Package ‘permutes’

July 21, 2019

Title Permutation Tests for Time Series Data

Version 1.0

Author Cesko C. Voeten [aut, cre]

Maintainer Cesko C. Voeten <cvoeten@gmail.com>

Description Helps you determine the analysis window to use when analyzing densely-sampled time-series data, such as EEG data, using permutation testing (Maris & Oostenveld 2007) <doi:10.1016/j.jneumeth.2007.03.024>. These permutation tests can help identify the timepoints where significance of an effect begins and ends, and the results can be plotted in various types of heatmap for reporting.

Depends R (>= 2.10)

Imports ggplot2, lmPerm, plyr, viridis

Suggests doParallel, dplyr, tidyr, knitr, rmarkdown

License FreeBSD

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

BugReports https://github.com/cvoeten/permutes/issues

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-21 17:00:02 UTC

R topics documented:

MMN .. 2
permu.test .. 2
plot.permutes 3
Permutation tests for time series data.

Description

Permutation tests for time series data.

Usage

```r
permu.test(formula, data, subset = NULL, type = "anova", parallel = FALSE, progress = "text", ...)
```

Arguments

- `formula`: A formula of the following form: `outcome ~ predictors | timepoint` variable. Multivariate outcomes (e.g. 32 EEG electrodes) are supported; use `cbind(Fp1,Fp2,etc) ~ predictors | timepoint`.
- `data`: The dataset referencing these predictors.
- `subset`: If specified, will only analyze the specified subset of the data.
- `type`: One of 'anova' or 'regression'. The former runs an analysis of variance and returns F-values and p-values based on sums of squares. The latter runs a linear-regression analysis and returns t-values and p-values based on individual effects. When running ANOVA, it is advised to use orthogonal predictors, as type III sums of squares are used.
- `parallel`: Whether to parallelize the permutation testing using plyr's `parallel` option. Needs some additional set-up; see the plyr documentation.
- `progress`: A plyr `.progress` bar name, see the plyr documentation. Ignored if parallel=TRUE.
- `...`: Other arguments to be passed to `aovp`.
Value

A data frame.

Examples

```r
# EEG data example using the MMN dataset
perms <- permu.test(cbind(Fp1,AF3,F7,F3,FC1,FC5,C3,CP1,CP5,P7,P3,Pz,PO3,O1,O2,PO4,P4,
P8,CP6,CP2,C4,FC6,FC2,F4,F8,AF4,Fp2,Fz,Cz) ~ dev*session | time,data=MMN)

# Run the tests in parallel on two CPU threads
# first, set up the parallel backend
library(doParallel)
cl <- makeCluster(2)
registerDoParallel(cl)
perms <- permu.test(cbind(Fp1,AF3,F7,F3,FC1,FC5,C3,CP1,CP5,P7,P3,Pz,PO3,O1,O2,PO4,P4,
P8,CP6,CP2,C4,FC6,FC2,F4,F8,AF4,Fp2,Fz,Cz) ~ dev*session | time,data=MMN,parallel=TRUE)
stopCluster(cl)

# Plot the results
plot(perms)

# t-values instead of F-values
perms <- permu.test(cbind(Fp1,AF3,F7,F3,FC1,FC5,C3,CP1,CP5,P7,P3,Pz,PO3,O1,O2,PO4,P4,
P8,CP6,CP2,C4,FC6,FC2,F4,F8,AF4,Fp2,Fz,Cz) ~ dev*session | time,data=MMN,
type='regression')
```

plot.permutes
Create a heatmap of the results of permutation testing.

Description

Create a heatmap of the results of permutation testing.

Usage

```r
## S3 method for class 'permutes'
plot(x, type = c("F", "t", "p", "w2", "beta"),
     breaks = NULL, ...)
```
plot.permutes

Arguments

- **x**: Output of permu.test. You may want to subset it if you want to simulate zooming in.

- **type**: The quantity to plot. For ANOVA, the options are 'F' (default), 'p', or 'w2' (omega squared). For regression, the options are 't' (default), 'beta', or 'p'. If multiple options are presented, only the first option found in the data frame is used.

- **breaks**: The granularity of the labels of the x axis. Pass `unique(data[,2])` to get a tick for every timepoint. Combine this trick with subsetting of your dataset, and perhaps averaging over all your dependent variables, to ‘zoom in’ on your data to help you determine precisely where significance begins and stops to occur.

- **...**: Other arguments, which will be ignored (the ellipsis is provided for consistency with the generic plot() method).

Value

A ggplot2 object.