Package ‘pseudorank’

October 2, 2020

Title Pseudo-Ranks
Version 1.0.1
Date 2020-10-02
Maintainer Martin Happ <martin.happ@aon.at>
Description Efficient calculation of pseudo-ranks and (pseudo)-rank based test statistics. In case of equal sample sizes, pseudo-ranks and mid-ranks are equal. When used for inference mid-ranks may lead to paradoxical results. Pseudo-ranks are in general not affected by such a problem <doi:10.18637/jss.v095.c01>.
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 3.4.0)
Imports Rcpp (>= 0.12.16), doBy
LinkingTo Rcpp
SystemRequirements C++11
URL https://github.com/happma/pseudorank/
BugReports https://github.com/happma/pseudorank/issues/
RoxygenNote 7.1.1
Suggests testthat
NeedsCompilation yes
Author Martin Happ [aut, cre] (<https://orcid.org/0000-0003-0009-2665>),
Georg Zimmermann [aut],
Arne C. Bathke [aut],
Edgar Brunner [aut]
Repository CRAN
Date/Publication 2020-10-02 08:20:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pseudorank-package</td>
<td>Pseudo-Ranks</td>
</tr>
<tr>
<td>hettmansperger_norton_test</td>
<td>Hettmansperger-Norton Trend Test for k-Samples</td>
</tr>
<tr>
<td>kruskal_wallis_test</td>
<td></td>
</tr>
<tr>
<td>ParadoxicalRanks</td>
<td></td>
</tr>
<tr>
<td>pseudorank</td>
<td></td>
</tr>
<tr>
<td>psrank</td>
<td></td>
</tr>
</tbody>
</table>

Description

This package provides functions to calculate pseudo-ranks. Rank based test statistics (e.g. Kruskal-Wallis test) may lead to paradoxical results as the weighted relative effects (based on ranks) depend on the sample sizes (Brunner, 2018). Pseudo-ranks do not have these problems.

Author(s)

Maintainer: Martin Happ <martin.happ@aon.at>

References

hettmansperger_norton_test

Hettmansperger-Norton Trend Test for k-Samples

Description

This function calculates the Hettmansperger-Norton trend test using pseudo-ranks under the null hypothesis H0F: F_1 = ... F_k.
Usage

```
hettmansperger_norton_test(x, ...)
```

S3 method for class 'numeric'

```
hettmansperger_norton_test(
  x,
  y,
  na.rm = FALSE,
  alternative = c("decreasing", "increasing", "custom"),
  trend = NULL,
  pseudoranks = TRUE,
  ...
)
```

S3 method for class 'formula'

```
hettmansperger_norton_test(
  formula,
  data,
  na.rm = FALSE,
  alternative = c("decreasing", "increasing", "custom"),
  trend = NULL,
  pseudoranks = TRUE,
  ...
)
```

Arguments

- `x` vector containing the observations
- `...` further arguments are ignored
- `y` vector specifying the group to which the observations from the `x` vector belong to
- `na.rm` a logical value indicating if NA values should be removed
- `alternative` either decreasing (trend \(k, k-1, ..., 1 \)) or increasing \((1, 2, ..., k) \) or custom (then argument `trend` must be specified)
- `trend` custom numeric vector indicating the trend for the custom alternative, only used if `alternative = "custom"`
- `pseudoranks` logical value indicating if pseudo-ranks or ranks should be used
- `formula` formula object
- `data` data.frame containing the variables in the formula (observations and group)

Value

Returns an object.

References

Examples

create some data, please note that the group factor needs to be ordered
df <- data.frame(data = c(rnorm(40, 3, 1), rnorm(40, 2, 1), rnorm(20, 1, 1)),
 group = c(rep(1,40),rep(2,40),rep(3,20)))
df$group <- factor(df$group, ordered = TRUE)

you can either test for a decreasing, increasing or custom trend
hettmansperger_norton_test(df$data, df$group, alternative="decreasing")
hettmansperger_norton_test(df$data, df$group, alternative="increasing")
hettmansperger_norton_test(df$data, df$group, alternative="custom", trend = c(1, 3, 2))

kruskal_wallis_test Kruskal-Wallis Test

Description

This function calculates the Kruskal-Wallis test using pseudo-ranks under the null hypothesis H0F: F_1 = ... F_k.

Usage

kruskal_wallis_test(x, ...)

S3 method for class 'numeric'
kruskal_wallis_test(x, grp, na.rm = FALSE, pseudoranks = TRUE, ...)

S3 method for class 'formula'
kruskal_wallis_test(formula, data, na.rm = FALSE, pseudoranks = TRUE, ...)

Arguments

x numeric vector containing the data
...

... further arguments are ignored

grp factor specifying the groups

na.rm a logical value indicating if NA values should be removed
ParadoxicalRanks

- **pseudoranks**: logical value indicating if pseudo-ranks or ranks should be used
- **formula**: optional formula object
- **data**: optional data.frame of the data

Value

Returns an object of class `pseudorank`

References

Examples

```r
x = c(1, 1, 1, 1, 2, 3, 4, 5, 6)
group = as.factor(c('A', 'A', 'B', 'B', 'B', 'D', 'D', 'D'))

# calculate Kruskal-Wallis test using pseudo-ranks
kruskal_wallis_test(x, group, na.rm = FALSE, pseudoranks = TRUE)
```

ParadoxicalRanks
Artificial data of 54 subjects

Description

An artificial dataset containing data of 54 subjects where a substance was administered in three different concentrations (1, 2, and 3). This data set can be used to show the paradoxical results obtained from rank tests, i.e., the Hettmansperger-Norton test.

Usage

data(ParadoxicalRanks)

Format

A data frame with 54 rows and 2 variables.

Details

The columns are as follows:

- **conc**: Grouping variable specifying which concentration was used. This factor is ordered, i.e., \(1 < 2 < 3\).
- **score**: The response variable.
References

Examples

```r
data("ParadoxicalRanks")
dat <- ParadoxicalRanks

set.seed(1)
n <- c(60, 360, 120)
x1 <- sample(subset(dat, dat$conc == 1)$score, n[1], replace = TRUE)
x2 <- sample(subset(dat, dat$conc == 2)$score, n[2], replace = TRUE)
x3 <- sample(subset(dat, dat$conc == 3)$score, n[3], replace = TRUE)

dat <- data.frame(score = c(x1, x2, x3),
                   conc = factor(c( rep(1,n[1]), rep(2,n[2]), rep(3,n[3]) ), ordered=TRUE) )

# Hettmansperger-Norton test with ranks (pseudoranks = FALSE) returns a small p-value (0.011).
# In contrast, the pseudo-rank test returns a large p-value (0.42). By changing the ratio of
group sizes, we can also obtain a significant decreasing trend with ranks, e.g.
# n <- c(260,20,260) and the same seed.
hettmansperger_norton_test(score ~ conc, data = dat, pseudoranks = FALSE,
                            alternative = "increasing")
hettmansperger_norton_test(score ~ conc, data = dat, pseudoranks = TRUE,
                            alternative = "increasing")
```

pseudorank
Calculation of Pseudo-Ranks

Description

Calculation of (mid) pseudo-ranks of a sample. In case of ties (i.e. equal values), the average of min pseudo-ranks and max-pseudo-ranks are taken (similar to rank with ties.method="average").

Usage

```r
pseudorank(x, ...)
```

```
## S3 method for class 'numeric'
pseudorank(x, y, na.last = NA, ties.method = c("average", "max", "min"), ...)

## S3 method for class 'formula'
pseudorank(
    formula,
    data,
```
pseudorank

 na.last = NA,
 ties.method = c("average", "max", "min"),
 ...
)

Arguments

x vector containing the observations
...

further arguments

y vector specifying the group to which the observations from the x vector belong to

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed (recommended).

ties.method type of pseudo-ranks: either 'average' (recommended), 'min' or 'max'.

formula formula object

data data.frame containing the variables in the formula (observations and group)

Value

Returns a numerical vector containing the pseudo-ranks.

References

Examples

df <- data.frame(data = round(rnorm(100)), group = c(rep(1,40),rep(2,40),rep(3,20)))
df$group <- as.factor(df$group)

two ways to calculate pseudo-ranks

Variant 1: use a vector for the data and a group vector
pseudorank(df$data,df$group)

Variant 2: use a formula object, Note that only one group factor can be used
that is, in data=group*group2 only 'group' will be used
pseudorank(data~group, df)
psrank

Calculation of Pseudo-Ranks (Deprecated)

Description
Calculation of (mid) pseudo-ranks of a sample. In case of ties (i.e. equal values), the average of min pseudo-ranks and max-pseudo-ranks are taken (similar to rank with ties.method="average").

Usage
psrank(x, ...)

Arguments
x vector containing the observations
... further arguments (see help for psorank)

Value
Returns a numerical vector containing the pseudo-ranks.

References

Examples
df <- data.frame(data = round(rnorm(100)), group = c(rep(1,40),rep(2,40),rep(3,20)))
df$group <- as.factor(df$group)

two ways to calculate pseudo-ranks

Variant 1: use a vector for the data and a group vector
psorank(df$data,df$group)

Variant 2: use a formula object, Note that only one group factor can be used
that is, in data~group*group2 only 'group' will be used
psorank(data~group,df)
Index

* datasets
 ParadoxicalRanks, 5

* export
 hettmansperger_norton_test, 2
 kruskal_wallis_test, 4
 pseudorank, 6
 psrank, 8

* package
 pseudorank-package, 2
 hettmansperger_norton_test, 2
 kruskal_wallis_test, 4
 ParadoxicalRanks, 5
 pseudorank, 6
 pseudorank-package, 2
 psrank, 8