Package ‘plot.matrix’

December 9, 2019

Type Package
Title Visualizes a Matrix as Heatmap
Version 1.4
Date 2019-12-05
Description Visualizes a matrix object plainly as heatmap. It provides S3 functions to plot simple matrices and loading matrices.
License GPL-3
RoxygenNote 6.1.1
LazyData true
Suggests knitr, rmarkdown, psych
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Author Sigbert Klinke [aut, cre], Frédéric Chevalier [ctb]
Maintainer Sigbert Klinke <sigbert@hu-berlin.de>
Repository CRAN
Date/Publication 2019-12-09 08:20:02 UTC

R topics documented:

 air.pvalue .. 2
 as.cor ... 3
 assignColors ... 3
 bfi.2 ... 5
 ind ... 7
 plot.assoc ... 8
 plot.cor .. 9
 plot.loadings .. 10
 plot.matrix .. 11
 plot.pvalue .. 14
 Titanic.cramer .. 15
Description

p-values of pairwise correlation test of the complete-cases of daily air quality measurements in New York, May to September 1973.

Usage

data(air.pvalue)

Format

A 4x4 matrix with p values of pairwise correlation tests (cor.test).

Ozone Ozone (ppb)
Solar.R Solar R (lang)
Wind Wind (mph)
Temp Temperature (degrees F)

Source

The data are derived from the New York Air Quality Measurements data set.

References

Examples

data(air.pvalue)
plot(as.pvalue(air.pvalue))
as.cor

as.XXX conversion functions

Description

as.XXX conversion functions

Usage

as.cor(x)
as.assoc(x)
as.pvalue(x)

Arguments

x numeric matrix: matrix to convert

Value

a matrix with an appropriate class

Examples

as.cor
c <- cor(airquality, use="complete.obs")
as.assoc
as.pvalue
data(air.pvalue)
plot(as.pvalue(air.pvalue))

assignColors

assignColors

Description

Assign to each value in x a color according to the choices of breaks and col.

Usage

assignColors(x, breaks = NULL, col = heat.colors, na.col = "white")
Arguments

- `x`: numeric or non-numeric vector
- `breaks`: vector with breaks
- `col`: vector with colors or color function
- `na.col`: color for NA or out-of-range values

Details

Depending if `x` is a numeric or non-numeric vector colors are assigned to each value.

In case of a numeric vector `breaks` can be

- a number, giving the number of intervals covering the range of `x`,
- a vector of two numbers, given the range to cover with 10 intervals, or
- a vector with more than two numbers, specify the interval borders

In case of a non-numeric vector `breaks` must contain all values which are will get a color. If `breaks` is not given then a sensible default is choosen: in case of a numeric vector derived from `pretty` and otherwise all unique values/levels are used.

`col` can be either be a vector of colors or a function which generates via `col(n)` a set of `n` colors. The default is to use `heat.colors`.

Possible color functions in R packages can be found by `vignette('plot.matrix')`.

Value

vector of color with the same length as `x` with the attributes `breaks` the breaks used, `col` the color coding and `na.col` the color for NA and out-of-range entries

Examples

```r
## numeric vector
x <- runif(10)
assignColors(x)
# set breaks
assignColors(x, breaks=15)
assignColors(x, breaks=c(0,1))
# set colors
assignColors(x, col=c("red", "green", "blue"))
assignColors(x, col=topo.colors)
# NA and out-of-range
x[5] <- NA
assignColors(x, breaks=seq(0.5, 1, by=0.1), na.col="red")
## logical vector
l <- sample(c(NA, TRUE, FALSE), size=10, replace=TRUE)
assignColors(l)
assignColors(l, breaks=c("FALSE", "TRUE"), col=c("red", "blue"))
## character vector
t <- sample(letters, size=10, replace=TRUE)
assignColors(t)
assignColors(t, col=rainbow(5))
```
25 Personality items representing 5 factors

Description

25 personality self-report items taken from the International Personality Item Pool (https://ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (SAPA) web-based personality assessment project. In contrast to the original data `bfi` from the `psych` library (version 1.8.12), it contains only the 25 personality self-report items and the 2436 complete observations.

Usage

data(bfi.2)

Format

A data frame with 2436 observations on the following 25 variables (the q numbers are the SAPA item numbers).

A1 Am indifferent to the feelings of others. (q_146)
A2 Inquire about others’ well-being. (q_1162)
A3 Know how to comfort others. (q_1206)
A4 Love children. (q_1364)
A5 Make people feel at ease. (q_1419)
C1 Am exacting in my work. (q_124)
C2 Continue until everything is perfect. (q_530)
C3 Do things according to a plan. (q_619)
C4 Do things in a half-way manner. (q_626)
C5 Waste my time. (q_1949)
E1 Don’t talk a lot. (q_712)
E2 Find it difficult to approach others. (q_901)
E3 Know how to captivate people. (q_1205)
E4 Make friends easily. (q_1410)
E5 Take charge. (q_1768)
N1 Get angry easily. (q_952)
N2 Get irritated easily. (q_974)
N3 Have frequent mood swings. (q_1099)
N4 Often feel blue. (q_1479)
N5 Panic easily. (q_1505)
O1 Am full of ideas. (q_128)
O2 Avoid difficult reading material. (q_316)
03 Carry the conversation to a higher level. (q_492)
04 Spend time reflecting on things. (q_1738)
05 Will not probe deeply into a subject. (q_1964)

The 25 items are organized by five putative factors: Agreeableness, Conscientiousness, Extraversion, Neuroticism, and Openness.

The item data were collected using a 6 point response scale:

1 Very Inaccurate
2 Moderately Inaccurate
3 Slightly Inaccurate
4 Slightly Accurate
5 Moderately Accurate
6 Very Accurate

as part of the Synthetic Aperture Personality Assessment (SAPA https://sapa-project.org) project. To see an example of the data collection technique, visit https://SAPA-project.org or the International Cognitive Ability Resource at https://icar-project.com. The items given were sampled from the International Personality Item Pool of Lewis Goldberg using the sampling technique of SAPA. This is a sample data set taken from the much larger SAPA data bank.

Note

The bfi.2 data set and items should not be confused with the BFI (Big Five Inventory) of Oliver John and colleagues (John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big Five Inventory–Versions 4a and 54. Berkeley, CA: University of California, Berkeley, Institute of Personality and Social Research.)

Source

The items are from the ipip (Goldberg, 1999). The data are from the SAPA project (Revelle, Wilt and Rosenthal, 2010), collected Spring, 2010 (https://sapa-project.org).

References

Examples

data(bfi.2)
library("psych")
fa <- fa(bfi.2, 5, rotate="varimax")
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(loadings(fa), cex=0.5)

New York Air Quality Measurements

Description

p-values of pairwise correlation test of complete observations of the complete-cases of daily air quality measurements in New York, May to September 1973.

Usage

data(air.pvalue)

Format

A 4x4 matrix with p values of pairwise correlation tests (cor.test).

 Ozone Ozone (ppb)
 Solar.R Solar R (lang)
 Wind Wind (mph)
 Temp Temperature (degrees F)

Source

The data are derived from the New York Air Quality Measurements data set.

References

Examples

data(air.pvalue)
plot(as.pvalue(air.pvalue))
Description

Visualizes an association matrix with a colored or gray heatmap. As a rule of thumb the breaks are determined by the effect sizes given by Cohen (c(-1,-0.4,-0.2,-0.05,0,+0.05,+0.2,+0.4,+1)). You may need to modify mar with the `par` command from its default c(5.1,4.1,4.1,2.1). See

- vignette('plot.matrix') for detailed examples, and
- `plot.matrix` for further parameters.

Usage

```r
## S3 method for class 'assoc'
plot(x, reorder = TRUE, gray = FALSE, grey = FALSE, ...
```

Arguments

- `x`: matrix: association within [0,+1]
- `reorder`: logical: if the rows (variables) of the loading matrix should be reordered (default: TRUE)
- `gray`: logical: should be a gray scale color palette used or not (default: FALSE)
- `grey`: logical: should be a gray scale color palette used or not (default: FALSE)
- `...`: further parameter given to the `plot.matrix` command

Details

If either the parameter grey or gray is TRUE then a gray color palette is used.

Value

- a plot

Examples

```r
par(mar=c(5.1, 4.1, 4.1, 4.1))
# association matrix
data(Titanic.cramer)
plot(as.assoc(Titanic.cramer))
plot(as.assoc(Titanic.cramer), gray=TRUE)
plot(as.assoc(Titanic.cramer[,1:3]), reorder=FALSE)
```
Description

Visualizes a correlation matrix with a colored or gray heatmap. As a rule of thumb the breaks are determined by the **effect sizes** given by Cohen (c(-1,-0.4,-0.2,-0.05,0,+0.05,+0.2,+0.4,+1)). You may need to modify **mar** with the **par** command from its default c(5.1,4.1,4.1,2.1). See

- vignette('plot.matrix') for detailed examples, and
- **plot.matrix** for further parameters.

Usage

```r
## S3 method for class 'cor'
plot(x, reorder = TRUE, gray = FALSE, grey = FALSE, ...)
```

Arguments

- **x**: matrix: correlation within [-1,1]
- **reorder**: logical: if the rows (variables) of the loading matrix should be reordered (default: **TRUE**)
- **gray**: logical: should be a gray scale color palette used or not (default: **FALSE**)
- **grey**: logical: should be a gray scale color palette used or not (default: **FALSE**)
- **...**: further parameter given to the **plot.matrix** command

Details

If either the parameter **grey** or **gray** is **TRUE** then a gray color palette is used.

Value

- a plot

Examples

```r
par(mar=c(5.1, 4.1, 4.1, 4.1))
# correlation matrix
c <- cor(airquality[,1:4], use="pairwise")
plot(as.cor(c))
plot(as.cor(c), gray=TRUE)
plot(as.cor(c[,1:3]), reorder=FALSE)
```
Description

Visualizes the loadings matrix from a Factor Analysis or a Principal Component Analysis matrix with a gray or colored heatmap. As a rule of thumb the breaks are determined by $c(-1, -0.866, -0.707, -0.5, -0.4, 0, +0.4, +0.5, +0.707, +0.866, +1)$ is used. You may need to modify `mar` with the `par` command from its default $c(5.1, 4.1, 4.1, 2.1)$.

See

- vignette('plot.matrix') for detailed examples, and
- `plot.matrix` for further parameters.

Usage

```r
## S3 method for class 'loadings'
plot(x, reorder = TRUE, gray = FALSE, grey = FALSE, ...)
```

Arguments

- `x` matrix: loadings
- `reorder` logical: if the rows (variables) of the loading matrix should be reordered (default: TRUE)
- `gray` logical: should be a gray scale color palette used or not (default: FALSE)
- `grey` logical: should be a gray scale color palette used or not (default: FALSE)
- `...` further parameter given to the `plot.matrix` command

Details

If either the parameter `grey` or `gray` is TRUE then a gray color palette is used.

Value

a plot

Examples

```r
data(bfi.2)
library("psych")
par(mar=c(5.1, 4.1, 4.1, 4.1))
# Factor analysis
fa <- factanal(bfi.2, 5)
plot(loadings(fa))
plot(loadings(fa), grey=TRUE)
# Principal Component Analysis I
pa <- princomp(bfi.2)
```
plot(loadings(pa), digits=NA)
Principal Component Analysis II
pa <- prcomp(bfi.2)
ld <- structure(pa$rotation, class="loadings")
plot(ld, digits=NA)

plot.matrix

Description

Visualizes a matrix with a colored heatmap and optionally a color key. It distinguishes between numeric and non-numeric matrices. You may need to modify mar with the `par` command from its default `c(5.1,4.1,4.1,2.1)`. For further see the vignette `vignette('plot.matrix')`

Usage

```r
## S3 method for class 'matrix'
plot(x, y = NULL, breaks = NULL, col = heat.colors, 
    na.col = "white", na.cell = TRUE, na.print = TRUE, digits = NA, 
    fmt.cell = NULL, fmt.key = NULL, polygon.cell = NULL, 
    polygon.key = NULL, text.cell = NULL, key = list(side = 4, las = 1), 
    axis.col = list(side = 1), axis.row = list(side = 2), 
    axis.key = NULL, max.col = 70, ...)
```

Arguments

- `x` matrix
- `y` unused
- `breaks` breaks for numeric values or values for col
- `col` a vector of colors or a function, e.g. `heat.colors` with one parameter `n`
- `na.col` color for missing value (default: white)
- `na.cell` to draw cells with missing values (default: TRUE)
- `na.print` print NA (or any given characters) when values are missing. If FALSE, nothing is printed. If na.cell is FALSE, this will have no effect.
- `digits` number of digits for numeric data or length of string for non-numeric data
- `fmt.cell` format string for wririting matrix entries, overwrites digits, defaults to NULL
- `fmt.key` format string for wririting key entries, overwrites digits, defaults to fmt
- `polygon.cell` list of parameters used for `polygon` for heatmap
- `polygon.key` list of parameters used for `polygon` for key
- `text.cell` list of parameters used for `text` for matrix entries
- `key` list of parameters used for axis. If set to NULL then no information will be plotted. Instead of key=list(side=4) you may use key=4 or key="right".
axis.col list of parameters used for axis for axis of matrix columns. Instead of axis.col=list(side=1)
you may use axis.col=1 or axis.col="bottom".

axis.row list of parameters used for axis for axis of matrix rows. Instead of axis.row=list(side=2)
you may use axis.row=2 or axis.col="left".

axis.key as key

max.col numeric: if the distance between the text color and the cell color is smaller then
max.col then either white or black will be used as text color, defaults to 70

... further parameter given to the plot command

Details

A color key is drawn if either key (defaults to list(cex=1)) or fmt.key (defaults to NULL) is not
NULL.

If you want to plot the matrix entries you must set either digits or fmt. For a non-numeric matrix
digits gives the length of the string printed, a negative value results in right-justified string. For
a numeric matrix digits determines the number of decimal places, a negative value uses a "expo-
nential" decimal notation. You may set format strings fmt and fmt.key directly. Settings digits
leads to the following format strings (n the absolute value of digits):

- x numeric and digits>0: "%+.nf"
- x numeric and digits<0: "%+.ne"
- x non-numeric and digits>0: "%+ns"
- x non-numeric and digits<0: "%-ns"

If no colors are given then the heat.colors will be used. Alternatively you may specify your own
color function that delivers a vector with n colors if called by col(n). The final colors and breaks
used depend if plot.matrix gets a numeric or non-numeric matrix.

Numeric matrix: In general it must hold length(col)+1==length(breaks).

1. breaks=NULL and col=NULL The colors are taken from heat.colors(10) and the eleven
 breaks are calculated as an equidistant grid between min(x) and max(x).
2. breaks=NULL and col is a color function Ten colors are taken from the color function and
eleven breaks are calculated as an equidistant grid between min(x) and max(x).
3. breaks=NULL and col is a vector of colors The length(col)+1 breaks are calculated as an
equidistant grid between min(x) and max(x).
4. breaks are given and col=NULL The colors are taken from heat.colors(length(breaks)-1).
5. breaks are given and col is a color function The length(breaks)-1 colors are taken from
 the color function.
6. breaks are given and col is a vector of colors If not length(col)+1==length(breaks) holds
 then the length(col)+1 breaks are calculated as an equidistant grid between min(breaks)
 and max(breaks).

Non-numeric matrix: In general it must hold length(col)==length(breaks). At first the num-
ber of unique elements in x is determined: nu.
1. **breaks==NULL and col==NULL** The colors are taken from `heat.colors(nu)` and the breaks are set to the unique elements of x.

2. **breaks==NULL and col is a color function** The nu colors are taken from color function and the breaks are set to the unique elements of x.

3. **breaks==NULL and col is a vector of colors** The length(col) breaks are calculated as an equidistant grid between min(x) and max(x).

4. **breaks are given and color==NULL** The colors are taken from `heat.colors(length(breaks))`.

5. **breaks are given and color is a color function** The length(breaks) colors are taken from color function.

6. **breaks are given and color is a vector of colors** If not `length(colors)==length(breaks)` holds then either breaks or color is shorten to the shorter of both.

If the difference between polygon color and the text color is smaller max. col then as text color is either white or black (depending which one is farer away from the polygon color). The distance is computed as $\Delta C/3$ as in https://en.wikipedia.org/wiki/Color_difference#Euclidean given.

Value

A plot

Note

The use of `fmt` or `fmt.key` have the same restrictions as the use of `fmt` in `sprintf`:

The format string is passed down the OS’s `sprintf` function, and incorrect formats can cause the latter to crash the R process. R does perform sanity checks on the format, but not all possible user errors on all platforms have been tested, and some might be terminal.

Examples

```r
par(mar=c(5.1, 4.1, 4.1, 4.1))
# numeric matrix
x <- matrix(runif(50), nrow=10)
plot(x)
plot(x, key=NULL)
plot(x, key=list(cex.axis=0.5, tick=FALSE))
plot(x, digits=3)
plot(x, breaks=range(x), digits=3, cex=0.6)
# logical matrix
m <- matrix(runif(50)<0.5, nrow=10)
plot(m)
plot(m, col=c("red", "blue"))
plot(m, key=NULL, digits=1)
# character matrix
s <- matrix(sample(letters[1:10], 50, replace=TRUE), nrow=10)
plot(s)
plot(s, col=topo.colors)
plot(s, digits=10)
plot(s, digits=1, col=heat.colors(5), breaks=letters[1:5])
```
Description

Visualizes a matrix of p-values with a colored or gray heatmap. As a rule of thumb the breaks are determined by \(c(0, 0.001, 0.01, 0.05, 0.1, 1) \) You may need to modify mar with the \texttt{par} command from its default \(c(5.1, 4.1, 4.1, 2.1) \). See

- vignette("plot.matrix") for detailed examples, and
- \texttt{plot.matrix} for further parameters.

Usage

```r
## S3 method for class 'pvalue'
plot(x, reorder = TRUE, gray = FALSE, grey = FALSE, 
     ...) 
```

Arguments

- \texttt{x} matrix: p-values within \([0, 1]\)
- \texttt{reorder} logical: if the rows (variables) of the loading matrix should be reordered (default: \texttt{TRUE})
- \texttt{gray} logical: should be a gray scale color palette used or not (default: \texttt{FALSE})
- \texttt{grey} logical: should be a gray scale color palette used or not (default: \texttt{FALSE})
- ... further parameter given to the \texttt{plot.matrix} command

Details

If either the parameter \texttt{grey} or \texttt{gray} is \texttt{TRUE} then a gray color palette is used.

Value

- a plot
Examples

```r
par(mar=c(5.1, 4.1, 4.1, 4.1))
# correlation matrix
data(air.pvalue)
plot(as.pvalue(air.pvalue))
plot(as.pvalue(air.pvalue), gray=TRUE)
plot(as.pvalue(air.pvalue[,1:3]), reorder=FALSE)
```

Titanic.cramer

Survival of passengers on the Titanic

Description

Matrix of Cramer’s V computed on the variables economic status (class), sex, age and survival of the fate of passengers on the fatal maiden voyage of the ocean liner 'Titanic'.

Usage

data(Titanic.cramer)

Format

A 4x4 matrix with Cramer's V computed on

- **Class**: 1st, 2nd, 3rd, Crew
- **Sex**: Male, Female
- **Age**: Child, Adult
- **Survived**: No, Yes

Source

The data are derived from the *Survival of passengers on the Titanic* data set.

Examples

data(Titanic.cramer)
plot(as.assoc(Titanic.cramer))
Index

*Topic datasets
 air.pvalue, 2
 bfi.2, 5
 ind, 7
 Titanic.cramer, 15

air.pvalue, 2
as.assoc (as.cor), 3
as.cor, 3
as.pvalue (as.cor), 3
assignColors, 3
axis, 11, 12

bfi.2, 5
cor.test, 2, 7
heat.colors, 4, 11, 12
ind, 7

New York Air Quality Measurements, 2, 7
par, 8–11, 14
plot, 12
plot (plot.matrix), 11
plot.assoc, 8
plot.cor, 9
plot.loadings, 10
plot.matrix, 8–10, 11, 14
plot.pvalue, 14
polygon, 11
pretty, 4

sprintf, 13
Survival of passengers on the Titanic, 15

text, 11
Titanic.cramer, 15