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1 INTRODUCTION 2

1 Introduction

Visible and Near Infrared diffuse reflectance (vis-NIR) spectroscopy is a high-troughput, non—destructive
and cheap sensing method that has a range of applications in agricultural, medical, food and environmen-
tal science. A number of R packages of interest for the spectroscopist is already available for processing
and analysis of spectroscopic data (Table 1). The CRAN task views Multivariate Statistics, Machine
Learning, Chemometrics and Computational Physics. The interested reader can also have a look at the
special issue "Spectroscopy and Chemometrics in R" of the Journal of Statistical Software [9].

Table 1: Non—exhaustive list of R package useful for vis—NIR spectroscopic analysis

Package Name Description

chemometrics functions and scripts for chemometrics
ChemometricsWithR | functions and scripts for chemometrics
ChemoSpec misc functions for exploratory analysis in Spectroscopy
hyperSpec processing and visualisation of spectra
cluster cluster analysis and visualisation

mvoutlier outlier detection in the multivariate space
pls partial least square regression

signal signal filtering

soil.spec some functions related to soil spectroscopy
caret training classification and regression models

The prospectr package gathers algorithms commonly—used in spectroscopy for pre—treating spectra
and select calibration samples. Some of the algorithms are already available in other package, like the
Savitzky—Golay algorithm [12] but our functions works indifferently on vector, data.frame or matrix
input.

2 Signal Processing

The aim of signal pre—treatment is to improve data quality before modeling and remove physical in-
formation from the spectra. Applying a pre—treatment can increase the repeatability /reproducibility of
the method, model robustness and accuracy, although there are no guarantees this will actually work
.... The pre—processing functions that are currently available in the package are listed in Table 2.

We show below how they can be used, using the NIRsoil dataset included in the package [6]. Obser-
vations should be arranged row—wise.

library(prospectr)
data(NIRsoil)

str(NIRsoil)


http://cran.r-project.org/web/views/Multivariate.html
http://cran.r-project.org/web/views/MachineLearning.html
http://cran.r-project.org/web/views/MachineLearning.html
http://cran.r-project.org/web/views/ChemPhys.html
http://ww.colin-baxter.com/academic/bib/downloads/mullen07.pdf
http://cran.r-project.org/web/packages/chemometrics/index.html
http://cran.r-project.org/web/packages/ChemometricsWithR/index.html
http://cran.r-project.org/web/packages/ChemoSpec/index.html
http://cran.r-project.org/web/packages/hyperSpec/index.html
http://cran.r-project.org/web/packages/cluster/index.html
http://cran.r-project.org/web/packages/mvoutlier/index.html
http://cran.r-project.org/web/packages/pls/index.html
http://cran.r-project.org/web/packages/signal/index.html
http://cran.r-project.org/web/packages/soil.spec/index.html
http://cran.r-project.org/web/packages/caret/index.html
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Table 2: List of pre—processing functions

Function Name Description

movav simple moving (or running) average filter
savitzkyGolay Savitzky—Golay smoothing and derivative
gapDer gap-segment derivative
continuumRemoval compute continuum-removed values
detrend detrend normalization
standardNormalVariate | Standard Normal Variate (SNV) transformation
binning average a signal in column bins
resample resample a signal to new band positions
resample2 resample a signal using FWHM values
blockScale block scaling

blockNorm sum of squares block weighting

## 'data.frame': 825 obs. of 5 variables:

## $ Nt :num 0.3 0.69 0.71 0.85 NA ...

## $ Ciso : num 0.22 NA NA NA 0.9 NA NA 0.6 NA 1.28 ...

## $ CEC : num NA NA NA NA NA NA NA NA NA NA ...

## $ train: num 1111111111

## $ spc : num [1:825, 1:700] 0.339 0.308 0.328 0.364 0.237 ...
#Hit ..— attr(x, "dimnames")=List of 2

#it ve oo o EGme D0 OQU OZO 040

#it .. ..$ : chr "1100" "1102" "1104" "1106"

2.1 Noise removal

Noise represents random fluctuations around the signal that can originate from the instrument or envi-
ronmental laboratory conditions. The simplest solution to remove noise is to perform n repetition of the
measurements, and the average individual spectra. The noise will decrease with a factor /n. When this
is not possible, or if residual noise is still present in the data, the noise can be removed mathematically.

2.1.1 Moving average or runnnig mean
A moving average filter is a column—wise operation which average contiguous wavelengths within a given
window size.

noisy <- NIRsoil$spc + rnorm(length(NIRsoil$spc), 0, 0.001)

plot(as.numeric(colnames(NIRsoil$spc)), noisyl[1l, ], type = "1", xlab = "Wavelength",
ylab = "Absorbance")
X <- movav(noisy, w = 11)
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Figure 1: Effect of a moving average with window size of 10 bands on a raw spectrum
lines(as.numeric(colnames(X)), X[1, 1, col = "red")

legend("topleft", legend = c("raw", "moving average"), 1ty = c(1, 1), col = 1:2)

2.1.2 Binning

# After averaging, the spectrum can be further resampled (binning)

# We keep here one 1 out every 10 data points

X.bin <- binning(X,bin.size=10)

# We reduce the spectral matriz to 50 (equally-spaced) data points

X.bin2 <- binning(X,bins=50)

# Plot the first spectrum

plot(as.numeric(colnames(X)),X[1,],type="1",
xlab="Wavelength",ylab="Absorbance")

# mnew data points

points(as.numeric(colnames(X.bin)),X.bin[1,],pch=2)

points(as.numeric(colnames(X.bin2)),X.bin2[1,],pch=1,co0l=2)

legend("topleft",legend=c("bin.size = 10","bins = 50"),pch = 2:1, col = 2:1)
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Figure 2: Average in bins

2.1.3 Savitzky-Golay filtering

Savitzky-Golay filtering [12] is a very common preprocessing technique. It fits a local polynomial regres-
sion on the signal and requires equidistant bandwidth. Mathematically, it operates simply as a weighted
sum of neighbouring values:

1 k
Lj* = N Z ChLj+h
h=—k

where x;* is the new value, NV is a normalizing coefficient, k is the number of neighbour values at
each side of j and ¢, are pre-computed coefficients, that depends on the chosen polynomial order and
degree (smoothing, first and second derivative).

sg.vec <- savitzkyGolay(NIRsoil$spc[l, ],
sg <- savitzkyGolay(NIRsoil$spc, p = 3, w

dim(NIRsoil$spc)
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## [1] 825 700
dim(sg)

## [1] 825 690

2.2 Derivatives

Taking (numerical) derivatives of the spectra can remove both additive and multiplicative effects in the
spectra and have other consequences as well (Table 3).

Table 3: Pro’s and con’s of using derivative spectra

Advantage Drawback

Reduce of baseline offset Risk of overfitting the calibration model
Can resolve absorption overlapping Increase noise, smoothing required
Compensates for instrumental drift Increase uncertainty in model coefficients
Enhances small spectral absorptions Complicate spectral interpretation

Often increase predictive accuracy for complex datasets | Remove the baseline !

First and second derivatives of a spectrum can be computed with the finite difference method (dif-
ference between to subsequent data points), provided that the band width is constant:

/
Ty = Xy — Tj—1

"
Ty =Ti1 — 22 + T

In R, this can be simply achieved with the diff function in base:

dl <- t(diff(t(NIRsoil$spc), differences = 1))

d2 <- t(diff (t(NIRsoil$spc), differences = 2))

plot(as.numeric(colnames(dl)), di[1, ], type = "1", xlab = "Wavelength", ylab = "")
lines(as.numeric(colnames(d2)), d2[1, ], col = "red")

legend("topleft", legend = c("1st der", "2nd der"), 1ty = c(1, 1), col = 1:2)

One can see that derivatives tend to increase noise. One can use gap derivatives or the Savitzky-Golay
algorithm to solve this. The gap derivative is computed simply as:

/
Ty = Titvk — Li—k

"
Ty = Tij_p — 2T + Tigp

where k is the gap size. Again, this can be easily achieved in R using the lag argument of the diff
function
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Figure 3: Effect of first derivative and second derivative

# first derivative with a gap of 10 bands
gdl <- t(diff(t(NIRsoil$spc), differences = 1, lag = 10))

For more flexibility and control over the degree of smoothing, one could however use the Savitzky-
Golay (savitzkyGolay) and Gap—segment derivative (gapDer) algorithms. The Gap-segment algorithms
performs first a smoothing under a given segment size, followed by gap derivative. Here is an exemple
of the use of the gapDer function.

# m = order of the derivative w = window size ( = {2 * gap size} + 1) s =
# segment size first derivative with a gap of 10 bands
gsdl <- gapDer (X = NIRsoil$spc, m = 1, w = 11, s = 10)
plot(as.numeric(colnames(dl)), di[1, ], type = "1", xlab = "Wavelength", ylab = "")
lines(as.numeric(colnames(gsdl)), gsdi[1l, ], col = "red")
legend("topleft", legend = c("1st der", "gap-segment 1st der"), lty = c(1, 1),

col = 1:2)
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2.3 Scatter corrections

Undesired spectral variations due to light scatter effects and variations in effective path length can be
removed using scatter corrections.

2.3.1 Standard Normal Variate (SNV)

Standard Normal Variate (SNV) is another simple way for normalizing spectra that intends to correct
for light scatter. It operates row—wise:

SNV, =

S;
snv <- standardNormalVariate(X = NIRsoil$spc)

According to Fearn [4], it is better to perform SNV transformation after filtering (by e.g. Savitzky—
Golay) than the reverse.

2.3.2 SNV-Detrend

The SNV-Detrend [1] further accounts for wavelength-dependent scattering effects (variation in curvilin-
earity between the spectra). After a SNV transformation, a 2"%-order polynomial is fit to the spectrum
and subtracted from it.

dt <- detrend(X = NIRsoil$spc, wav = as.numeric(colnames(NIRsoil$spc)))

plot(NIRsoil$spc[l, 1, type = "1", xlab = "Band number", ylab = "")

par(new = T)

plot(dt[1l, ], xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = "red", type = "1")
axis(4, col = "red")

legend("topleft", legend = c("raw", "detrend signal"), 1ty = c(1, 1), col = 1:2)

par (new = F)

2.4 Centering and scaling

Centering and scaling tranforms a given matrix to a matrix with columns with zero mean (centering),
unit variance (scaling) or both (auto—scaling):

Xcij = Xij — Xj

XSij =
Sj
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Figure 5: Effect of SNV-Detrend on raw spectra

where Xc and X's are the mean centered and auto-scaled matrices, X is the input matrix, X; and
s; are the mean and standard deviation of variable j.
In R , these operations are simply obtained with the scale function. Other types of scaling can
be considered. Spectroscopic models can often be improved by using ancillary data (e.g. temperature,
..) [5]. Due to the nature of spectral data (multivariate), other data would have great chance to be
dominated by the spectral matrix and have no chance to contribute significantly to the model due to
purely numerical reasons [3]. One can use block scaling to overcome this limitation. It basically uses
different weights for different block of variables. With soft block scaling, each block is scaled (i.e. each
column divided by a factor) such that the sum of their variance is equal to the square root of the number
of variables in the block. With hard block scaling, each block is scaled such that the sum of their variance
is equal to 1.

bs <- blockScale(X=NIRsoil$spc,type="hard")$Xscaled
sum(apply(bs,2,var))

## [1] 1
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The problem with block scaling is that it down—scale all the block variables to the same variance.
Since sometimes this is not advised, one can alternatively use sum of squares block weighting . The
spectral matrix is multiplied by a factor to achieve a pre-determined sum of square:

bn <- blockNorm(X = NIRsoil$spc, targetnorm = 1)$Xscaled
sum(bn~2)

## [1] 1

2.5 Other transformations
2.5.1 Continuum removal

The continuum removal technique was introduced by [2] as an effective method to highlight absorption
features of minerals. It can be viewed as an albedo normalization technique. This technique is based on
the computation of the continuum (or envelope) of a given spectrum. The continuum-removed spectrum
of a given spectrum is computed as follows:

1. The local reflectance spectrum maxima points (in the case of absorbance, local minima points)
are identified.

2. Then, these points are connected by linear interpolation to form the continuum ec.

3. The continuum-removed spectrum is given by ¢; = Z;i = {1,...,p}, where z; and ¢; are the
original and the continuum reflectance (or absorbance) values respectively at the i'h wavelength
of a set of p wavelengths, and ¢; is the final reflectance (or absorbance) value after continuum
removal.

The continuumRemoval function allows to compute the continuum-removed values of either re-
flectance or absorbance spectra.

cr <- continuumRemoval(X = NIRsoil$spc, type = "A")

matplot(as.numeric(colnames(NIRsoil$spc)), t(NIRsoil$spc[1:10, 1), type = "1",
ylim = c(0, 0.6), xlab = "Wavelength /nm", ylab = "Absorbance")
matlines(as.numeric(colnames(NIRsoil$spc)), t(cr[1:10, 1))

2.5.2 Resampling

To match the response of one instrument with another, a signal can be resampled to new band positions
by simple interpolation (resample) or using full width half maximum (FWHM) values (resample2).
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Figure 6: Absorbance and continuum-removed absorbance spectra

3 Calibration sampling algorithms

Calibration models are usually developed on a representative portion of the data (training set) and
validated on the remaining set of samples (test/validation set). There are several solutions for selecting
samples, e.g.:

« random selection (see e.g. sample function in base)

o stratified random sampling on percentiles of the response y (see e.g. createDataPartion in the
caret package)

o use the spectral data.

For selecting representative samples, the prospectr package provides functions that use the third
solution. The following functions are available: kenStone [8], duplex [15], puchwein [11], shenkWest
[13], naes [10], honigs [7].

3.1 Kennard-Stone sampling (kenStone)

To sample a subset of n samples X;, = {:zz't,ﬁj}i1 o from a given set of NV samples X = {:L'Z}fil (note that
]:

N > n) the Kennard-Stone (CADEX) sampling algorithm consists in [8]:
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1. Find in X the samples z;,; and x5 that are the farthest apart from each other, allocate them in
X, and remove them from X.

2. Find in X the sample x5 with the maximum dissimilarity to X;,.. Allocate z;.5 in X}, and then
remove it from X. The dissimilarity between X;, and each x; is given by the minimum distance of
any sample allocated in X, to each z;. In other words, the selected sample is one of the nearest
neighbours of the points already selected which is characterized by the maximum distance to the
other points already selected.

3. Repeat the step 2 n-3 times in order to select the remaining samples (Zy.4, ..., Tirp)-

The Kennard—Stone algorithm allows to create a calibration set that has a flat distribution over the
spectral space. The metric used to compute the distance between points can be either the Euclidean
distance or the Mahalanobis distance. Let’s see some examples ...

X <- data.frame(xl = rnorm(1000), x2 = rnorm(1000))
plot (X)

ken <- kenStone(X,k=40)
points (X [ken$model,],col=2,pch=19,cex=1.4)

ken _mahal <- kenStone(X = NIRsoil$spc, k = 20, metric = "mahal", pc = 2)
plot(ken _mahal$pc[,1] ,ken mahal$pc[,2],xlab="PC1",ylab="PC2")

points(ken_mahal$pc[ken mahal$model,1],ken mahal$pc[ken mahal$model, 2] ,pch=19,col=2)

3.2 DUPLEX (duplex)

The Kennard—Stone algorithm selects calibration samples. Often, we need also to select a validation
subset. The DUPLEX algorithm [15] is a modification of the Kennard-Stone which allows to select a
validation set that have similar properties to the calibration set. DUPLEX] similarly to Kennard—-Stone,
begins by selecting pairs of points that are the farthest apart from each other, and then assigns points
alternatively to the calibration and validation sets.

dup <- duplex(X = X, k = 15)
plot (X)
points (X [dup$model, 1], X[dup$model, 2], col = "red", pch = 19)



3 CALIBRATION SAMPLING ALGORITHMS

X2

N

(3

8
Dfs

%@3% gm

i@

§

$

)
%
. >
@0 o
0,

-2
|
o
o

Figure 7: Selection of 40 calibration samples with the Kennard-Stone algorithm

L3
°
o
N o o
o o
°
° °
° o
.
o °
.
°
o
O
o
o
! L
o o .
<
] ° o
.
. * °
00
.
I T T I
0 2 4 6

PC1

Figure 8: Kennard-Stone sampling on the NIRsoil dataset



3 CALIBRATION SAMPLING ALGORITHMS 15

7y ] ¢ calibration
M ° A validation
A

o
2 W
9%2:§ g°°9°t9 ® », %o
©5 98 400 78380 B0

o
o0 o]

X2
o}
5

i3
%3
®

|
%o
o
o

x1

Figure 9: Selection of 15 calibration and validation samples with the DUPLEX algorithm

points(X[dup$test, 1], X[dup$test, 2], col = "blue", pch = 17)
legend("topright", legend = c("calibration", "validation"), pch = c(19, 17),
col = c("red", "blue"))

3.3 k-means sampling (naes)

The k-means sampling simply uses k-means clustering algorithm. To sample a subset of n samples
Xy = {xt”} v from a given set of N samples X = {xz}f\il (note that N > n) the algorithm works as

follows:

1. Perform a k-means clustering of X using n clusters.

2. Extract the n centroids (¢, or prototypes). This can be also the sample that is the farthest away
from the centre of the data, or a random selection. See the method argument in naes.

3. Calculate the distance of each sample to each c.

4. For each c allocate in Xy, its closest sample found in X.
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# X = the input matric

# k = number of calibration samples to be selected

# pc = if pc is specified, k-mean is performed in the pc sSpace

# (here we will use only the two 1st pcs)

# iter.maxz = mazimum number of iterations allowed for the k-means clustering.
kms <- naes(X = NIRsoil$spc, k = 5, pc = 2, iter.max = 100)

# Plot the pcs scores and clusters

plot (kms$pc, col=kms$cluster)

# Add the selected points

points (kms$pc [kms$model,],col=6,pch=19)

3.4 SELECT algorithm (shenkWest)

The SELECT algorithm [13] is an iterative procedure which selects the sample having the maximum
number of neighbour samples within a given distance (d.min argument) and remove the neighbour
samples of the selected sample from the list of points. The number of selected samples depends on the
chosen treshold (default = 0.6). The distance metric is the Mahalanobis distance divided by the number
of dimensions (number of pc components) used to compute the distance. Here is an example of how the
shenkWest function might work:
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Figure 11: Selection of samples with the SELECT algorithm

shenk <- shenkWest(X = NIRsoil$spc, d.min = 0.6, pc = 2)
plot (shenk$pc)
points(shenk$pc [shenk$model, ], col = 2, pch = 19)

3.5 Puchwein algorithm (puchwein)

The Puchwein algorithm is yet another algorithm for calibration sampling [11] that creates a calibration

17

set with a flat distribution. A nice feature of the algorithm is that it allows an objective selection of the
number of required calibration samples with the help of plots. First the data is usually reduced through
PCA and the most significant PCs are retained. Then the mahalanobis distance (H) to the center of

the matrix is computed and samples are sorted decreasingly. The distances betwwen samples in the PC

space are then computed.
Here is a pseudo-code of the algorithm:

1. Definition of a limiting distance

2. Find the sample with max(H)

3. Remove all the samples which are within the limiting distance away from the sample

selected in step 2.

4. Go back in step 2 and find the sample with max(H) within the remaining samples
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5. When there is no sample anymore, go back to step 1 and increase the limiting distance.

pu <- puchwein(X = NIRsoil$spc, k = 0.2, pc = 2)
plot (pu$pc)
points (pu$pc [pu$model, ], col = 2, pch = 19)

The number of sample selected depends on the limiting distance. To help choosing the appropriate
number of samples, two plots are used [14]:

e a plot showing the number of samples that are removed in each loop and the total number of
samples left

« a plot showing the theoretical sum of leverages (each sample has the same leverage) together with
the true sum of leverages. The optimal loop is the one for which the difference between the two
measures of leverage is maximum

par (mfrow = c(2, 1))
plot(pu$leverage$removed, pu$leverage$diff, type = "1", xlab = "# samples removed",
ylab = "Difference between th. and obs sum of leverages")
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plot(pu$leverage$loop, nrow(NIRsoil) - pu$leverage$removed, xlab = "# loops",
ylab = "# samples kept", type = "1")

par (mfrow = c(1, 1))

3.6 Honigs (honigs)

The Honigs algorithm selects samples based on the size of their absorption features [7]. It can works
both on absorbance and continuum-removed spectra. The sample having the highest absorption feature
is selected first. Then this absorption is substracted from other spectra and the algorithm iteratively
select samples with the highest absorption (in absolute value) until the desired number of samples is
reached.

ho <- honigs(X = NIRsoil$spc, k = 10, type = "A")

matplot (as.numeric(colnames(NIRsoil$spc)), t(NIRsoil$spc[ho$model, 1), type = "1",
P p p yp
xlab = "Wavelength", ylab = "Absorbance")

abline(v = as.numeric(colnames(NIRsoil$spc)) [ho$bands], 1ty = 2)
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