Package ‘penalizedclr’

April 22, 2021

Title Integrative Penalized Conditional Logistic Regression

Version 0.1.0

Description Implements L1 and L2 penalized conditional logistic regression with penalty factors allowing for integration of multiple data sources. Implements stability selection for variable selection.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Imports penalized, survival, clogitL1, stats, tidyverse

Suggests parallel, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Vera Djordjilović [aut, cre] (<https://orcid.org/0000-0002-7670-3111>), Erica Ponzi [aut]

Maintainer Vera Djordjilović <vera.djordjilovic@unive.it>

Repository CRAN

Date/Publication 2021-04-22 07:30:02 UTC

R topics documented:

default.lambda .. 2
find.default.lambda .. 2
penalized.clr ... 4
stable.clr ... 6
stable.clr.g ... 7
subsample.clr .. 10

Index 11
default.lambda

Default values for L1 penalty in conditional logistic regression

Description
Performs cross validation to determine reasonable default values for L1 penalty in a conditional logistic regression

Usage
default.lambda(X, Y, stratum, nfolds = 10, alpha = 1)

Arguments
X A matrix of covariates, with the number of rows equalling the number of observations.
Y A binary response variable.
stratum A numeric vector with stratum membership of each observation.
nfolds The number of folds used in cross-validation. Default is 10.
alpha The elastic net mixing parameter, a number between 0 and 1. alpha=0 would give pure ridge; alpha=1 gives lasso. Pure ridge penalty is never obtained in this implementation since alpha must be positive.

Value
A numeric vector of length 1 to 3 (depending on the problem) giving L1 penalties

find.default.lambda

Default values for L1 penalty in conditional logistic regression

Description
Performs cross validation to determine reasonable default values for L1 penalty in a conditional logistic regression

Usage
find.default.lambda(
 response, stratum, penalized, unpenalized = NULL, alpha = 1, p = NULL,
find.default.lambda

standardize = FALSE,
event,
nfolds = 10
)

Arguments
response The response variable, either a 0/1 vector or a factor with two levels.
stratum A numeric vector with stratum membership of each observation.
penalized A matrix of penalized covariates.
unpenalized A matrix of additional unpenalized covariates.
alpha The elastic net mixing parameter, a number between 0 and 1. alpha=0 would give pure ridge; alpha=1 gives lasso. Pure ridge penalty is never obtained in this implementation since alpha must be positive.
p The sizes of blocks of covariates, a numerical vector of the length equal to the number of blocks, and with the sum equal to the number of penalized covariates. If missing, all covariates are treated the same and a single penalty is applied.
standardize Should the covariates be standardized, a logical value.
event If response is a factor, the level that should be considered a success in the logistic regression.
nfolds The number of folds used in cross-validation. Default is 10.

Details
The function find.default.lambda is used to obtain a sequence of reasonable values of the parameter lambda. In the presence of blocks of covariates, a separate sequence is obtained for each block and the function returns a list. The function is based on cross-validation implemented in the clogitL1 package. For each block, a separate conditional logistic model is fit (together with unpenalized covariates if provided) and two lambda values a) minCV_lambda minimizing cross-validated deviance and b) minCV1se_lambda satisfying 1-SE rule, are obtained. Two additional values of lambda are obtained as a midpoint between the two (minCV_lambda + minCV1se_lambda)/2 and symmetrically (3*minCV_lambda - minCV1se_lambda)/2 (on a log-scale). If minCV_lambda = minCV1se_lambda, a shorter sequence is returned. Note that cross-validation includes random data splitting, meaning that obtained values can vary significantly between different runs.

Value
A numeric vector giving a sequence of L1 penalties if p is missing, or a list of per-block penalty sequences otherwise.

Examples
set.seed(123)
simulate covariates (pure noise in two blocks of 20 and 80 variables)
X <- cbind(matrix(rnorm(4000, 0, 1), ncol = 20), matrix(rnorm(16000, 2, 0.6), ncol = 80))
p <- c(20,80)
stratum membership
stratum <- sort(rep(1:100, 2))

the response
Y <- rep(c(1, 0), 100)

obtain a list with a separate sequence for each block
lambda.list <- find.default.lambda(response = Y,
 penalized = X, stratum = stratum, p = p)

obtain a single sequence
lambda.seq <- find.default.lambda(response = Y,
 penalized = X, stratum = stratum)

penalized.clr
Penalized conditional logistic regression

Description

Fits conditional logistic regression models with L1 and L2 penalty allowing for different penalties for different blocks of covariates.

Usage

penalized.clr(
 response,
 stratum,
 penalized,
 unpenalized = NULL,
 lambda = NULL,
 alpha = 1,
 p = NULL,
 standardize = FALSE,
 event
)

Arguments

- response: The response variable, either a 0/1 vector or a factor with two levels.
- stratum: A numeric vector with stratum membership of each observation.
- penalized: A matrix of penalized covariates.
- unpenalized: A matrix of additional unpenalized covariates.
- lambda: The tuning parameter for L1. Either a single non-negative number, or a numeric vector of the length equal to the number of blocks. If NULL, function find.default.lambda is called. See p below.
alpha The elastic net mixing parameter, a number between 0 and 1. alpha=0 would give pure ridge; alpha=1 gives lasso. Pure ridge penalty is never obtained in this implementation since alpha must be positive.

p The sizes of blocks of covariates, a numerical vector of the length equal to the number of blocks, and with the sum equal to the number of penalized covariates. If missing, all covariates are treated the same and a single penalty is applied.

standardize Should the covariates be standardized, a logical value.

event If response is a factor, the level that should be considered a success in the logistic regression.

Details

The penalized.clr function fits a conditional logistic regression model for a given combination of L1 (lambda) and L2 penalties. L2 penalty is obtained from lambda and alpha as lambda*(1-alpha)/(2*alpha). Note that lambda is a single number if all covariates are to be penalized equally, and a vector of penalties, if predictors are divided in blocks (of sizes provided in p) that are to be penalized differently. If lambda is not provided by the user, a default value is computed by the find.default.lambda function (which slows down the computation). The penalized.clr function is based on the Cox model routine available in the penalized package.

Value

A list with the following elements:

• penalized - Regression coefficients for the penalized covariates.
• unpenalized - Regression coefficients for the unpenalized covariates.
• converged - Whether the fitting process was judged to be converged.
• lambda - The tuning parameter for L1 used.
• alpha - The elastic net mixing parameter used.

See Also

stable.clr and stable.clr.g for variable selection through stability selection in penalized conditional logistic regression with a single penalty factor and multiple penalty factors, respectively.

Examples

set.seed(123)
simulate covariates (pure noise in two blocks of 20 and 80 variables)
X <- cbind(matrix(rnorm(4000, 0, 1), ncol = 20), matrix(rnorm(16000, 2, 0.6), ncol = 80))

stratum membership
stratum <- sort(rep(1:100, 2))

the response
Y <- rep(c(1, 0), 100)

fit <- penalized.clr(response = Y, stratum = stratum, penalized = X, lambda = c(1, 0.3),
stable.clr

Stability selection based on penalized conditional logistic regression

Description

Performs stability selection for conditional logistic regression models with L1 and L2 penalty.

Usage

```r
stable.clr(
  response,
  stratum,
  penalized,
  unpenalized = NULL,
  lambda.seq = NULL,
  alpha = 1,
  B = 100,
  parallel = TRUE,
  standardize = FALSE,
  event
)
```

Arguments

- `response`: The response variable, either a 0/1 vector or a factor with two levels.
- `stratum`: A numeric vector with stratum membership of each observation.
- `penalized`: A matrix of penalized covariates.
- `unpenalized`: A matrix of additional unpenalized covariates.
- `lambda.seq`: A sequence of non-negative values to be used as tuning parameters for L1
- `alpha`: The elastic net mixing parameter, a number between 0 and 1. alpha=0 would give pure ridge; alpha=1 gives lasso. Pure ridge penalty is never obtained in this implementation since alpha must be positive.
- `B`: A single positive number for the number of subsamples.
- `parallel`: Logical. Should the computation be parallelized?
- `standardize`: Should the covariates be standardized, a logical value.
- `event`: If response is a factor, the level that should be considered a success in the logistic regression.
Value

A list with a numeric vector \(\pi \lambda \) giving selection probabilities for each penalized covariate, and a sequence \(\lambda_{\text{seq}} \) used.

See Also

\texttt{stable.clr.g} for stability selection in penalized conditional logistic regression with multiple penalties for block structured covariates.

Examples

```r
set.seed(123)
# simulate covariates (pure noise in two blocks of 20 and 80 variables)
X <- cbind(matrix(rnorm(4000, 0, 1), ncol = 20), matrix(rnorm(16000, 2, 0.6), ncol = 80))
# stratum membership
stratum <- sort(rep(1:100, 2))
# the response
Y <- rep(c(1, 0), 100)
# sequence of L1 penalties
lambda.seq <- find.default.lambda(response = Y,
                                    penalized = X,
                                    stratum = stratum)
# perform stability selection
stable1 <- stable.clr(response = Y, penalized = X, stratum = stratum,
                       lambda.seq = lambda.seq)
# when lambda.seq is not provided,
# it is computed within the function (slightly different results might occur due to the
# randomness inherent to cross-validation)
stable2 <- stable.clr.g(response = Y, penalized = X, stratum = stratum)
```

stable.clr.g

Stability selection based on penalized conditional logistic regression

Description

Performs stability selection for conditional logistic regression models with L1 and L2 penalty allowing for different penalties for different blocks (groups) of covariates (different data sources).
Usage

```r
stable.clr.g(
  response,  # The response variable, either a 0/1 vector or a factor with two levels.
  stratum,   # A numeric vector with stratum membership of each observation.
  penalized, # A matrix of penalized covariates.
  unpenalized = NULL,  # A matrix of additional unpenalized covariates.
  p = NULL,  # The sizes of blocks of covariates, a numerical vector of the length equal to
              # the number of blocks, and with the sum equal to the number of penalized covariates.
              # If missing, all covariates are treated the same and a single penalty is applied.
  lambda.list = NULL,  # A list with per-block sequences of L1 penalties. If NULL, find.default.lambda function is called.
  alpha = 1,  # The elastic net mixing parameter, a number between 0 and 1. alpha=0 would give
              # pure ridge; alpha=1 gives lasso. Pure ridge penalty is never obtained in this
              # implementation since alpha must be positive.
  B = 100,  # A single positive number for the number of subsamples.
  parallel = TRUE,  # Logical. Should the computation be parallelized?
  standardize = FALSE,  # Should the covariates be standardized, a logical value.
  event       # If response is a factor, the level that should be considered a success in the logistic
              # regression.
)
```

Arguments

- `response`: The response variable, either a 0/1 vector or a factor with two levels.
- `stratum`: A numeric vector with stratum membership of each observation.
- `penalized`: A matrix of penalized covariates.
- `unpenalized`: A matrix of additional unpenalized covariates.
- `p`: The sizes of blocks of covariates, a numerical vector of the length equal to the number of blocks, and with the sum equal to the number of penalized covariates. If missing, all covariates are treated the same and a single penalty is applied.
- `lambda.list`: A list with per-block sequences of L1 penalties. If NULL, find.default.lambda function is called.
- `alpha`: The elastic net mixing parameter, a number between 0 and 1. alpha=0 would give pure ridge; alpha=1 gives lasso. Pure ridge penalty is never obtained in this implementation since alpha must be positive.
- `B`: A single positive number for the number of subsamples.
- `parallel`: Logical. Should the computation be parallelized?
- `standardize`: Should the covariates be standardized, a logical value.
- `event`: If response is a factor, the level that should be considered a success in the logistic regression.

Details

This function implements stability selection (Meinshausen and Bühlmann, 2010) in a conditional logistic regression. The implementation is based on the modification of Shah and Samworth (2013) featuring complementary subsamples. Note that this means that the number of subsamples will be 2B instead of B. Subsampling procedure is repeated 2B times for each combination of per-block penalties resulting each time in a vector of selection frequencies (frequency of non-zero coefficient estimate of each covariate). The final selection probability $P_{i\lambda}$ is obtained by taking the maximum over all considered values of penalties.
stable.clr.g

Value

A list containing a numeric vector Pilambda, giving selection probabilities for all penalized covariates and lambda.list.

References

See Also

find.default.lambda for obtaining default sequences of L1 penalties.

Examples

set.seed(123)

simulate covariates (pure noise in two blocks of 20 and 80 variables)
X <- cbind(matrix(rnorm(4000, 0, 1), ncol = 20), matrix(rnorm(16000, 2, 0.6), ncol = 80))
p <- c(20, 80)

stratum membership
stratum <- sort(rep(1:100, 2))

the response
Y <- rep(c(1, 0), 100)

list of L1 penalties
lambda.list <- find.default.lambda(response = Y,
penalized = X, stratum = stratum, p = p)

perform stability selection
stable.g1 <- stable.clr.g(response = Y, penalized = X, stratum = stratum,
p = p, lambda.list = lambda.list)

when lambda.list is not provided,
it is computed within the function (slightly different results might occur due to the
randomness inherent to cross-validation)
stable.g2 <- stable.clr.g(response = Y, penalized = X, stratum = stratum,
p = p)

if p is not provided, all covariates are penalized equally
stable.g3 <- stable.clr.g(response = Y, penalized = X, stratum = stratum)
subsample.clr

Stability selection for penalized conditional logistic regression

Description

Stability selection for penalized conditional logistic regression

Usage

```r
subsample.clr(
  response,
  stratum,
  penalized,
  unpenalized = NULL,
  lambda,
  alpha = 1,
  B = 100,
  matB = NULL,
  return.matB = FALSE,
  parallel = TRUE,
  standardize = FALSE
)
```

Arguments

- **response**: The response variable, either a 0/1 vector or a factor with two levels.
- **stratum**: A numeric vector with stratum membership of each observation.
- **penalized**: A matrix of penalized covariates.
- **unpenalized**: A matrix of additional unpenalized covariates.
- **lambda**: The tuning parameter for L1. Either a single non-negative number, or a numeric vector of the length equal to the number of blocks. If NULL, function `find.default.lambda` is called. See `p` below.
- **alpha**: The elastic net mixing parameter, a number between 0 and 1. `alpha=0` would give pure ridge; `alpha=1` gives lasso. Pure ridge penalty is never obtained in this implementation since `alpha` must be positive.
- **B**: A single positive number for the number of subsamples.
- **matB**: A `2B x ceiling(unique(stratum)/2)` matrix with index set of selected strata in each of `2B` subsamples.
- **return.matB**: Logical. Should the matrix `matB` be returned?
- **parallel**: Logical. Should the computation be parallelized?
- **standardize**: Should the covariates be standardized, a logical value.

Value

If `return.matB` is `TRUE`, a list with two elements, a numeric vector `Pilambda`, giving selection probabilities for each covariate and a matrix `matB`; otherwise only `Pilambda`.
Index

default.lambda, 2
find.default.lambda, 2, 9
penalized.clr, 4
stable.clr, 5, 6
stable.clr.g, 5, 7, 7
subsample.clr, 10