency')
```

pcr_curve

Calculate the standard curve model
pcr_curve

Description

Uses the C_T values and a reference gene and a group, in addition to the intercept and slope of each gene form a serial dilution experiment, to calculate the standard curve model and estimate the normalized relative expression of the target genes.

Usage

```r
cpcr_curve(
  df,
  group_var,
  reference_gene,
  reference_group,
  mode = "separate_tube",
  intercept,
  slope,
  plot = FALSE,
  ...
)
```

Arguments

- **df** A data.frame of C_T values with genes in the columns and samples in rows.
- **group_var** A character vector of a grouping variable. The length of this variable should equal the number of rows of df.
- **reference_gene** A character string of the column name of a control gene.
- **reference_group** A character string of the control group in group_var.
- **mode** A character string of; 'separate_tube' (default) or 'same_tube'. This is to indicate whether the different genes were run in separate or the same PCR tube.
- **intercept** A numeric vector of intercept and length equals the number of genes.
- **slope** A numeric vector of slopes length equals the number of genes.
- **plot** A logical (default is FALSE).
- **...** Arguments passed to customize plot.

Details

This model doesn’t assume perfect amplification but rather actively use the amplification in calculating the relative expression. So when the amplification efficiency of all genes are 100% both methods should give similar results. The standard curve method is applied using two steps. First, serial dilutions of the mRNAs from the samples of interest are used as input to the PCR reaction. The linear trend of the log input amount and the resulting C_T values for each gene are used to calculate an intercept and a slope. Secondly, these intercepts and slopes are used to calculate the amounts of mRNA of the genes of interest and the control/reference in the samples of interest and the control sample/reference. These amounts are finally used to calculate the relative expression.
Value

A data.frame of 7 columns

- group The unique entries in group_var
- gene The column names of df
- normalized The normalized expression of target genes relative to a reference_gene
- calibrated The calibrated expression of target genes relative to a reference_group
- error The standard deviation of normalized relative expression
- lower The lower interval of the normalized relative expression
- upper The upper interval of the normalized relative expression

When plot is TRUE, returns a bar graph of the calibrated expression of the genes in the column and the groups in the column group. Error bars are drawn using the columns lower and upper. When more one gene are plotted the default in dodge bars. When the argument facet is TRUE a separate panel is drawn for each gene.

References

Examples

```r
# locate and read file
fl <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- read.csv(fl)

fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
ct1 <- read.csv(fl)

# make a vector of RNA amounts
amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)

# calculate curve
standard_curve <- pcr_assess(ct3, amount = amount, method = 'standard_curve')
intercept <- standard_curve$intercept
slope <- standard_curve$slope

# make grouping variable
group <- rep(c('brain', 'kidney'), each = 6)

# apply the standard curve method
pcr_curve(ct1,
  group_var = group,
  reference_gene = 'GAPDH',
  reference_group = 'brain',
  intercept = intercept,
  slope = slope)
```
returns a plot
pcr_curve(ctl,
 group_var = group,
 reference_gene = 'GAPDH',
 reference_group = 'brain',
 intercept = intercept,
 slope = slope,
 plot = TRUE)

pcr_dct

Calculate the delta_ct model

Description

Uses the \(C_T\) values and a reference group to calculate the delta \(C_T\) model to estimate the relative fold change of a gene between groups.

Usage

```r
pcr_dct(
    df,
    group_var,
    reference_group,
    mode = "separate_tube",
    plot = FALSE,
    ...
)
```

Arguments

- `df`: A data.frame of \(C_T\) values with genes in the columns and samples in rows.
- `group_var`: A character vector of a grouping variable. The length of this variable should equal the number of rows of `df`.
- `reference_group`: A character string of the control group in `group_var`.
- `mode`: A character string of; 'separate_tube' (default) or 'same_tube'. This is to indicate whether the different genes were run in separate or the same PCR tube.
- `plot`: A logical (default is FALSE).
- `...`: Arguments passed to customize plot.

Details

This method is a variation of the double delta \(C_T\) model, `pcr_ddct`. It can be used to calculate the fold change of in one sample relative to the others. For example, it can be used to compare and choosing a control/reference genes.
Value
A data.frame of 7 columns

- group The unique entries in group_var
- gene The column names of df
- calibrated The average C_T value of target genes after subtracting that of the reference_group
- fold_change The fold change of genes relative to a reference_group
- error The standard deviation of the fold_change
- lower The lower interval of the fold_change
- upper The upper interval of the fold_change

When plot is TRUE, returns a bar graph of the fold change of the genes in the column and the groups in the column group. Error bars are drawn using the columns lower and upper. When more one gene are plotted the default in dodge bars. When the argument facet is TRUE a separate panel is drawn for each gene.

References

Examples
locate and read file
fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
c1 <- read.csv(fl)

make a data.frame of two identical columns
pcr_hk <- data.frame(GAPDH1 = ct1$GAPDH, GAPDH2 = ct1$GAPDH)

add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)

calculate calibration
pcr_dct(pcr_hk, group_var = group_var, reference_group = 'brain')

returns a plot
pcr_dct(pcr_hk, group_var = group_var, reference_group = 'brain', plot = TRUE)

returns a plot with facets
pcr_ddct Calculate the delta delta ct model

Description

Uses the C_T values and a reference gene and a group to calculate the delta delta C_T model to estimate the normalized relative expression of target genes.

Usage

```r
pcr_ddct(df, group_var, reference_gene, reference_group, mode = "separate_tube", plot = FALSE, ...)
```

Arguments

- **df**: A data.frame of C_T values with genes in the columns and samples in rows
- **group_var**: A character vector of a grouping variable. The length of this variable should equal the number of rows of df
- **reference_gene**: A character string of the column name of a control gene
- **reference_group**: A character string of the control group in group_var
- **mode**: A character string of; 'separate_tube' (default) or 'same_tube'. This is to indicate whether the different genes were run in separate or the same PCR tube
- **plot**: A logical (default is FALSE)
- **...**: Arguments passed to customize plot

Details

The comparative C_T methods assume that the cDNA templates of the gene/s of interest as well as the control/reference gene have similar amplification efficiency. And that this amplification efficiency is near perfect. Meaning, at a certain threshold during the linear portion of the PCR reaction, the amount of the gene of the interest and the control double each cycle. Another assumptions is that,
the expression difference between two genes or two samples can be captured by subtracting one (gene or sample of interest) from another (reference). This final assumption requires also that these references don’t change with the treatment or the course in question.

Value
A data.frame of 8 columns:

- group The unique entries in group_var
- gene The column names of df. reference_gene is dropped
- normalized The C_T value (or the average C_T value) of target genes after subtracting that of the reference_gene
- calibrated The normalized average C_T value of target genes after subtracting that of the reference_group
- relative_expression The expression of target genes normalized by a reference_gene and calibrated by a reference_group
- error The standard deviation of the relative_expression
- lower The lower interval of the relative_expression
- upper The upper interval of the relative_expression

When `plot` is TRUE, returns a bar graph of the relative expression of the genes in the column and the groups in the column group. Error bars are drawn using the columns lower and upper. When more one gene are plotted the default in dodge bars. When the argument facet is TRUE a separate panel is drawn for each gene.

Examples

```r
## locate and read raw ct data
fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
ct1 <- read.csv(fl)

# add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)

# calculate all values and errors in one step
calculated <- pcr_ddct(ct1,
    group_var = group_var,
    reference_gene = 'GAPDH',
    reference_group = 'brain')

# return a plot
pcr_ddct(ct1,
    group_var = group_var,
    reference_gene = 'GAPDH',
    reference_group = 'brain',
    plot = TRUE)
```
Description

Uses the C_T values from a serial dilution experiment to calculate the amplification efficiency of a PCR reaction.

Usage

```r
pcr_efficiency(df, amount, reference_gene, plot = FALSE)
```

Arguments

- **df**: A data.frame of C_T values with genes in the columns and samples in rows. Each sample are replicates of a known input/dilution given by amount.
- **amount**: A numeric vector of the input amounts or dilutions. The length of this vector should equal the row number of df.
- **reference_gene**: A character string of the column name of a control gene.
- **plot**: A logical (default FALSE) to indicate whether to return a data.frame or a plot.

Details

Fortunately, regardless of the method used in the analysis of qPCR data, the quality assessment are done in a similar way. It requires an experiment similar to that of calculating the standard curve. Serial dilutions of the genes of interest and controls are used as input to the reaction and different calculations are made. The amplification efficiency is approximated by the linear trend between the difference between the C_T value of a gene of interest and a control/reference (ΔC_T) and the log input amount. This piece of information is required when using the $\Delta\Delta C_T$ model. Typically, the slope of the curve should be very small and the R^2 value should be very close to one. Other analysis methods are recommended when this is not the case.

Value

When plot is FALSE returns a data.frame of 4 columns describing the line between the ΔC_T of target genes and the log of amount:

- **gene**: The column names of df. `reference_gene` is dropped.
- **intercept**: The intercept of the line.
- **slope**: The slope of the line.
- **r_squared**: The squared correlation.

When plot is TRUE returns a graph instead shows the average and standard deviation of the ΔC_T at different input amounts. In addition, a linear trend line is drawn.
References

Examples

```r
# locate and read file
def <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- read.csv(def)

# make amount/dilution variable
amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)

# calculate amplification efficiency
pcr_efficiency(ct3, 
    amount = amount, 
    reference_gene = 'GAPDH')

# plot amplification efficiency
pcr_efficiency(ct3, 
    amount = amount, 
    reference_gene = 'GAPDH', 
    plot = TRUE)
```

pcr_lm

Linear regression qPCR data

Description

Linear regression qPCR data

Usage

```r
pcr_lm(
    df, 
    group_var, 
    reference_gene, 
    reference_group, 
    model_matrix = NULL, 
    mode = "subtract", 
    tidy = TRUE, 
    ...
)
```
Arguments

- **df**: A data.frame of C_T values with genes in the columns and samples in rows.
- **group_var**: A character vector of a grouping variable. The length of this variable should equal the number of rows of df.
- **reference_gene**: A character string of the column name of a control gene.
- **reference_group**: A character string of the control group in group_var.
- **model_matrix**: A model matrix for advanced experimental design. For constructing such a matrix with different variables, check `model.matrix`.
- **mode**: A character string for the normalization mode. Possible values are "subtract" (default) or "divide".
- **tidy**: A logical whether to return a list of `lm` or a tidy data.frame. Default TRUE.
- **...**: Other arguments to `lm`.

Value

A data.frame of 6 columns:

- **term**: The term being tested.
- **gene**: The column names of df. reference_gene is dropped.
- **estimate**: The estimate for each term.
- **p_value**: The p-value for each term.
- **lower**: The low 95% confidence interval.
- **upper**: The high 95% confidence interval.

When tidy is FALSE, returns a list of `lm` objects.

Examples

```r
# locate and read data
fl <- system.file('extdata', 'ct4.csv', package = 'pcr')
ct4 <- read.csv(fl)

# make group variable
group <- rep(c('control', 'treatment'), each = 12)

# test
pcr_lm(ct4,
      group_var = group,
      reference_gene = 'ref',
      reference_group = 'control')

# testing using lm method
pcr_test(ct4,
         group_var = group,
         reference_gene = 'ref',
         reference_group = 'control',
         test = 'lm')
```
pcr_standard

Calculate the standard curve

Description

Uses the C_T values from a serial dilution experiment to calculate the a curve for each gene and the log of the input amount.

Usage

```r
pcr_standard(df, amount, plot = FALSE)
```

Arguments

- `df` A data.frame of C_T values with genes in the columns and samples in rows. Each sample are replicates of a known input/dilution given by amount.
- `amount` A numeric vector of the input amounts or dilutions. The length of this vector should equal the row number of df.
- `plot` A logical (default FALSE) to indicate whether to return a data.frame or a plot.

Details

Fortunately, regardless of the method used in the analysis of qPCR data, the quality assessment are done in a similar way. It requires an experiment similar to that of calculating the standard curve. Serial dilutions of the genes of interest and controls are used as input to the reaction and different calculations are made. Curves are required for each gene using the C_T value and the log of the input amount. In this case, a separate slope and intercept are required for the calculation of the relative expression when applying the standard curve model.

Value

When plot is FALSE returns a data.frame of 4 columns describing the line between the C_T of each gene and the log of amount:

- `gene` The column names of df
- `intercept` The intercept of the line
- `slope` The slope of the line
- `r_squared` The squared correlation

When plot is TRUE returns a graph instead shows the average and standard deviation of of the C_T at different input amounts.

References

Examples

```r
# locate and read file
fl <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- read.csv(fl)

# make amount/dilution variable
amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)

# calculate the standard curve
pcr_standard(ct3,
             amount = amount)

# plot the standard curve
pcr_standard(ct3,
             amount = amount,
             plot = TRUE)
```

pcr_test

Statistical testing of PCR data

Description

A unified interface to different statistical significance tests for qPCR data

Usage

```r
pcr_test(df, test = "t.test", ...)
```

Arguments

- `df`: A data.frame of C_T values with genes in the columns and samples in rows
- `test`: A character string; ’t.test’ default, ’wilcox.test’ or ’lm’
- `...`: Other arguments for the testing methods

Details

The simple t-test can be used to test the significance of the difference between two conditions ΔC_T. t-test assumes in addition, that the input C_T values are normally distributed and the variance between conditions are comparable. Wilcoxon test can be used when sample size is small and those two last assumptions are hard to achieve.

Two use the linear regression here. A null hypothesis is formulated as following,

$$C_{T,\text{target, treatment}} - C_{T,\text{control, treatment}} = C_{T,\text{target, control}} - C_{T,\text{control, control}} \quad \text{or} \quad \Delta \Delta C_T$$

This is exactly the $\Delta \Delta C_T$ as explained earlier. So the $\Delta \Delta C_T$ is estimated and the null is rejected when $\Delta \Delta C_T \neq 0$.

Value

A data.frame of 5 columns in addition to term when test == 'lm'

- term The linear regression comparison terms
- gene The column names of df. reference_gene is dropped
- estimate The estimate for each term
- p_value The p-value for each term
- lower The low 95% confidence interval
- upper The high 95% confidence interval

For details about the test methods themselves and different parameters, consult `t.test`, `wilcox.test` and `lm`

References

Examples

```r
# locate and read data
g1 <- system.file('extdata', 'ct4.csv', package = 'pcr')
ct4 <- read.csv(g1)

# make group variable
group <- rep(c('control', 'treatment'), each = 12)

# test using t-test
pcr_test(ct4,
group_var = group,
reference_gene = 'ref',
reference_group = 'control',
test = 't.test')

# test using wilcox.test
pcr_test(ct4,
group_var = group,
reference_gene = 'ref',
reference_group = 'control',
test = 'wilcox.test')

# testing using lm
pcr_test(ct4,
group_var = group,
reference_gene = 'ref',
reference_group = 'control',
test = 'lm')

# testing advanced designs using a model matrix
# make a model matrix
```
```r
# test using lm
pcr_test(ct4,
    reference_gene = 'ref',
    model_matrix = mm,
    test = 'lm')

# using linear models to check the effect of RNA quality
# make a model matrix
group <- relevel(factor(group), ref = 'control')
set.seed(1234)
quality <- scale(rnorm(n = 24, mean = 1.9, sd = .1))
mm <- model.matrix(~group + group:quality, data = data.frame(group, quality))

# testing using lm
pcr_test(ct4,
    reference_gene = 'ref',
    model_matrix = mm,
    test = 'lm')

# using linear model to check the effects of mixing separate runs
# make a model matrix
group <- relevel(factor(group), ref = 'control')
run <- factor(rep(c(1:3), 8))
mm <- model.matrix(~group + group:run, data = data.frame(group, run))

# test using lm
pcr_test(ct4,
    reference_gene = 'ref',
    model_matrix = mm,
    test = 'lm')
```

Description

`t-test qPCR data`

Usage

`pcr_ttest(df, group_var, reference_gene, reference_group, tidy = TRUE, ...)`
Arguments

df A data.frame of C_T values with genes in the columns and samples in rows

group_var A character vector of a grouping variable. The length of this variable should equal the number of rows of df

reference_gene A character string of the column name of a control gene

reference_group A character string of the control group in group_var

tidy A logical whether to return a list of htest or a tidy data.frame. Default TRUE.

... Other arguments to t.test

Value

A data.frame of 5 columns

- gene The column names of df. reference_gene is dropped
- estimate The estimate for each term
- p_value The p-value for each term
- lower The low 95% confidence interval
- upper The high 95% confidence interval

When tidy is FALSE, returns a list of htest objects.

Examples

locate and read data
fl <- system.file('extdata', 'ct4.csv', package = 'pcr')
ct4 <- read.csv(fl)

make group variable
group <- rep(c('control', 'treatment'), each = 12)

test
cpr_ttest(ct4, group_var = group,
 reference_gene = 'ref',
 reference_group = 'control')

test using t.test method
cpr_test(ct4, group_var = group,
 reference_gene = 'ref',
 reference_group = 'control',
 test = 't.test')
Wilcoxon test qPCR data

Usage

```r
pcr_wilcox(df, group_var, reference_gene, reference_group, tidy = TRUE, ...)
```

Arguments

- `df`: A data.frame of C\textsubscript{T} values with genes in the columns and samples in rows.
- `group_var`: A character vector of a grouping variable. The length of this variable should equal the number of rows of `df`.
- `reference_gene`: A character string of the column name of a control gene.
- `reference_group`: A character string of the control group in `group_var`.
- `tidy`: A logical whether to return a list of `htest` or a tidy data.frame. Default TRUE.
- `...`: Other arguments to `wilcox.test`.

Value

A data.frame of 5 columns:

- gene: The column names of `df`. `reference_gene` is dropped.
- estimate: The estimate for each term.
- p_value: The p-value for each term.
- lower: The low 95% confidence interval.
- upper: The high 95% confidence interval.

When `tidy` is FALSE, returns a list of `htest` objects.

Examples

```r
# locate and read data
fl <- system.file('extdata', 'ct4.csv', package = 'pcr')
ct4 <- read.csv(fl)

# make group variable
group <- rep(c('control', 'treatment'), each = 12)

# test
pcr_wilcox(ct4,
```
group_var = group,
reference_gene = 'ref',
reference_group = 'control')

test using wilcox.test method
pcr_test(ct4,
group_var = group,
reference_gene = 'ref',
reference_group = 'control',
test = 'wilcox.test')
Index

*Topic datasets
 ct1, 2
 ct2, 3
 ct3, 3
 ct4, 4

 ct1, 2, 3, 4
 ct2, 2, 3, 4
 ct3, 2, 3, 3
 ct4, 4

lm, 17, 20

model.matrix, 17

pcr, 5
 pcr_analyze, 5
 pcr_assess, 7
 pcr_curve, 5, 8
 pcr_dct, 5, 11
 pcr_ddct, 5, 11, 13
 pcr_efficiency, 8, 15
 pcr_lm, 16
 pcr_standard, 8, 18
 pcr_test, 19
 pcr_ttest, 21
 pcr_wilcox, 23

t.test, 20, 22

wilcox.test, 20, 23