Package ‘psfmi’

September 23, 2021

Type Package
Depends R (>= 4.0.0),
Imports ggplot2 (>= 3.3.2), norm (>= 1.0-9.5), survival (>= 3.1-12),
 mitools (>= 2.4), pROC (>= 1.16.2), rms (>= 6.1-0),
 ResourceSelection (>= 0.3-5), magrittr (>= 2.0.1), rsample (>= 0.0.8), mice (>= 3.12.0), mitml (>= 0.3-7), cvAUC (>= 1.1.0),
 dplyr (>= 1.0.2), purrr (>= 0.3.4), tidyrr (>= 1.1.2), tibble (>= 3.0.4), stringr (>= 1.4.0), lme4 (>= 1.1-26), miceadds (>= 3.10-28), car(>= 3.0-10)
Suggests foreign (>= 0.8-80), knitr, rmarkdown, testthat, bookdown, readr
Title Prediction Model Pooling, Selection and Performance Evaluation Across Multiply Imputed Datasets
Version 1.0.0
Description Pooling, backward and forward selection of linear, logistic and Cox regression models in multiply imputed datasets. Backward and forward selection can be done from the pooled model using Rubin’s Rules (RR), the D1, D2, D3, D4 and the median p-values method. This is also possible for Mixed models. The models can contain continuous, dichotomous, categorical and restricted cubic spline predictors and interaction terms between all these type of predictors. The stability of the models can be evaluated using bootstrapping and cluster bootstrapping. The package further contains functions to pool the model performance as ROC/AUC, R-squares, scaled Brier score, H&L test and calibration plots for logistic regression models. Internal validation can be done with cross-validation or bootstrapping. The adjusted intercept after shrinkage of pooled regression coefficients can be obtained. Backward and forward selection as part of internal validation is possible. A function to externally validate logistic prediction models in multiple imputed datasets is available and a function to compare models.
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
License GPL (>= 2)

URL https://mwheymans.github.io/psfmi/

BugReports https://github.com/mwheymans/psfmi/issues/

VignetteBuilder knitr

NeedsCompilation no

Author Martijn Heymans [cre, aut] (<https://orcid.org/0000-0002-3889-0921>),
 Iris Eekhout [ctb]

Maintainer Martijn Heymans <mw.heymans@amsterdamumc.nl>

Repository CRAN

Date/Publication 2021-09-23 10:10:05 UTC

R topics documented:

anderson ... 3
aortadis ... 4
bmd ... 4
bw_single ... 5
chlrform ... 7
chol_long ... 7
chol_wide ... 8
coxph_bw ... 9
coxph_fw ... 11
day2_dataset4_mi ... 13
glm_bw .. 13
glm_fw .. 15
hipstudy .. 17
hipstudy_external ... 18
hoorn_basic ... 19
hoslem_test ... 20
infarct ... 21
ipdna_md .. 22
lbpmicox ... 23
lbpmilr .. 24
lbpmilr_dev .. 25
lbpmi_extval ... 26
lbp_orig .. 27
lungvolume ... 28
mammaca ... 28
men ... 29
mivalext_lr ... 30
pool_auc ... 32
pool_compare_models .. 32
pool_D2 .. 34
pool_D4 .. 35
Data from a placebo-controlled RCT with leukemia patients

Description

Data from a placebo-controlled RCT with leukemia patients

Usage

data(anderson)

Format

A data frame with 348 observations on the following 5 variables.

- remission: continuous, remission in weeks
- status: dichotomous
- treatment: dichotomous, 0=placebo, 1=verum
- sex: dichotomous, 0=female, 1=male
- log_wbc: continuous, Log (number of white blood cells)

Examples

data(anderson)
maybe str(anderson)
aortadis

Description

Dataset of patients with aortic dissection

Usage

data(aortadis)

Format

A data frame with 226 observations on the following 10 variables.

Gender dichotomous, 1=yes, 0=no
Age continuous
Age_C categorical: 0 = < 50 years, 1 = 50-59 years, 2 = 60-69 years, 3 = 70-79 years, 4 = 80 years and older
Aortadis dichotomous, 1=yes, 0=no
Acute dichotomous, 1=yes, 0=no
Acute3 categorical: 0 = No, 1 = Little, 2 = Much
Stomach_Ache dichotomous, 1=yes, 0=no
Hyper dichotomous, Hypertension, 1=yes, 0=no
Smoking dichotomous, 1=yes, 0=no
Radiation dichotomous, 1=yes, 0=no

Examples

data(aortadis)
maybe str(aortadis)

bmd

Description

Data of a non-experimental study in more than 300 elderly women

Usage

data(bmd)
bw_single

Format
A data frame with 348 observations on the following 5 variables.

- bmd continuous
- age continuous: years
- menopaus continuous: age of menopause
- weight continuous: weight in kg
- walkscor dichotomous: score on a walking test, 0=normal, 1=impaired

Examples

data(bmd)
maybe str(bmd)

bw_single

Predictor selection function for backward selection of Linear and Logistic regression models.

Description
bw_single Backward selection of Linear and Logistic regression models using as selection method the likelihood-ratio Chi-square value.

Usage

bw_single(
 data,
 formula = NULL,
 Outcome = NULL,
 predictors = NULL,
 p.crit = 1,
 cat.predictors = NULL,
 spline.predictors = NULL,
 int.predictors = NULL,
 keep.predictors = NULL,
 nknots = NULL,
 model_type = "binomial"
)

Arguments
data A data frame.
formula A formula object to specify the model as normally used by glm. See under "Details" and "Examples" how these can be specified.
Outcome Character vector containing the name of the outcome variable.
predictors Character vector with the names of the predictor variables. At least one predictor variable has to be defined. Give predictors unique names and do not use predictor name combinations with numbers as, age2, gnder10, etc.

p.crit A numerical scalar. P-value selection criterium. A value of 1 provides the pooled model without selection.

cat.predictors A single string or a vector of strings to define the categorical variables. Default is NULL categorical predictors.

spline.predictors A single string or a vector of strings to define the (restricted cubic) spline variables. Default is NULL spline predictors. See details.

int.predictors A single string or a vector of strings with the names of the variables that form an interaction pair, separated by a "::" symbol.

keep.predictors A single string or a vector of strings including the variables that are forced in the model during predictor selection. All type of variables are allowed.

nknots A numerical vector that defines the number of knots for each spline predictor separately.

model_type A character vector. If "binomial" a logistic regression model is used (default) and for "linear" a linear regression model is used.

Details

A typical formula object has the form Outcome ~ terms. Categorical variables has to be defined as Outcome ~ factor(variable), restricted cubic spline variables as Outcome ~ rcs(variable,3). Interaction terms can be defined as Outcome ~ variable1*variable2 or Outcome ~ variable1 + variable2 + variable1:variable2. All variables in the terms part have to be separated by a "+".

Value

An object of class smods (single models) from which the following objects can be extracted: original dataset as data, final selected model as RR_model_final, model at each selection step RR_model_setp, p-values at final step according to selection method as multiparm_final, and at each step as multiparm_step, formula object at final step as formula_final, and at each step as formula_step and for start model as formula_initial, predictors included at each selection step as predictors_in, predictors excluded at each step as predictors_out, and Outcome, anova_test, p.crit, call, model_type, predictors_final for names of predictors in final selection step and predictors_initial for names of predictors in start model.

Author(s)

Martijn Heymans, 2020

References

http://missingdatasolutions.rbind.io/
chlrform

Data about concentration of ß2-microglobuline in urine as indicator for possible damage to the kidney

Description

Data about concentration of ß2-microglobuline in urine as indicator for possible damage to the kidney

Usage

data(chlrform)

Format

A data frame with 348 observations on the following 5 variables.

- **pt_id** continuous
- **sport** categorical: 0 = football player, 1 = outdoorswimmer and 2 = indoor swimmer
- **gammagt** continuous: liver damage
- **b2** continuous: beta2 microglobuline in mg per mol
- **age** continuous: age in years

Examples

data(chlrform)
maybe str(chlrform)

chol_long

Long dataset of persons from the The Amsterdam Growth and Health Longitudinal Study (AGHLS)

Description

Long dataset of persons from the The Amsterdam Growth and Health Longitudinal Study (AGHLS)

Usage

data(chol_long)
Format

A data frame with 588 observations on the following 7 variables.

ID continuous
fitness continuous
Smoking dichotomous, 1=yes, 0=no
Sex dichotomous
Time categorical
Cholesterol continuous
SumSkinfolds continuous

Examples

data(chol_long)
maybe str(chol_long)

chol_wide

Wide dataset of persons from the The Amsterdam Growth and Health Longitudinal Study (AGHLS)

Description

Wide dataset of persons from the The Amsterdam Growth and Health Longitudinal Study (AGHLS)

Usage

data(chol_wide)

Format

A data frame with 147 observations on the following 7 variables.

ID continuous
Cholesterol1 continuous
SumSkinfolds1 continuous
Cholesterol2 continuous
SumSkinfolds2 continuous
Cholesterol3 continuous
SumSkinfolds3 continuous
Cholesterol4 continuous
SumSkinfolds4 continuous
fitness continuous
Smoking dichotomous
Sex dichotomous
Examples

data(chol_wide)
maybe str(chol_wide)

coxph_bw

Predictor selection function for backward selection of Cox regression models in single dataset.

Description

coxph_bw Backward selection of Cox regression models in single dataset using as selection method the partial likelihood-ratio statistic.

Usage

coxph_bw(
 data,
 formula = NULL,
 status = NULL,
 time = NULL,
 predictors = NULL,
 p.crit = 1,
 cat.predictors = NULL,
 spline.predictors = NULL,
 int.predictors = NULL,
 keep.predictors = NULL,
 nknots = NULL
)

Arguments

data
 A data frame.
formula
 A formula object to specify the model as normally used by coxph. See under "Details" and "Examples" how these can be specified.
status
 The status variable, normally 0=censoring, 1=event.
time
 Survival time.
predictors
 Character vector with the names of the predictor variables. At least one predictor variable has to be defined. Give predictors unique names and do not use predictor name combinations with numbers as, age2, gnder10, etc.
p.crit
 A numerical scalar. P-value selection criterium. A value of 1 provides the pooled model without selection.
cat.predictors
 A single string or a vector of strings to define the categorical variables. Default is NULL categorical predictors.
spline.predictors
A single string or a vector of strings to define the (restricted cubic) spline variables. Default is NULL spline predictors. See details.

int.predictors
A single string or a vector of strings with the names of the variables that form an interaction pair, separated by a "::" symbol.

keep.predictors
A single string or a vector of strings including the variables that are forced in the model during predictor selection. All type of variables are allowed.

nknots
A numerical vector that defines the number of knots for each spline predictor separately.

Details
A typical formula object has the form Surv(time, status) ~ terms. Categorical variables has to be defined as Surv(time, status) ~ factor(variable), restricted cubic spline variables as Surv(time, status) ~ rcs(variable, 3). Interaction terms can be defined as Surv(time, status) ~ variable1*variable2 or Surv(time, status) ~ variable1 + variable2 + variable1:variable2. All variables in the terms part have to be separated by a "+".

Value
An object of class smods (single models) from which the following objects can be extracted: original dataset as data, final selected model as RR_model_final, model at each selection step RR_model, p-values at final step multiparm_final, and at each step as multiparm, formula object at final step as formula_final, and at each step as formula_step and for start model as formula_initial, predictors included at each selection step as predictors_in, predictors excluded at each step as predictors_out, and time, status, p.crit, call, model_type, predictors_final for names of predictors in final selection step and predictors_initial for names of predictors in start model and keep.predictors for variables that are forced in the model during selection.

Author(s)
Martijn Heymans, 2021

References
http://missingdatasolutions.rbind.io/

Examples
lbpmicox1 <- subset(psmi::lbpmicox, Impnr==1) # extract first imputed dataset
res_single <- coxph_bw(data=lbpmicox1, p.crit = 0.05, formula=Surv(Time, Status) ~
 Previous + Radiation + Onset + Age + Tampascale +
 Pain + JobControl + factor(Satisfaction),
 spline.predictors = "Function",
 nknots = 3)

res_single$RR_model_final
res_single$multiparm_final
Description

`coxph_fw` Forward selection of Cox regression models in single dataset using as selection method the partial likelihood-ratio statistic.

Usage

```r
coxph_fw(
  data,
  formula = NULL,
  status = NULL,
  time = NULL,
  predictors = NULL,
  p.crit = 1,
  cat.predictors = NULL,
  spline.predictors = NULL,
  int.predictors = NULL,
  keep.predictors = NULL,
  nknots = NULL
)
```

Arguments

- **data**: A data frame.
- **formula**: A formula object to specify the model as normally used by `coxph`. See under "Details" and "Examples" how these can be specified.
- **status**: The status variable, normally 0=censoring, 1=event.
- **time**: Survival time.
- **predictors**: Character vector with the names of the predictor variables. At least one predictor variable has to be defined. Give predictors unique names and do not use predictor name combinations with numbers as, age2, gnder10, etc.
- **p.crit**: A numerical scalar. P-value selection criterium. A value of 1 provides the pooled model without selection.
- **cat.predictors**: A single string or a vector of strings to define the categorical variables. Default is NULL categorical predictors.
- **spline.predictors**: A single string or a vector of strings to define the (restricted cubic) spline variables. Default is NULL spline predictors. See details.
- **int.predictors**: A single string or a vector of strings with the names of the variables that form an interaction pair, separated by a "::" symbol.
keep.predictors
A single string or a vector of strings including the variables that are forced in
the model during predictor selection. All type of variables are allowed.

nknots
A numerical vector that defines the number of knots for each spline predictor
separately.

Details
A typical formula object has the form \(\text{Surv}(\text{time}, \text{status}) \sim \text{terms} \). Categorical variables has
to be defined as \(\text{Surv}(\text{time}, \text{status}) \sim \text{factor}(\text{variable}) \), restricted cubic spline variables as
\(\text{Surv}(\text{time}, \text{status}) \sim \text{rcs}(\text{variable}, 3) \). Interaction terms can be defined as
\(\text{Surv}(\text{time}, \text{status}) \sim \text{variable1} \times \text{variable2} \) or \(\text{Surv}(\text{time}, \text{status}) \sim \text{variable1} + \text{variable2} + \text{variable1} : \text{variable2} \).
All variables in the terms part have to be separated by a "+".

Value
An object of class smods (single models) from which the following objects can be extracted: original
dataset as \(\text{data} \), final selected model as \(\text{RR_model_final} \), model at each selection step \(\text{RR_model} \),
p-values at final step \(\text{multiparm_final} \), and at each step as \(\text{multiparm} \), formula object at final step
as \(\text{formula_final} \), and at each step as \(\text{formula_step} \) and for start model as \(\text{formula_initial} \),
predictors included at each selection step as \(\text{predictors_in} \), predictors excluded at each step as \(\text{predictors_out} \), and \(\text{time} \), \(\text{status} \), \(\text{p.crit} \), \(\text{call} \), \(\text{model_type} \), \(\text{predictors_final} \) for names
of predictors in final selection step and \(\text{predictors_initial} \) for names of predictors in start model
and keep.predictors for variables that are forced in the model during selection.

Author(s)
Martijn Heymans, 2021

References
http://missingdatasolutions.rbind.io/

Examples
```r
lbpmicox1 <- subset(psfmi::lbpmicox, Imprnr==1) # extract first imputed dataset
coxph_bw(data=lbpmicox1, p.crit = 0.05, formula=Surv(Time, Status) ~
    Previous + Radiation + Onset + Age + Tampascale +
    Pain + JobControl + factor(Satisfaction),
    spline.predictors = "Function",
    nknots = 3)
```

```r
res_single$RR_model_final
res_single$multiparm_final
```
day2_dataset4_mi

Dataset of low back pain patients with missing values

Description

Dataset of low back pain patients with missing values in 2 variables

Usage

data(day2_dataset4_mi)

Format

A data frame with 100 observations on the following 8 variables.

- **ID** continuous: unique patient numbers
- **Pain** continuous: Pain intensity
- **Tampa** continuous: Fear of Movement scale
- **Function** continuous: Functional Status
- **JobSocial** continuous
- **FAB** continuous: Fear Avoidance Beliefs
- **Gender** dichotomous: 1 = male, 0 = female
- **Radiation** dichotomous: 1 = yes, 0 = no

Examples

```
data(day2_dataset4_mi)
## maybe str(day2_dataset4_mi)
```

glm_bw

Function for backward selection of Linear and Logistic regression models.

Description

glm_bw Backward selection of Linear and Logistic regression models in single dataset using as selection method the likelihood-ratio test.
Usage

glm_bw(
 data,
 formula = NULL,
 Outcome = NULL,
 predictors = NULL,
 p.crit = 1,
 cat.predictors = NULL,
 spline.predictors = NULL,
 int.predictors = NULL,
 keep.predictors = NULL,
 nknots = NULL,
 model_type = "binomial"
)

Arguments

data
 A data frame.

formula
 A formula object to specify the model as normally used by glm. See under
 "Details" and "Examples" how these can be specified.

Outcome
 Character vector containing the name of the outcome variable.

predictors
 Character vector with the names of the predictor variables. At least one pre-
 dictor variable has to be defined. Give predictors unique names and do not use
 predictor name combinations with numbers as, age2, gnder10, etc.

p.crit
 A numerical scalar. P-value selection criterium. A value of 1 provides the
 pooled model without selection.

cat.predictors
 A single string or a vector of strings to define the categorical variables. Default
 is NULL categorical predictors.

spline.predictors
 A single string or a vector of strings to define the (restricted cubic) spline vari-
 ables. Default is NULL spline predictors. See details.

int.predictors
 A single string or a vector of strings with the names of the variables that form
 an interaction pair, separated by a "::" symbol.

keep.predictors
 A single string or a vector of strings including the variables that are forced in
 the model during predictor selection. All type of variables are allowed.

nknots
 A numerical vector that defines the number of knots for each spline predictor
 separately.

model_type
 A character vector. If "binomial" a logistic regression model is used (default)
 and for "linear" a linear regression model is used.

Details

A typical formula object has the form Outcome ~ terms. Categorical variables has to be defined as
Outcome ~ factor(variable), restricted cubic spline variables as Outcome ~ rcs(variable,3).
Interaction terms can be defined as Outcome ~ variable1*variable2 or Outcome ~ variable1 +
variable2 + variable1:variable2. All variables in the terms part have to be separated by a "+".
Value

An object of class smods (single models) from which the following objects can be extracted: original dataset as data, model at each selection step RR_model, final selected model as RR_model_final, p-values at final step multiparm_final, and at each step as multiparm, formula object at final step as formula_final, and at each step as formula_step and for start model as formula_initial, predictors included at each selection step as predictors_in, predictors excluded at each step as predictors_out, and Outcome, p.crit, call, model_type, predictors_final for names of predictors in final selection step and predictors_initial for names of predictors in start model and keep.predictors for variables that are forced in the model during selection.

Author(s)

Martijn Heymans, 2021

References

http://missingdatasolutions.rbind.io/

See Also

psfmi_perform

Examples

data1 <- subset(psfmi::lbpmilr, Impnr==1) # extract first imputed dataset
res_single <- glm_bw(data=data1, p.crit = 0.05, formula=Chronic ~ Tampascale + Smoking + factor(Satisfaction), model_type="binomial")
res_single$RR_model_final

res_single <- glm_bw(data=data1, p.crit = 0.05, formula=Pain ~ Tampascale + Smoking + factor(Satisfaction), model_type="linear")
res_single$RR_model_final

glm_fw
Function for forward selection of Linear and Logistic regression models.

Description

glm_fw Forward selection of Linear and Logistic regression models in single dataset using as selection method the likelihood-ratio test statistic.
Usage

```r
glm_fw(
data, 
formula = NULL, 
Outcome = NULL, 
predictors = NULL, 
p.crit = 1, 
cat.predictors = NULL, 
spline.predictors = NULL, 
int.predictors = NULL, 
keep.predictors = NULL, 
nknots = NULL, 
model_type = "binomial"
)
```

Arguments

data A data frame.
formula A formula object to specify the model as normally used by glm. See under "Details" and "Examples" how these can be specified.
Outcome Character vector containing the name of the outcome variable.
predictors Character vector with the names of the predictor variables. At least one predictor variable has to be defined. Give predictors unique names and do not use predictor name combinations with numbers as, age2, gnder10, etc.
p.crit A numerical scalar. P-value selection criterium. A value of 1 provides the full model without selection.
cat.predictors A single string or a vector of strings to define the categorical variables. Default is NULL categorical predictors.
spline.predictors A single string or a vector of strings to define the (restricted cubic) spline variables. Default is NULL spline predictors. See details.
int.predictors A single string or a vector of strings with the names of the variables that form an interaction pair, separated by a "::" symbol.
keep.predictors A single string or a vector of strings including the variables that are forced in the model during predictor selection. All type of variables are allowed.
nknots A numerical vector that defines the number of knots for each spline predictor separately.
model_type A character vector. If "binomial" a logistic regression model is used (default) and for "linear" a linear regression model is used.

Details

A typical formula object has the form `Outcome ~ terms`. Categorical variables has to be defined as `Outcome ~ factor(variable)`, restricted cubic spline variables as `Outcome ~ rcs(variable,3)`. Interaction terms can be defined as `Outcome ~ variable1*variable2` or `Outcome ~ variable1 + variable2 + variable1:variable2`. All variables in the terms part have to be separated by a "+".
Value

An object of class `smods` (single models) from which the following objects can be extracted: original dataset as `data`, model at each selection step `RR_model`, final selected model as `RR_model_final`, p-values at final step `multiparm_final`, and at each step as `multiparm`, formula object at final step as `formula_final`, and at each step as `formula_step` and for start model as `formula_initial`, predictors included at each selection step as `predictors_in`, predictors excluded at each step as `predictors_out`, and `Outcome`, `p.crit`, `call`, `model_type`, `predictors_final` for names of predictors in final selection step and `predictors_initial` for names of predictors in start model and `keep.predictors` for variables that are forced in the model during selection.

Author(s)

Martijn Heymans, 2021

References

http://missingdatasolutions.rbind.io/

See Also

`psfmi_perform`

Examples

```r
data1 <- subset(psfmi::lbpmilr, Impnr==1) # extract first imputed dataset
res_single <- glm_fw(data=data1, p.crit = 0.05, formula=Chronic ~ Tampascale + Smoking + factor(Satisfaction), model_type="binomial")
res_single$RR_model_final

res_single <- glm_fw(data=data1, p.crit = 0.05, formula=Pain ~ Tampascale + Smoking + factor(Satisfaction), model_type="linear")
res_single$RR_model_final
```

Description

Dataset of elderly patients with a hip fracture

Usage

data(hipstudy)
Format

A data frame with 426 observations on the following 18 variables.

- **pat_id** continuous: unique patient numbers
- **Gender** dichotomous: 1 = male, 0 = female
- **Age** continuous: Years
- **Mobility** categorical: 1 = No tools, 2 = Stick / walker, 3 = Wheelchair / bed
- **Dementia** dichotomous: 2=yes, 1=no
- **Home** categorical: 1 = Independent, 2 = Elderly house, 3 = Nursing
- **Comorbidity** continuous: Number of Co-morbidities (0-4)
- **ASA** continuous: ASA score (1-4)
- **Hemoglobin** continuous: Hemoglobin pre-operative
- **Leucocytes** continuous: Leucocytes preoperative
- **Thrombocytes** continuous: Thrombocytes preoperative
- **CRP** continuous: C-reactive protein (CRP) preoperative
- **Creatinine** continuous: Creatinine preoperative
- **Urea** continuous: Urea preoperative
- **Albumine** continuous: Albumine preoperative
- **Fracture** dichotomous: 1 = per or subtrochanter fracture, 0 = collum fracture
- **Delay** continuous: time till operation in days
- **Mortality** dichotomous: 1 = yes, 0 = no

Examples

data(hipstudy)
maybe str(hipstudy)

Description

External dataset of elderly patients with a hip fracture

Usage

data(hipstudy_external)
Format

A data frame with 381 observations on the following 17 variables.

Gender dichotomous: 1 = male, 0 = female
Age continuous: Years
Mobility categorical: 1 = No tools, 2 = Stick / walker, 3 = Wheelchair / bed
Dementia dichotomous: 2=yes, 1=no
Home categorical: 1 = Independent, 2 = Elderly house, 3 = Nursering
Comorbidity continuous: Number of Co-morbidities
ASA continuous: ASA score
Hemogobine continuous: Hemogobine preoperative
Leucocytes continuous: Leucocytes preoperative
Thrombocytes continuous: Thrombocytes preoperative
CRP continuous: Creactive protein (CRP) preoperative
Creatinine continuous: Creatinine preoperative
Urea continuous: Urea preoperative
Albumine continuous: Albumin preoperative
Fracture dichotomous: 1 = per or subtrochanter fracture, 0 = collum fracture
Delay continuous: time till operation in days
Mortality dichotomous: 1 = yes, 0 = no

Examples

data(hipstudy_external)
maybe str(hipstudy_external)

hoorn_basic

Dataset of the Hoorn Study

Description

Dataset of the Hoorn Study

Usage

data(hoorn_basic)
Format

A data frame with 250 observations on the following 12 variables.

- `patnr` continuous
- `sbldsys1` continuous: Systolic Blood Pressure 1
- `sbldsys2` continuous: Systolic Blood Pressure 2
- `sbldds1` continuous: Diastolic Blood Pressure 1
- `sbldds2` continuous: Diastolic Blood Pressure 2
- `sex` dichotomous: 1=male, 2=female
- `sfructo` continuous: fructosamine level in the blood
- `sglucn` continuous
- `dmknown` dichotomous: 0=no, 1=yes
- `dmdiet` dichotomous: 0=no, 1=yes
- `infarct` dichotomous: 0=no, 1=yes
- `hypten` dichotomous: 0=no, 1=yes

Examples

```r
data(hoorn_basic)
## maybe str(hoorn_basic)
```

hoslem_test

Calculates the Hosmer and Lemeshow goodness of fit test.

Description

hoslem_test the Hosmer and Lemeshow goodness of fit test.

Usage

```r
hoslem_test(y, yhat, g = 10)
```

Arguments

- `y` a vector of observations (0/1).
- `yhat` a vector of predicted probabilities.
- `g` Number of groups tested. Default is 10. Can not be < 3.

Value

The Chi-squared test statistic, the p-value, the observed and expected frequencies.
infarct

Author(s)
Martijn Heymans, 2021

References

See Also
pool_performance

Examples

```r
fit <- glm(Mortality ~ Dementia + factor(Mobility) + ASA + Gender + Age, data=hipstudy, family=binomial)
pred <- predict(fit, type = "response")

hoslem_test(fit$y, pred)
```

infarct

Data of a patient-control study regarding the relationship between MI and smoking

Description
Data of a patient-control study regarding the relationship between MI and smoking

Usage
data(infarct)

Format
A data frame with 420 observations on the following 10 variables.
pnppr continuous
infarct dichotomous: 1=yes, 0=no
smoking dichotomous: 1=yes, 0=no
alcohol categorical
active dichotomous: 1=active, 0=inactive
sex dichotomous: 1=male, 0=female
profession categorical: 1=epidemiologist, 2=statistician, 3=other
bmi continuous: body mass index
sys continuous: systolic blood pressure
dias continuous: diastolic blood pressure
Examples

data(infarct)
maybe str(infarct)

ipdna_md

Example dataset for the psfmi_mm function

Description

5 imputed datasets of the first 10 centres of the IPDNa dataset in the micemd package.

Usage

`data(ipdna_md)`

Format

A data frame with 13390 observations on the following 13 variables.

- `.imp` a numeric vector
- `.id` a numeric vector
- `centre` cluster variable
- `gender` dichotomous
- `bmi` continuous
- `age` continuous
- `sbp` continuous
- `dbp` continuous
- `hr` continuous
- `lvef` dichotomous
- `bnp` categorical
- `afib` continuous
- `bmi_cat` categorical

Examples

```r
data(ipdna_md)
## maybe str(ipdna_md)

#summary per study
by(ipdna_md, ipdna_md$centre, summary)
```
Example dataset for psfmi_coxr function

Description

10 imputed datasets

Usage

data(lbpmicox)

Format

A data frame with 2650 observations on the following 18 variables.

Impnr a numeric vector
patnr a numeric vector
Status dichotomous event
Time continuous follow up time variable
Duration continuous
Previous dichotomous
Radiation dichotomous
Onset dichotomous
Age continuous
Tampascale continuous
Pain continuous
Function continuous
Satisfaction categorical
JobControl continuous
JobDemand continuous
Social continuous
Expectation a numeric vector
Expect_cat categorical

Examples

data(lbpmicox)
maybe str(lbpmicox)
Example dataset for psfmi_lr function

Description
10 imputed datasets

Usage
data(lbpmilr)

Format
A data frame with 1590 observations on the following 17 variables.

- Impnr: a numeric vector
- ID: a numeric vector
- Chronic: dichotomous
- Gender: dichotomous
- Carrying: categorical
- Pain: continuous
- Tampascale: continuous
- Function: continuous
- Radiation: dichotomous
- Age: continuous
- Smoking: dichotomous
- Satisfaction: categorical
- JobControl: continuous
- JobDemands: continuous
- SocialSupport: continuous
- Duration: continuous
- BMI: continuous

Examples
data(lbpmilr)
mayb str(lbpmilr)
Example dataset for mivalext_lr function

Description
1 development dataset

Usage
data(lbpmilr_dev)

Format
A data frame with 108 observations on the following 16 variables.

ID a numeric vector
Chronic dichotomous
Gender dichotomous
Carrying categorical
Pain continuous
Tampascale continuous
Function continuous
Radiation dichotomous
Age continuous
Smoking dichotomous
Satisfaction categorical
JobControl continuous
JobDemands continuous
SocialSupport continuous
Duration continuous
BMI continuous

Examples
data(lbpmilr_dev)
maybe str(lbpmilr_dev)
Example dataset of Low Back Pain Patients for external validation

Description

Five multiply imputed datasets

Usage

lbpmi_extval

Format

A data frame with 400 rows and 17 variables.

Impnr a numeric vector
ID a numeric vector
Chronic dichotomous
Gender dichotomous
Carrying categorical
Pain continuous
Tampascale continuous
Function continuous
Radiation dichotomous
Age continuous
Smoking dichotomous
Satisfaction categorical
JobControl continuous
JobDemands continuous
SocialSupport continuous
Duration continuous
BMI continuous

Examples

data(lbpmi_extval)
maybe str(lbpmi_extval)\
Example dataset for psfmi::perform function, method boot_MI

Description

Original dataset with missing values

Usage

data(lbp_orig)

Format

A data frame with 159 observations on the following 15 variables.

 - Chronic dichotomous
 - Gender dichotomous
 - Carrying categorical
 - Pain continuous
 - Tampascale continuous
 - Function continuous
 - Radiation dichotomous
 - Age continuous
 - Smoking dichotomous
 - Satisfaction categorical
 - JobControl continuous
 - JobDemands continuous
 - SocialSupport continuous
 - Duration continuous
 - BMI continuous

Examples

data(lbp_orig)
maybe str(lbp_orig)
Description

Data regarding the development of lung and heart volume of unborn babies in the 18 till 34 week of pregnancy.

Usage

data(lungvolume)

Format

A data frame with 152 observations on the following 6 variables.

- pat_id continuous
- week continuous: week pregnancy
- weight continuous: weight in grams
- lungvol continuous: lung volume
- heartvol continuous: heart volume
- Nweek categorical: Percentile Group of week

Examples

data(lungvolume)
maybe str(lungvolume)

Description

Data of a study among women with breast cancer

Usage

data(mammaca)
Format

A data frame with 1207 observations on the following 10 variables.

id continuous
time continuous, Time (months)
status dichotomous: 1=yes, 0=no
er Estrogen Receptor Status, 1=positive, 0=negative
age continuous
histgrad categorical
ln_yesno lymph nodes, 0=no, 1=yes
pathsd dichotomous: Pathological Tumor Size
pr dichotomous: Progesterone Receptor Status, 0=negative, 1=positive

Examples

data(mammaca)
maybe str(mammaca)

men Data of 613 patients with meningitis

Description

Data of 613 patients with meningitis

Usage

data(men)

Format

A data frame with 420 observations on the following 10 variables.

pt_id continuous
sex dichotomous: 0=male, 1=female
predisp dichotomous: 0=no, 1=yes
mensepsi categorical: disease characteristics at admission, 1=menigitis, 2=sepsis, 3=other
coma dichotomous: coma at admission, 0=no, 1=coma
diastol continuous: diastolic blood pressure at admission
course dichotomous: disease course, 0=alive, 1=deceased

Examples

data(men)
maybe str(men)
mivalext_lr
External Validation of logistic prediction models in multiply imputed datasets

Description

mivalext_lr External validation of logistic prediction models

Usage

```r
mivalext_lr(
  data.val = NULL,
  data.orig = NULL,
  nimp = 5,
  impvar = NULL,
  formula = NULL,
  lp.orig = NULL,
  cal.plot = FALSE,
  plot.indiv = FALSE,
  val.check = FALSE,
  g = 10,
  groups_cal = 10,
  plot.method = "mean"
)
```

Arguments

- **data.val**: Data frame with stacked multiply imputed validation datasets. The original dataset that contains missing values must be excluded from the dataset. The imputed datasets must be distinguished by an imputation variable, specified under impvar, and starting by 1.

- **data.orig**: A single data frame containing the original dataset that was used to develop the model. Used to estimate the original regression coefficients in case lp.orig is not provided.

- **nimp**: A numerical scalar. Number of imputed datasets. Default is 5.

- **impvar**: A character vector. Name of the variable that distinguishes the imputed datasets.

- **formula**: A formula object to specify the model as normally used by glm.

- **lp.orig**: Numeric vector of the original coefficient values that are externally validated.

- **cal.plot**: If TRUE a calibration plot is generated. Default is FALSE.

- **plot.indiv**: This argument is deprecated; please use plot.method instead.

- **val.check**: logical vector. If TRUE the names of the predictors of the LP are provided and can be used as information for the order of the coefficient values as input for lp.orig. If FALSE (default) validation procedure is executed with coefficient values fitted in the order as used under lp.orig.
mivalext_lr

<table>
<thead>
<tr>
<th>g</th>
<th>A numerical scalar. Number of groups for the Hosmer and Lemeshow test. Default is 10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>groups_cal</td>
<td>A numerical scalar. Number of groups used on the calibration plot. Default is 10. If the range of predicted probabilities is low, less than 10 groups can be chosen.</td>
</tr>
<tr>
<td>plot.method</td>
<td>If "mean" one calibration plot is generated, first taking the mean of the linear predictor values across the multiply imputed datasets (default), if "individual" the calibration plot in each imputed dataset is plotted, if "overlay" calibration plots from each imputed datasets are plotted in one figure.</td>
</tr>
</tbody>
</table>

Details

The following information of the externally validated model is provided: ROC pooled ROC curve (back transformed after pooling log transformed ROC curves), R² pooled Nagelkerke R-Square value (back transformed after pooling Fisher transformed values), HLtest pooled Hosmer and Lemeshow Test (using function pool_D2), coef_pooled pooled coefficients when model is freely estimated in imputed datasets and LP_pooled_ext the pooled linear predictor (LP), after the externally validated LP is estimated in each imputed dataset (provides information about miscalibration in intercept and slope). In addition information is provided about nimp, impvar, formula, val_check, g and coef_check. When the external validation is very poor, the R² can become negative due to the poor fit of the model in the external dataset (in that case you may report a R² of zero).

Value

A mivalext_lr object from which the following objects can be extracted: ROC results as ROC, R squared results as R², Hosmer and Lemeshow test as HL_test, coefficients pooled as coef_pooled, linear predictor pooled as LP_pooled_ext, and formula, nimp, impvar, val_check, g, coef_check and groups_cal.

References

http://missingdatasolutions.rbind.io/

Examples

mivalext_lr(data.val=lbpmilr, nimp=5, impvar="Impnr",
formula = Chronic ~ Gender + factor(Carrying) + Function +
Tampascale + Age, lp.orig=c(-10, -0.35, 1.00, 1.00, -0.04, 0.26, -0.01),
cal.plot=TRUE, val.check = FALSE)
pool_auc

Calculates the pooled C-statistic (Area Under the ROC Curve) across Multiply Imputed datasets

Description

pool_auc Calculates the pooled C-statistic and 95 by using Rubin’s Rules. The C-statistic values are log transformed before pooling.

Usage

pool_auc(est_auc, est_se, nimp = 5, log_auc = TRUE)

Arguments

- est_auc: A list of C-statistic (AUC/ROC) values estimated in Multiply Imputed datasets.
- est_se: A list of standard errors of C-statistic values estimated in Multiply Imputed datasets.
- nimp: A numerical scalar. Number of imputed datasets. Default is 5.
- log_auc: If TRUE natural logarithmic transformation is applied before pooling and finally back transformed. If FALSE the raw values are pooled.

Value

The pooled C-statistic value and the 95

Author(s)

Martijn Heymans, 2021

See Also

psfmi_perform, pool_performance

pool_compare_models

Compare the fit and performance of prediction models across Multiply Imputed data

Description

pool_compare_model Compares the fit and performance of prediction models in multiply imputed data sets by using clinical important performance measures
Usage

```r
pool_compare_models(
  pobj,
  compare.predictors = NULL,
  compare.group = NULL,
  cutoff = 0.5,
  boot_auc = FALSE,
  nboot = 1000
)
```

Arguments

- `pobj`: An object of class `pmods` (pooled models), produced by a previous call to `psfmi_lr`.
- `compare.predictors`: Character vector with the names of the predictors that are compared. See details.
- `compare.group`: Character vector with the names of the group of predictors that are compared. See details.
- `cutoff`: A numerical scalar. Cutoff used for the categorical NRI value. More than one cutoff value can be used.
- `boot_auc`: If TRUE the standard error of the AUC is calculated with stratified bootstrapping. If FALSE (is default), the standard error is calculated with De Long’s method.
- `nboot`: A numerical scalar. The number of bootstrap samples for the AUC standard error, used when `boot_auc` is TRUE. Default is 1000.

Details

The fit of the models are compared by using the D3 method for pooling Likelihood ratio statistics (method of Meng and Rubin). The pooled AIC difference is calculated according to the formula $AIC = D - 2p$, where D is the pooled likelihood ratio tests of constrained models (numerator in D3 statistic) and p is the difference in number of parameters between the full and restricted models that are compared. The pooled AUC difference is calculated, after the standard error is obtained in each imputed data set by method DeLong or bootstrapping. The NRI categorical and continuous and IDI are calculated in each imputed data set and pooled.

Value

An object from which the following objects can be extracted:

- `DR_stats` p-value of the D3 statistic, the D3 statistic, LRT fixed is the likelihood Ratio test value of the constrained models.
- `stats_compare` Mean of LogLik0, LogLik1, AIC0, AIC1, AIC_diff values of the restricted (containing a 0) and full models (containing a 1).
- `NRI` pooled values for the categorical and continuous Net Reclassification improvement values and the Integrated Discrimination improvement.
- `AUC_stats` Pooled Area Under the Curve of restricted and full models.
• AUC_diff Pooled difference in AUC.
• formula_test regression formula of full model.
• cutoff Cutoff value used for reclassification values.
• formula_null regression formula of null model
• compare_predictors Predictors used in full model.
• compare_group group of predictors used in full model.

References

Examples

```r
pool_lr <- psfmi_lr(data=lbpmilr, p.crit = 1, direction="FW", nimp=10, impvar="Impnr", Outcome="Chronic", predictors=c("Radiation"), cat.predictors = ("Satisfaction"), int.predictors = NULL, spline.predictors="Tampascale", nknots=3, method="D1")

res_compare <- pool_compare_models(pool_lr, compare.predictors = c("Pain", "Duration", "Function"), cutoff = 0.4)
res_compare
```

pool_D2

Combines the Chi Square statistics across Multiply Imputed datasets

Description

`pool_D2` The D2 statistic to combine the Chi square values across Multiply Imputed datasets.

Usage

`pool_D2(dw, v)`

Arguments

- `dw` a vector of chi square values obtained after multiple imputation.
- `v` single value for the degrees of freedom of the chi square statistic.

Value

The pooled chi square values as the D2 statistic, the p-value, the numerator, df1 and denominator, df2 degrees of freedom for the F-test.
Author(s)
Martijn Heymans, 2021

References

Examples
```r
pool_D2(c(2.25, 3.95, 6.24, 5.27, 2.81), 4)
```

pool_D4

Pools the Likelihood Ratio tests across Multiply Imputed datasets (method D4)

Description

pool_D4 The D4 statistic to combine the likelihood ratio tests (LRT) across Multiply Imputed datasets according method D4.

Usage

```r
pool_D4(data, nimp, impvar, fm0, fm1, robust = TRUE, model_type = "binomial")
```

Arguments

data Data frame with stacked multiple imputed datasets. The original dataset that contains missing values must be excluded from the dataset. The imputed datasets must be distinguished by an imputation variable, specified under impvar, and starting by 1.

nimp A numerical scalar. Number of imputed datasets. Default is 5.

impvar A character vector. Name of the variable that distinguishes the imputed datasets.

fm0 the null model.

fm1 the (nested) model to compare. Must be larger than the null model.

robust if TRUE a robust LRT is used (algorithm 1 in Chan and Meng), otherwise algorithm 2 is used.

model_type if TRUE (default) a logistic regression model is fitted, otherwise a linear regression model is used.
Value

The D4 statistic, the numerator, df1 and denominator, df2 degrees of freedom for the F-test.

Author(s)

Martijn Heymans, 2021

References

Examples

```r
fm0 <- Chronic ~ BMI + factor(Carrying) + Satisfaction + SocialSupport + Smoking
fm1 <- Chronic ~ BMI + factor(Carrying) + Satisfaction + SocialSupport + Smoking + Radiation

psfmi::pool_D4(data=lbpmilr, nimp=10, impvar="Impnr",
               fm0=fm0, fm1=fm1, robust = TRUE)
```

```r
pool_intadj
```

Provides pooled adjusted intercept after shrinkage of pooled coefficients in multiply imputed datasets

Description

`pool_intadj` Provides pooled adjusted intercept after shrinkage of the pooled coefficients in multiply imputed datasets for models selected with the `psfmi_lr` function and internally validated with the `psfmi_perform` function.

Usage

`pool_intadj(pobj, shrinkage_factor)`

Arguments

- `pobj`: An object of class smods mi (selected models in multiply imputed datasets), produced by a previous call to `psfmi_lr`.
- `shrinkage_factor`: A numerical scalar. Shrinkage factor value as a result of internal validation with the `psfmi_perform` function.
Details

The function provides the pooled adjusted intercept after shrinkage of pooled regression coefficients in multiply imputed datasets. The function is only available for logistic regression models without random effects.

Value

A `pool_intadj` object from which the following objects can be extracted: `int_adj`, the adjusted intercept value, `coef_shrink_pooled`, the pooled regression coefficients after shrinkage, `coef_orig_pooled`, the (original) pooled regression coefficients before shrinkage and `nimp`, the number of imputed datasets.

References

http://missingdatasolutions.rbind.io/

Examples

```r
res_psfmi <- psfmi_lr(data=lbpmilr, nimp=5, impvar="Impnr", Outcome="Chronic", predictors=c("Gender", "Pain","Tampascale","Smoking","Function","Radiation","Age"), p.crit = 1, method="D1", direction="BW")
res_psfmi$RR_Model
## Not run:
set.seed(100)
res_val <- psfmi_perform(res_psfmi, method="MI_boot", nboot=10, int_val = TRUE, p.crit=1, cal.plot=FALSE, plot.indiv=FALSE)
res_val$intval
res <- pool_intadj(res_psfmi, shrinkage_factor = 0.9774058)
res$int_adj
res$coef_shrink_pooled
## End(Not run)
```

Description

`pool_performance` Pooling performance measures for logistic and Cox regression models.
Usage

```r
pool_performance(
  data,
  formula,
  nimp,
  impvar,
  plot.indiv,
  model_type = "binomial",
  cal.plot = TRUE,
  plot.method = "mean",
  groups_cal = 10
)
```

Arguments

- **data**: Data frame with stacked multiple imputed datasets. The original dataset that contains missing values must be excluded from the dataset.
- **formula**: A formula object to specify the model as normally used by glm.
- **nimp**: A numerical scalar. Number of imputed datasets. Default is 5.
- **impvar**: A character vector. Name of the variable that distinguishes the imputed datasets.
- **plot.indiv**: This argument is deprecated; please use plot.method instead.
- **model_type**: If "binomial" (default), performance measures are calculated for logistic regression models, if "survival" for Cox regression models.
- **cal.plot**: If TRUE a calibration plot is generated. Default is TRUE. model_type must be "binomial".
- **plot.method**: If "mean" one calibration plot is generated, first taking the mean of the linear predictor across the multiply imputed datasets (default), if "individual" the calibration plot of each imputed dataset is plotted, if "overlay" calibration plots from each imputed datasets are plotted in one figure.
- **groups_cal**: A numerical scalar. Number of groups used on the calibration plot and for the Hosmer and Lemeshow test. Default is 10. If the range of predicted probabilities is low, less than 10 groups can be chosen, but not < 3.

Examples

```r
perf <- pool_performance(data=lbpmilr, nimp=5, impvar="Impnr",
formula = Chronic ~ Gender + Pain + Tampascale + Smoking + Function + Radiation + Age + factor(Carrying),
cal.plot=TRUE, plot.method="mean",
groups_cal=10, model_type="binomial")

perf$ROC_pooled
perf$R2_pooled
```
pool_reclassification Function to pool NRI measures over Multiply Imputed datasets

Description

pool_reclassification Function to pool categorical and continuous NRI and IDI over Multiply Imputed datasets

Usage

pool_reclassification(datasets, cutoff = cutoff)

Arguments

datasets a list of data frames corresponding to the multiply imputed datasets, within each dataset in the first column the predicted probabilities of model 1, in the second column those of model 2 and in the third column the observed outcomes coded as '0' and '1'.
cutoff cutoff value for the categorical NRI, must lie between 0 and 1.

Details

This function is called by the function pool_compare_model

Author(s)

Martijn Heymans, 2020

psfmi_coxr Pooling and Predictor selection function for backward or forward selection of Cox regression models across multiply imputed data.

Description

psfmi_coxr Pooling and backward or forward selection of Cox regression prediction models in multiply imputed data using selection methods D1, D2 and MPR.

Usage

psfmi_coxr(
 data,
 formula = NULL,
 nimp = 5,
 impvar = NULL,
 status = NULL,
time = NULL,
predictors = NULL,
cat.predictors = NULL,
spline.predictors = NULL,
int.predictors = NULL,
keep.predictors = NULL,
nknots = NULL,
p.crit = 1,
method = "RR",
direction = NULL
)

Arguments

data Data frame with stacked multiple imputed datasets. The original dataset that contains missing values must be excluded from the dataset. The imputed datasets must be distinguished by an imputation variable, specified under impvar, and starting by 1.

formula A formula object to specify the model as normally used by coxph. See under "Details" and "Examples" how these can be specified. If a formula object is used set predictors, cat.predictors, spline.predictors or int.predictors at the default value of NULL.

nimp A numerical scalar. Number of imputed datasets. Default is 5.

impvar A character vector. Name of the variable that distinguishes the imputed datasets.

status The status variable, normally 0=censoring, 1=event.

time Survival time.
predictors Character vector with the names of the predictor variables. At least one predictor variable has to be defined. Give predictors unique names and do not use predictor name combinations with numbers as, age2, gender10, etc.

cat.predictors A single string or a vector of strings to define the categorical variables. Default is NULL categorical predictors.
spline.predictors A single string or a vector of strings to define the (restricted cubic) spline variables. Default is NULL spline predictors. See details.

int.predictors A single string or a vector of strings with the names of the variables that form an interaction pair, separated by a "::" symbol.

keep.predictors A single string or a vector of strings including the variables that are forced in the model during predictor selection. Categorical and interaction variables are allowed.
nknots A numerical vector that defines the number of knots for each spline predictor separately.
p.crit A numerical scalar. P-value selection criterion. A value of 1 provides the pooled model without selection.
method A character vector to indicate the pooling method for p-values to pool the total model or used during predictor selection. This can be "RR", "D1", "D2", or "MPR". See details for more information. Default is "RR".

direction The direction of predictor selection, "BW" means backward selection and "FW" means forward selection.

Details

The basic pooling procedure to derive pooled coefficients, standard errors, 95 confidence intervals and p-values is Rubin’s Rules (RR). However, RR is only possible when the model included continuous or dichotomous variables. Specific procedures are available when the model also included categorical (> 2 categories) or restricted cubic spline variables. These pooling methods are: “D1” is pooling of the total covariance matrix, “D2” is pooling of Chi-square values and “MPR” is pooling of median p-values (MPR rule). Spline regression coefficients are defined by using the rcs function for restricted cubic splines of the rms package. A minimum number of 3 knots as defined under knots is required.

A typical formula object has the form Surv(time,status) ~ terms. Categorical variables has to be defined as Surv(time,status) ~ factor(variable), restricted cubic spline variables as Surv(time,status) ~ rcs(variable,3). Interaction terms can be defined as Surv(time,status) ~ variable1*variable2 or Surv(time,status) ~ variable1 + variable2 + variable1:variable2. All variables in the terms part have to be separated by a "+". If a formula object is used set predictors, cat.predictors, spline.predictors or int.predictors at the default value of NULL.

Value

An object of class pmods (multiply imputed models) from which the following objects can be extracted:

- data imputed datasets
- RR_model pooled model at each selection step
- RR_model_final final selected pooled model
- multiparm pooled p-values at each step according to pooling method
- multiparm_final pooled p-values at final step according to pooling method
- multiparm_out (only when direction = "FW") pooled p-values of removed predictors
- formula_step formula object at each step
- formula_final formula object at final step
- formula_initial formula object at final step
- predictors_in predictors included at each selection step
- predictors_out predictors excluded at each step
- impvar name of variable used to distinguish imputed datasets
- nimp number of imputed datasets
- status name of the status variable
- time name of the time variable
- method selection method
• `p.crit` p-value selection criterium
• `call` function call
• `model_type` type of regression model used
• `direction` direction of predictor selection
• `predictors_final` names of predictors in final selection step
• `predictors_initial` names of predictors in start model
• `keep.predictors` names of predictors that were forced in the model

Vignettes

https://mwheymans.github.io/psfmi/articles/psfmi_CoxModels.html

Author(s)

Martijn Heymans, 2020

References

http://missingdatasolutions.rbind.io/

Examples

```r
pool_coxr <- psfmi_coxr(formula = Surv(Time, Status) ~ Pain + Tampascale + Radiation + Radiation*Pain + Age + Duration + Previous,
data=lbpmicox, p.crit = 0.05, direction="BW", nimp=5, impvar="Impnr",
keep.predictors = "Radiation*Pain", method="D1")

pool_coxr$RR_model_final
```

psfmi_lm

Pooling and Predictor selection function for backward or forward selection of Linear regression models across multiply imputed data.

Description

`psfmi_lm` Pooling and backward or forward selection of Linear regression models in multiply imputed data using selection methods RR, D1, D2 and MPR.

Usage

```r
psfmi_lm(
  data, 
  formula = NULL, 
  nimp = 5, 
  impvar = NULL, 
  Outcome = NULL, 
  predictors = NULL, 
  cat.predictors = NULL, 
  spline.predictors = NULL, 
  int.predictors = NULL, 
  keep.predictors = NULL, 
  nknots = NULL, 
  p.crit = 1, 
  method = "RR", 
  direction = NULL
)
```

Arguments

- **data**
 - Data frame with stacked multiple imputed datasets. The original dataset that contains missing values must be excluded from the dataset. The imputed datasets must be distinguished by an imputation variable, specified under impvar, and starting by 1.

- **formula**
 - A formula object to specify the model as normally used by glm. See under "Details" and "Examples" how these can be specified. If a formula object is used set predictors, cat.predictors, spline.predictors or int.predictors at the default value of NULL.

- **nimp**
 - A numerical scalar. Number of imputed datasets. Default is 5.

- **impvar**
 - A character vector. Name of the variable that distinguishes the imputed datasets.

- **Outcome**
 - Character vector containing the name of the continuous outcome variable.

- **predictors**
 - Character vector with the names of the predictor variables. At least one predictor variable has to be defined. Give predictors unique names and do not use predictor name combinations with numbers as, age2, gender10, etc.
cat.predictors A single string or a vector of strings to define the categorical variables. Default is NULL categorical predictors.

spline.predictors A single string or a vector of strings to define the (restricted cubic) spline variables. Default is NULL spline predictors. See details.

int.predictors A single string or a vector of strings with the names of the variables that form an interaction pair, separated by a “:” symbol.

keep.predictors A single string or a vector of strings including the variables that are forced in the model during predictor selection. All type of variables are allowed.

nknots A numerical vector that defines the number of knots for each spline predictor separately.

p.crit A numerical scalar. P-value selection criterium. A value of 1 provides the pooled model without selection.

method A character vector to indicate the pooling method for p-values to pool the total model or used during predictor selection. This can be "RR", "D1", "D2", "D3" or "MPR". See details for more information. Default is "RR".

direction The direction of predictor selection, "BW" means backward selection and "FW" means forward selection.

Details

The basic pooling procedure to derive pooled coefficients, standard errors, 95 confidence intervals and p-values is Rubin's Rules (RR). However, RR is only possible when the model included continuous or dichotomous variables. Specific procedures are available when the model also included categorical (> 2 categories) or restricted cubic spline variables. These pooling methods are: “D1” is pooling of the total covariance matrix, “D2” is pooling of Chi-square values and “MPR” is pooling of median p-values (MPR rule). Spline regression coefficients are defined by using the rcs function for restricted cubic splines of the rms package. A minimum number of 3 knots as defined under knots is required.

A typical formula object has the form `Outcome ~ terms`. Categorical variables has to be defined as `Outcome ~ factor(variable)`, restricted cubic spline variables as `Outcome ~ rcs(variable,3)`. Interaction terms can be defined as `Outcome ~ variable1*variable2` or `Outcome ~ variable1 + variable2 + variable1:variable2`. All variables in the terms part have to be separated by a “+”.

If a formula object is used set predictors, cat.predictors, spline.predictors or int.predictors at the default value of NULL.

Value

An object of class `pmods` (multiply imputed models) from which the following objects can be extracted:

- data imputed datasets
- `RR_model` pooled model at each selection step
- `RR_model_final` final selected pooled model
- `multiparm` pooled p-values at each step according to pooling method
• multiparm_final pooled p-values at final step according to pooling method
• multiparm_out (only when direction = "FW") pooled p-values of removed predictors
• formula_step formula object at each step
• formula_final formula object at final step
• formula_initial formula object at final step
• predictors_in predictors included at each selection step
• predictors_out predictors excluded at each step
• impvar name of variable used to distinguish imputed datasets
• nimp number of imputed datasets
• Outcome name of the outcome variable
• method selection method
• p.crit p-value selection criterium
• call function call
• model_type type of regression model used
• direction direction of predictor selection
• predictors_final names of predictors in final selection step
• predictors_initial names of predictors in start model
• keep.predictors names of predictors that were forced in the model

Author(s)

Martijn Heymans, 2021

References

http://missingdatasolutions.rbind.io/
Examples

```r
pool_lm <- psfmi_lm(data=lbpmilr, formula = Pain ~ factor(Satisfaction) +
rcs(Tampascale,3) + Radiation +
Radiation*factor(Satisfaction) + Age + Duration + BMI,
p.crit = 0.05, direction="FW", nimp=5, impvar="Impnr",
keep.predictors = c("Radiation*factor(Satisfaction)", "Age"), method="D1")
```

```r
pool_lm$RR_model_final
```

psfmi_lr

Pooling and Predictor selection function for backward or forward selection of Logistic regression models across multiply imputed data.

Description

`psfmi_lr` Pooling and backward or forward selection of Logistic regression models across multiply imputed data using selection methods RR, D1, D2, D3, D4 and MPR.

Usage

```r
psfmi_lr(
  data,
  formula = NULL,
  nimp = 5,
  impvar = NULL,
  Outcome = NULL,
  predictors = NULL,
  cat.predictors = NULL,
  spline.predictors = NULL,
  int.predictors = NULL,
  keep.predictors = NULL,
  nknots = NULL,
  p.crit = 1,
  method = "RR",
  direction = NULL
)
```

Arguments

- **data**: Data frame with stacked multiple imputed datasets. The original dataset that contains missing values must be excluded from the dataset. The imputed datasets must be distinguished by an imputation variable, specified under `impvar`, and starting by 1.

- **formula**: A formula object to specify the model as normally used by `glm`. See under "Details" and "Examples" how these can be specified. If a formula object is used set `predictors`, `cat.predictors`, `spline.predictors` or `int.predictors` at the default value of NULL.
nipm A numerical scalar. Number of imputed datasets. Default is 5.

impvar A character vector. Name of the variable that distinguishes the imputed datasets.

Outcome Character vector containing the name of the outcome variable.

predictors Character vector with the names of the predictor variables. At least one predictor variable has to be defined. Give predictors unique names and do not use predictor name combinations with numbers as, age2, gender10, etc.

cat.predictors A single string or a vector of strings to define the categorical variables. Default is NULL categorical predictors.

spline.predictors A single string or a vector of strings to define the (restricted cubic) spline variables. Default is NULL spline predictors. See details.

int.predictors A single string or a vector of strings with the names of the variables that form an interaction pair, separated by a “:” symbol.

keep.predictors A single string or a vector of strings including the variables that are forced in the model during predictor selection. All type of variables are allowed.

nknots A numerical vector that defines the number of knots for each spline predictor separately.

p.crit A numerical scalar. P-value selection criterium. A value of 1 provides the pooled model without selection.

method A character vector to indicate the pooling method for p-values to pool the total model or used during predictor selection. This can be "RR", "D1", "D2", "D3", "D4", or "MPR". See details for more information. Default is "RR".

direction The direction of predictor selection, "BW" means backward selection and "FW" means forward selection.

Details

The basic pooling procedure to derive pooled coefficients, standard errors, 95 confidence intervals and p-values is Rubin’s Rules (RR). However, RR is only possible when the model included continuous or dichotomous variables. Specific procedures are available when the model also included categorical (> 2 categories) or restricted cubic spline variables. These pooling methods are: “D1” is pooling of the total covariance matrix, “D2” is pooling of Chi-square values, “D3” and “D4” is pooling Likelihood ratio statistics (method of Meng and Rubin) and “MPR” is pooling of median p-values (MPR rule). Spline regression coefficients are defined by using the rcs function for restricted cubic splines of the rms package. A minimum number of 3 knots as defined under knots is required.

A typical formula object has the form Outcome ~ terms. Categorical variables has to be defined as Outcome ~ factor(variable), restricted cubic spline variables as Outcome ~ rcs(variable,3). Interaction terms can be defined as Outcome ~ variable1*variable2 or Outcome ~ variable1 + variable2 + variable1:variable2. All variables in the terms part have to be separated by a " +".

If a formula object is used set predictors, cat.predictors, spline.predictors or int.predictors at the default value of NULL.
Value

An object of class pmods (multiply imputed models) from which the following objects can be extracted:

- data imputed datasets
- RR_model pooled model at each selection step
- RR_model_final final selected pooled model
- multiparm pooled p-values at each step according to pooling method
- multiparm_final pooled p-values at final step according to pooling method
- multiparm_out (only when direction = "FW") pooled p-values of removed predictors
- formula_step formula object at each step
- formula_final formula object at final step
- formula_initial formula object at final step
- predictors_in predictors included at each selection step
- predictors_out predictors excluded at each step
- impvar name of variable used to distinguish imputed datasets
- nimp number of imputed datasets
- Outcome name of the outcome variable
- method selection method
- p.crit p-value selection criterium
- call function call
- model_type type of regression model used
- direction direction of predictor selection
- predictors_final names of predictors in final selection step
- predictors_initial names of predictors in start model
- keep.predictors names of predictors that were forced in the model

Vignettes

https://mwheymans.github.io/psfmi/articles/psfmi_LogisticModels.html

Author(s)

Martijn Heymans, 2020

References

http://missingdatasolutions.rbind.io/

Examples

```r
pool_lr <- psfmi_lr(data=lbpmilr, formula = Chronic ~ Pain + factor(Satisfaction) + rcs(Tampascale,3) + Radiation + Radiation*factor(Satisfaction) + Age + Duration + BMI, p.crit = 0.05, direction="FW", nimp=5, impvar="Impnr", keep.predictors = c(" Radiation*factor(Satisfaction)", "Age"), method="D1")

pool_lr$RR_model_final
```

psfmi_mm

Pooling and Predictor selection function for multilevel models in multiply imputed datasets

Description

psfmi_mm Pooling and backward selection for 2 level (generalized) linear mixed models in multiply imputed datasets using different selection methods.

Usage

```r
psfmi_mm(
  data,
  nimp = 5,
  impvar = NULL,
  clusvar = NULL,
  Outcome,
  predictors = NULL,
  random.eff = NULL,
  family = "linear",
  p.crit = 1,
  cat.predictors = NULL,
  `
spline.predictors = NULL,
int.predictors = NULL,
keep.predictors = NULL,
nknots = NULL,
method = "RR",
print.method = FALSE
)

Arguments

data Data frame with stacked multiple imputed datasets. The original dataset that contains missing values must be excluded from the dataset. The imputed datasets must be distinguished by an imputation variable, specified under impvar, and starting by 1 and the clusters should be distinguished by a cluster variable, specified under clusvar.
nimp A numerical scalar. Number of imputed datasets. Default is 5.
impvar A character vector. Name of the variable that distinguishes the imputed datasets.
clusvar A character vector. Name of the variable that distinguishes the clusters.
Outcome Character vector containing the name of the outcome variable.
predictors Character vector with the names of the predictor variables. At least one predictor variable has to be defined.
random.eff Character vector to specify the random effects as used by the lmer and glmer functions of the lme4 package.
family Character vector to specify the type of model, "linear" is used to call the lmer function and "binomial" is used to call the glmer function of the lme4 package. See details for more information.
p.crit A numerical scalar. P-value selection criterium. A value of 1 provides the pooled model without selection.
cat.predictors A single string or a vector of strings to define the categorical variables. Default is NULL categorical predictors.
spline.predictors A single string or a vector of strings to define the (restricted cubic) spline variables. Default is NULL spline predictors. See details.
int.predictors A single string or a vector of strings with the names of the variables that form an interaction pair, separated by a "::" symbol.
keep.predictors A single string or a vector of strings including the variables that are forced in the model during predictor selection. Categorical and interaction variables are allowed.
nknots A numerical vector that defines the number of knots for each spline predictor separately.
method A character vector to indicate the pooling method for p-values to pool the total model or used during predictor selection. This can be "D1", "D2", "D3" or "MPR". See details for more information.
print.method logical vector. If TRUE full matrix with p-values of all variables according to chosen method (under method) is shown. If FALSE (default) p-value for categorical variables according to method are shown and for continuous and dichotomous predictors Rubin’s Rules are used.

Details

The basic pooling procedure to derive pooled coefficients, standard errors, 95 confidence intervals and p-values is Rubin’s Rules (RR). Specific procedures are available to derive pooled p-values for categorical (> 2 categories) and spline variables. print.method allows to choose between the pooling methods: D1, D2 and D3 and MPR for pooling of median p-values (MPR rule). The D1, D2 and D3 methods are called from the package mitml. For Logistic multilevel models (that are estimated using the glmer function), the D3 method is not yet available. Spline regression coefficients are defined by using the rcs function for restricted cubic splines of the rms package. A minimum number of 3 knots as defined under knots is required.

Value

An object of class smodsmi (selected models in multiply imputed datasets) from which the following objects can be extracted: imputed datasets as data, selected pooled model as RR_model, pooled p-values according to pooling method as multiparm, random effects as random.eff, predictors included at each selection step as predictors_in, predictors excluded at each step as predictors_out, and family, impvar, clusvar, nimp, Outcome, method, p.crit, predictors, cat.predictors, keep.predictors, int.predictors, spline.predictors, knots, print.method, model_type, call, predictors_final for names of predictors in final step and fit.formula is the regression formula of start model.

References


mitml package https://cran.r-project.org/web/packages/mitml/index.html


http://missingdatasolutions.rbind.io/

Examples

```r
Not run:
pool_mm <- psfmi_mm(data = ipdna_md, nimp = 5, impvar = ".imp", family = "linear",
predictors = c("gender", "afib", "sbp"), clusvar = "centre",
```
psfmi_mm_multiparm

Function to pool according to D1, D2 and D3 methods

Usage

psfmi_mm_multiparm(
  data,
  nimp,
  impvar,
  Outcome,
  P,
  p.crit,
  family,
  random.eff,
  method,
  print.method
)

Arguments

data Data frame with stacked multiple imputed datasets. The original dataset that contains missing values must be excluded from the dataset. The imputed datasets must be distinguished by an imputation variable, specified under impvar, and starting by 1 and the clusters should be distinguished by a cluster variable, specified under clusvar.
nimp A numerical scalar. Number of imputed datasets. Default is 5.
impvar A character vector. Name of the variable that distinguishes the imputed datasets.
Outcome Character vector containing the name of the outcome variable.
P Character vector with the names of the predictor variables. At least one predictor variable has to be defined.
p.crit A numerical scalar. P-value selection criterium. A value of 1 provides the pooled model without selection.
family Character vector to specify the type of model, "linear" is used to call the lmer function and "binomial" is used to call the glmer function of the lme4 package. See details for more information.
random.eff  Character vector to specify the random effects as used by the lmer and glmer functions of the lme4 package.

method  A character vector to indicate the pooling method for p-values to pool the total model or used during predictor selection. This can be "D1", "D2", "D3" or "MPR". See details for more information.

print.method  logical vector. If TRUE full matrix with p-values of all variables according to chosen method (under method) is shown. If FALSE (default) p-value for categorical variables according to method are shown and for continuous and dichotomous predictors Rubin’s Rules are used.

Examples

```r
Not run:
psfmi_mm_multiparm(data=ipdna_md, nimp=5, impvar=".imp", family="linear",
P=c("gender", "bnp", "dbp", "lvef", "bmi_cat"),
random.eff="(1 | centre)", Outcome="sbp",
p.crit=0.05, method="D1", print.method = FALSE)
End(Not run)
```

psfmi_perform  Internal validation and performance of logistic prediction models across Multiply Imputed datasets

Description

psfmi_perform Evaluate Performance of logistic regression models selected with the psfmi_lr function of the psfmi package by using cross-validation or bootstrapping.

Usage

```r
psfmi_perform(
 pobj,
 val_method = NULL,
 data_orig = NULL,
 int_val = TRUE,
 nboot = 10,
 folds = 3,
 nimp_cv = 5,
 nimp_mice = 5,
 p.crit = 1,
 BW = FALSE,
 direction = NULL,
 cv_naive_appt = FALSE,
 cal.plot = FALSE,
)```
psfmi_perform

plot.method = "mean",
groups_cal = 5,
miceImp,
...
)

Arguments

pobj An object of class pmods (pooled models), produced by a previous call to psfmi_lr.
val_method Method for internal validation. MI_boot for first Multiple Imputation and than
 bootstrapping in each imputed dataset and boot_MI for first bootstrapping and
 than multiple imputation in each bootstrap sample, and cv_MI, cv_MI_RR and
 MI_cv_naive for the combinations of cross-validation and multiple imputation.
 To use cv_MI, cv_MI_RR and boot_MI, data_orig has to be specified. See
 details for more information.
data_orig dataframe of original dataset that contains missing data for methods cv_MI,
 cv_MI_RR and boot_MI.
int_val If TRUE internal validation is conducted using bootstrapping or cross-validation.
 Default is TRUE. If FALSE only apparent performance measures are calculated.
nboot The number of bootstrap resamples, default is 10. Used for methods boot_MI
 and MI_boot.
folds The number of folds, default is 3. Used for methods cv_MI, cv_MI_RR and
 MI_cv_naive.
nimp_cv Numerical scalar. Number of (multiple) imputation runs for method cv_MI.
nimp_mice Numerical scalar. Number of imputed datasets for method cv_MI_RR and
 boot_MI. When not defined, the number of multiply imputed datasets is used
 of the previous call to the function psfmi_lr.
p.crit A numerical scalar. P-value selection criterium used for backward or forward
 selection during validation. When set at 1, pooling and internal validation is
 done without backward selection.
BW Only used for methods cv_MI, cv_MI_RR and MI_cv_naive. If TRUE back-
 ward selection is conducted within cross-validation. Default is FALSE.
direction Can be used together with val_methods boot_MI and MI_boot. The direction
 of predictor selection, "BW" is for backward selection and "FW" for forward
 selection.
cv_naive_appt Can be used in combination with val_method MI_cv_naive. Default is TRUE
 for showing the cross-validation apparent (train) and test results. Set to FALSE
 to only give test results.
cal.plot If TRUE a calibration plot is generated. Default is FALSE. Can be used in
 combination with int_val = FALSE.
plot.method If "mean" one calibration plot is generated, first taking the mean of the linear
 predictor across the multiply imputed datasets (default), if "individual" the cal-
 ibration plot of each imputed dataset is plotted, if "overlay" calibration plots
 from each imputed datasets are plotted in one figure.
psfmi_perform

groups_cal
A numerical scalar. Number of groups used on the calibration plot and for the Hosmer and Lemeshow test. Default is 10. If the range of predicted probabilities is low, less than 10 groups can be chosen, but not < 3.
miceImp
Wrapper function around the mice function.

... Arguments as predictorMatrix, seed, maxit, etc that can be adjusted for the mice function. To be used in combination with validation methods cv_MI, cv_MI_RR and MI_boot. For method cv_MI the number of imputed datasets is fixed at 1 and cannot be changed.

Details
For internal validation five methods can be used, cv_MI, cv_MI_RR, MI_cv_naive, MI_boot and boot_MI. Method cv_MI uses imputation within each cross-validation fold definition. By repeating this in several imputation runs, multiply imputed datasets are generated. Method cv_MI_RR uses multiple imputation within the cross-validation definition. MI_cv_naive, applies cross-validation within each imputed dataset. MI_boot draws for each bootstrap step the same cases in all imputed datasets. With boot_MI first bootstrap samples are drawn from the original dataset with missing values and than multiple imputation is applied. For multiple imputation the mice function from the mice package is used. It is recommended to use a minimum of 100 imputation runs for method cv_MI or 100 bootstrap samples for method boot_MI or MI_boot. Methods cv_MI, cv_MI_RR and MI_cv_naive can be combined with backward selection during cross-validation and with methods boot_MI and MI_boot, backward and forward selection can be used. For methods cv_MI and cv_MI_RR the outcome in the original dataset has to be complete.

Value
A psfmi_perform object from which the following objects can be extracted: res.boot, result of pooled performance (in multiply imputed datasets) at each bootstrap step of ROC app (pooled ROC), ROC test (pooled ROC after bootstrap model is applied in original multiply imputed datasets), same for R2 app (Nagelkerke’s R2), R2 test, Scaled Brier app and Scaled Brier test. Information is also provided about testing the Calibration slope at each bootstrap step as interc test and Slope test. The performance measures are pooled by a call to the function pool_performance. Another object that can be extracted is intval, with information of the AUC, R2, Scaled Brier score and Calibration slope averaged over the bootstrap samples, in terms of: Orig (original datasets), Apparent (models applied in bootstrap samples), Test (bootstrap models are applied in original datasets), Optimism (difference between apparent and test) and Corrected (original corrected for optimism).

Vignettes
- MI and Cross-validation - Method cv_MI
- MI and Cross-validation - Method cv_MI_RR
- MI and Cross-validation - Method MI_cv_naive
- MI and Bootstrapping - Method boot_MI
- MI and Bootstrapping - Method MI_boot

Author(s)
Martijn Heymans, 2020
psfmi_stab

Function to evaluate bootstrap predictor and model stability in multiply imputed datasets.

Description

psfmi_stab Stabilty analysis of predictors and prediction models selected with the psfmi_lr, psfmi_coxr or psfmi_mm functions of the psfmi package.

Usage

psfmi_stab(
 pobj,
 boot_method = NULL,
 nboot = 20,
 p.crit = 0.05,
 start_model = TRUE,
 direction = NULL
)

Arguments

pobj An object of class pmods (pooled models), produced by a previous call to psfmi_lr, psfmi_coxr or psfmi_mm.

boot_method A single string to define the bootstrap method. Use "single" after a call to psfmi_lr and psfmi_coxr and "cluster" after a call to psfmi_mm.
nboot A numerical scalar. Number of bootstrap samples to evaluate the stability. Default is 20.

p.crit A numerical scalar. Used as P-value selection criterium during bootstrap model selection.

start_model If TRUE the bootstrap evaluation takes place from the start model of object pobj, if FALSE the final model is used for the evaluation.

direction The direction of predictor selection, "BW" for backward selection and "FW" for forward selection.

Details

The function evaluates predictor selection frequency in stratified or cluster bootstrap samples. The stratification factor is the variable that separates the imputed datasets. The same bootstrap cases are drawn in each bootstrap sample. It uses as input an object of class pmods as a result of a previous call to the psfmi_lr, psfmi_coxr or psfmi_mm functions. In combination with the psfmi_mm function a cluster bootstrap method is used where bootstrapping is used on the level of the clusters only (and not also within the clusters).

Value

A psfmi_stab object from which the following objects can be extracted: bootstrap inclusion (selection) frequency of each predictor bif, total number each predictor is included in the bootstrap samples as bif_total, percentage a predictor is selected in each bootstrap sample as bif_perc and number of times a prediction model is selected in the bootstrap samples as model_stab.

Vignettes

https://mwheymans.github.io/psfmi/articles/psfmi_StabilityAnalysis.html

References

http://missingdatasolutions.rbind.io/
Examples

```r
pool_lr <- psfmi_coxr(formula = Surv(Time, Status) ~ Pain + factor(Satisfaction) +
                       rcs(Tampascale, 3) + Radiation + Radiation*factor(Satisfaction) + Age + Duration +
                       Previous + Radiation*rcs(Tampascale, 3), data=lbpmicox, p.crit = 0.157, direction="FW",
                       nimp=5, impvar="Impnr", keep.predictors = NULL, method="D1")

pool_lr$RR_Model
pool_lr$multiparm

## Not run:
stab_res <- psfmi_stab(pool_lr, direction="FW", start_model = TRUE,
                        boot_method = "single", nboot=20, p.crit=0.05)
stab_res$bif
stab_res$bif_perc
stab_res$model_stab

## End(Not run)
```

psfmi_validate

Internal validation and performance of logistic prediction models across Multiply Imputed datasets

Description

psfmi_validate Evaluate Performance of logistic regression models selected with the *psfmi_lr* function of the *psfmi* package by using cross-validation or bootstrapping.

Usage

```r
psfmi_validate(
  pobj,
  val_method = NULL,
  data_orig = NULL,
  int_val = TRUE,
  nboot = 10,
  folds = 3,
  nimp_cv = 5,
  nimp_mice = 5,
  p.crit = 1,
  BW = FALSE,
  direction = NULL,
  cv_naive_appt = FALSE,
  cal.plot = FALSE,
  plot.method = "mean",
  groups_cal = 5,
  miceImp,
  ...
)
```
Arguments

pobj
An object of class pmods (pooled models), produced by a previous call to `psfmi_lr`.

val_method
Method for internal validation. MI_boot for first Multiple Imputation and then bootstrapping in each imputed dataset and boot_MI for first bootstrapping and than multiple imputation in each bootstrap sample, and cv_MI, cv_MI_RR and MI_cv_naive for the combinations of cross-validation and multiple imputation. To use cv_MI, cv_MI_RR and boot_MI, data_orig has to be specified. See details for more information.

data_orig
dataframe of original dataset that contains missing data for methods cv_MI, cv_MI_RR and boot_MI.

int_val
If TRUE internal validation is conducted using bootstrapping or cross-validation. Default is TRUE. If FALSE only apparent performance measures are calculated.

nboot
The number of bootstrap resamples, default is 10. Used for methods boot_MI and MI_boot.

folds
The number of folds, default is 3. Used for methods cv_MI, cv_MI_RR and MI_cv_naive.

nimp_cv
Numerical scalar. Number of (multiple) imputation runs for method cv_MI.

nimp_mice
Numerical scalar. Number of imputed datasets for method cv_MI_RR and boot_MI. When not defined, the number of multiply imputed datasets is used of the previous call to the function `psfmi_lr`.

p.crit
A numerical scalar. P-value selection criterium used for backward or forward selection during validation. When set at 1, pooling and internal validation is done without backward selection.

BW
Only used for methods cv_MI, cv_MI_RR and MI_cv_naive. If TRUE backward selection is conducted within cross-validation. Default is FALSE.

direction
Can be used together with val_methods boot_MI and MI_boot. The direction of predictor selection, "BW" is for backward selection and "FW" for forward selection.

cv_naive_appt
Can be used in combination with val_method MI_cv_naive. Default is TRUE for showing the cross-validation apparent (train) and test results. Set to FALSE to only give test results.

cal.plot
If TRUE a calibration plot is generated. Default is FALSE. Can be used in combination with int_val = FALSE.

plot.method
If "mean" one calibration plot is generated, first taking the mean of the linear predictor across the multiply imputed datasets (default), if "individual" the calibration plot of each imputed dataset is plotted, if "overlay" calibration plots from each imputed datasets are plotted in one figure.

groups_cal
A numerical scalar. Number of groups used on the calibration plot and for the Hosmer and Lemeshow test. Default is 10. If the range of predicted probabilities is low, less than 10 groups can be chosen, but not < 3.

miceImp
Wrapper function around the `mice` function.

... Arguments as predictorMatrix, seed, maxit, etc that can be adjusted for the mice function. To be used in combination with validation methods cv_MI, cv_MI_RR and MI_boot. For method cv_MI the number of imputed datasets is fixed at 1 and cannot be changed.
Details

For internal validation five methods can be used, cv_MI, cv_MI_RR, MI_cv_naive, MI_boot and boot_MI. Method cv_MI uses imputation within each cross-validation fold definition. By repeating this in several imputation runs, multiply imputed datasets are generated. Method cv_MI_RR uses multiple imputation within the cross-validation definition. MI_cv_naive, applies cross-validation within each imputed dataset. MI_boot draws for each bootstrap step the same cases in all imputed datasets. With boot_MI first bootstrap samples are drawn from the original dataset with missing values and than multiple imputation is applied. For multiple imputation the mice function from the mice package is used. It is recommended to use a minimum of 100 imputation runs for method cv_MI or 100 bootstrap samples for method boot_MI or MI_boot. Methods cv_MI, cv_MI_RR and MI_cv_naive can be combined with backward selection during cross-validation and with methods boot_MI and MI_boot, backward and forward selection can be used. For methods cv_MI and cv_MI_RR the outcome in the original dataset has to be complete.

Value

A psfmi_perform object from which the following objects can be extracted: res_boot, result of pooled performance (in multiply imputed datasets) at each bootstrap step of ROC app (pooled ROC), ROC test (pooled ROC after bootstrap model is applied in original multiply imputed datasets), same for R2 app (Nagelkerke's R2), R2 test, Scaled Brier app and Scaled Brier test. Information is also provided about testing the Calibration slope at each bootstrap step as interc test and Slope test. The performance measures are pooled by a call to the function pool_performance. Another object that can be extracted is intval, with information of the AUC, R2, Scaled Brier score and Calibration slope averaged over the bootstrap samples, in terms of: Orig (original datasets), Apparent (models applied in bootstrap samples), Test (bootstrap models are applied in original datasets), Optimism (difference between apparent and test) and Corrected (original corrected for optimism).

Vignettes

- MI and Cross-validation - Method cv_MI
- MI and Cross-validation - Method cv_MI_RR
- MI and Cross-validation - Method MI_cv_naive
- MI and Bootstrapping - Method boot_MI
- MI and Bootstrapping - Method MI_boot

Author(s)

Martijn Heymans, 2020

References

http://missingdatasolutions.rbind.io/

Examples

```r
pool_lr <- psfmi_lr(data=lbpmilr, formula = Chronic ~ Pain + JobDemands + rcs(Tampascale, 3) + factor(Satisfaction) + Smoking, p.crit = 1, direction="FW", nimp=5, impvar="Impnr", method="D1")

pool_lr$RR_model

res_perf <- psfmi_validate(pool_lr, val_method = "cv_MI", data_orig = lbp_orig, folds=3, nimp_cv = 2, p.crit=0.05, BW=TRUE, miceImp = miceImp, printFlag = FALSE)

res_perf

## Not run:
set.seed(200)
res_val <- psfmi_validate(pobj, val_method = "boot_MI", data_orig = lbp_orig, nboot = 5, p.crit=0.05, BW=TRUE, miceImp = miceImp, nimp_mice = 5, printFlag = FALSE, direction = "FW")

res_val$stats_val

## End(Not run)
```

rsq_nagel

Nagelkerke’s R-square calculation for logistic regression / glm models

Description

Nagelkerke’s R-square calculation for logistic regression / glm models

Usage

```
rsq_nagel(fitobj)
```

Arguments

- `fitobj` a logistic regression model object of "glm"
Value

The value for the explained variance.

Author(s)

Martijn Heymans, 2020

See Also

psfmi_perform, pool_performance

rsq_surv R-square calculation for Cox regression models

Description

R-square calculation for Cox regression models

Usage

rsq_surv(fitobj)

Arguments

fitobj a Cox regression model object of "coxph"

Value

The value for the explained variance.

Author(s)

Martijn Heymans, 2021

References

See Also

pool_performance
sbp_age
Dataset with blood pressure measurements

Description
Dataset with blood pressure measurements

Usage
data(sbp_age)

Format
A data frame with 30 observations on the following 3 variables.

- **pat_id** continuous
- **sbp** continuous: systolic blood pressure
- **age** continuous: age (years)

Examples
data(sbp_age)
maybe str(sbp_age)

sbp_qas
Dataset with blood pressure measurements

Description
Dataset with blood pressure measurements

Usage
data(sbp_qas)

Format
A data frame with 32 observations on the following 5 variables.

- **pat_id** continuous
- **sbp** continuous: systolic blood pressure
- **bmi** continuous: body mass index
- **age** continuous: age (years)
- **smk** dichotomous: 0 = no, 1 = yes
Examples

```r
data(sbp_qas)
## maybe str(sbp_qas)
```

`scaled_brier`
Calculates the scaled Brier score

Description

Calculates the scaled Brier score

Usage

```r
scaled_brier(obs, pred)
```

Arguments

- `obs`
 Observed outcomes.
- `pred`
 Predicted outcomes in the form of probabilities.

Value

The value for the scaled Brier score.

Author(s)

Martijn Heymans, 2020

See Also

`psfmi_perform`, `pool_performance`

`smoking`
Survival data about smoking

Description

Survival data about smoking

Usage

```r
data(smoking)
```
Format
A data frame with 20 observations on the following 3 variables.

smoking dichotomous: 1=yes, 0=no
time continuous: Survival time in years
death dichotomous: Status at end of study

Examples
data(smoking)
maybe str(smoking)

weight

Dataset of persons from the The Amsterdam Growth and Health Longitudinal Study (AGHLS)

Description
Dataset of persons from the The Amsterdam Growth and Health Longitudinal Study (AGHLS)

Usage
data(weight)

Format
A data frame with 450 observations on the following 7 variables.

ID continuous
SBP continuous: Systolic Blood Pressure
LDL continuous: Cholesterol
Glucose
HDL continuous: Cholesterol
Gender dichotomous: 1=male, 0=female
Weight continuous: bodyweight

Examples
data(weight)
maybe str(weight)
Index

* datasets
 anderson, 3
 aortadis, 4
 bmd, 4
 chlrform, 7
 chol_long, 7
 chol_wide, 8
 day2_dataset4_mi, 13
 hipstudy, 17
 hipstudy_external, 18
 hoorn_basic, 19
 infarct, 21
 ipdna_md, 22
 lbp_orig, 27
 lbpmicox, 23
 lbpmilr, 24
 lbpmilr_dev, 25
 lungvolume, 28
 mammaca, 28
 men, 29
 sbp_age, 63
 sbp_qas, 63
 smoking, 64
 weight, 65

* dataset
 lbpmi_extval, 26
 glm_bw, 13
 glm_fw, 15
 hipstudy, 17
 hipstudy_external, 18
 hoorn_basic, 19
 hoslem_test, 20
 infarct, 21
 ipdna_md, 22
 lbp_orig, 27
 lbpmi_extval, 26
 lbpmicox, 23
 lbpmilr, 24
 lbpmilr_dev, 25
 lungvolume, 28
 mammaca, 28
 men, 29
 mivalext_lr, 30
 pool_auc, 32
 pool_compare_models, 32
 pool_02, 34
 pool_04, 35
 pool_intadj, 36
 pool_performance, 21, 22, 37, 62, 64
 pool_reclassification, 39
 psfmi Coxr, 39
 psfmi_lm, 43
 psfmi_lr, 46
 psfmi_mm, 49
 psfmi_mm_multiparm, 52
 psfmi_perform, 15, 17, 32, 53, 62, 64
 psfmi_stab, 56
 psfmi_validate, 58
 rsq_nagel, 61
 rsq_surv, 62
INDEX

sbp_age, 63
sbp_qas, 63
scaled_brier, 64
smoking, 64

weight, 65