Package ‘psqn’

May 4, 2021

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Partially Separable Quasi-Newton</td>
</tr>
<tr>
<td>Version</td>
<td>0.2.1</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Benjamin Christoffersen boennecd@gmail.com</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>Encoding</td>
<td>UTF-8</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>7.1.1</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.5.0)</td>
</tr>
<tr>
<td>URL</td>
<td>https://github.com/boennecd/psqn</td>
</tr>
<tr>
<td>BugReports</td>
<td>https://github.com/boennecd/psqn/issues</td>
</tr>
<tr>
<td>LinkingTo</td>
<td>Rcpp, RcppEigen, testthat</td>
</tr>
<tr>
<td>Imports</td>
<td>Rcpp</td>
</tr>
<tr>
<td>Suggests</td>
<td>R.rsp, rmarkdown, RcppArmadillo, RcppEigen, bench, testthat, numDeriv, lbfgsb3c, lbfgs, Matrix</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>R.rsp</td>
</tr>
<tr>
<td>SystemRequirements</td>
<td>C++11</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>yes</td>
</tr>
<tr>
<td>Author</td>
<td>Benjamin Christoffersen [cre, aut] (https://orcid.org/0000-0002-7182-1346)</td>
</tr>
<tr>
<td>Repository</td>
<td>CRAN</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2021-05-04 19:50:02 UTC</td>
</tr>
</tbody>
</table>

R topics documented:

- psqn-package ... 2
- psqn .. 2
- psqn_bfgs ... 5
- psqn_generic ... 7
Index

- **psqn-package**

psqn: Partially Separable Quasi-Newton

Description

The main methods in the psqn package are the `psqn` and `psqn_generic` function. Notice that it is also possible to use the package from C++. This may yield a large reduction in the computation time. See the vignette for details e.g. by calling `vignette("psqn",package = "psqn")`. A brief introduction is provided in the "quick-intro" vignette (see `vignette("quick-intro",package = "psqn")`).

This package is fairly new. Thus, results may change and contributions and feedback is much appreciated.

Author(s)

Maintainer: Benjamin Christoffersen <boennecd@gmail.com> (ORCID)

See Also

Useful links:

- https://github.com/boennecd/psqn
- Report bugs at https://github.com/boennecd/psqn/issues

psqn

Partially Separable Function Optimization

Description

Optimization method for specially structured partially separable functions.

Usage

```r
psqn(
  par,
  fn,
  n_ele_func,
  rel_eps = 1e-08,
  max_it = 100L,
  n_threads = 1L,
  c1 = 1e-04,
  c2 = 0.9,
  use_bfgs = TRUE,
  trace = 0L,
)```
\begin{verbatim}
cg_tol = 0.5,
strong_wolfe = TRUE,
env = NULL,
max_cg = 0L,
pre_method = 1L
)

Arguments

par          Initial values for the parameters. It is a concatenated vector of the global parameters and all the private parameters.
fn           Function to compute the element functions and their derivatives. Each call computes an element function. See the examples section.
n_ele_func   Number of element functions.
rel_eps      Relative convergence threshold.
max_it       Maximum number of iterations.
n_threads    Number of threads to use.
c1, c2        Thresholds for the Wolfe condition.
use_bfgs     Logical for whether to use BFGS updates or SR1 updates.
trace        Integer where larger values gives more information during the optimization.
cg_tol       Threshold for the conjugate gradient method.
strong_wolfe  TRUE if the strong Wolfe condition should be used.
env           Environment to evaluate \texttt{fn} in. \texttt{NULL} yields the global environment.
max_cg       Maximum number of conjugate gradient iterations in each iteration. Use zero if there should not be a limit.
pre_method   Preconditioning method in the conjugate gradient method. Zero yields no preconditioning, one yields diagonal preconditioning, and two yields the incomplete Cholesky factorization from Eigen.

Details

The function follows the method described by Nocedal and Wright (2006) and mainly what is described in Section 7.4. Details are provided in the psqn vignette. See \texttt{vignette("psqn",package = "psqn")}.

The partially separable function we consider are special in that the function to be minimized is a sum of so-called element functions which only depend on few shared (global) parameters and some private parameters which are particular to each element function. A generic method for other partially separable functions is available through the \texttt{psqn\_generic} function.

The optimization function is also available in C++ as a header-only library. Using C++ may reduce the computation time substantially. See the vignette in the package for examples.

You have to define the \texttt{PSQN\_USE\_EIGEN} macro variable in C++ if you want to use the incomplete Cholesky factorization from Eigen. You will also have to include Eigen or RcppEigen. This is not needed when you use the R functions documented here. The incomplete Cholesky factorization comes with some additional overhead because of the allocations of the factorization, forming the factorization, and the assignment of the sparse version of the Hessian approximation. However, it may substantially reduce the required number of conjugate gradient iterations.
\end{verbatim}
Value

An object with the following elements:

- **par**: the estimated global and private parameters.
- **value**: function value at **par**.
- **info**: information code. 0 implies convergence. -1 implies that the maximum number of iterations is reached. -2 implies that the conjugate gradient method failed. -3 implies that the line search failed. -4 implies that the user interrupted the optimization.
- **counts**: An integer vector with the number of function evaluations, gradient evaluations, and the number of conjugate gradient iterations.
- **convergence**: TRUE if info == 0.

References


Examples

```r
example with inner problem in a Taylor approximation for a GLMM as in the # vignette

assign model parameters, number of random effects, and fixed effects
q <- 2 # number of private parameters per cluster
p <- 1 # number of global parameters
beta <- sqrt((1:p) / sum(1:p))
Sigma <- diag(q)

simulate a data set
set.seed(66608927)
n_clusters <- 20L # number of clusters
sim_dat <- replicate(n_clusters, {
 n_members <- sample.int(8L, 1L) + 2L
 X <- matrix(runif(p * n_members, -sqrt(6 / 2), sqrt(6 / 2)), p)
 u <- drop(rnorm(q) %*% chol(Sigma))
 Z <- matrix(runif(q * n_members, -sqrt(6 / 2 / q), sqrt(6 / 2 / q)), q)
 eta <- drop(beta %*% X + u %*% Z)
 y <- as.numeric((1 + exp(-eta))^-1 > runif(n_members))
 list(X = X, Z = Z, y = y, u = u, Sigma_inv = solve(Sigma))
}, simplify = FALSE)
```

# evaluates the negative log integrand.
#
# Args:
#   # i cluster/element function index.
# par the global and private parameter for this cluster. It has length
# zero if the number of parameters is requested. That is, a 2D integer
# vector the number of global parameters as the first element and the
# number of private parameters as the second element.
# comp_grad logical for whether to compute the gradient.

r_func <- function(i, par, comp_grad){
  dat <- sim_dat[[i]]
  X <- dat$X
  Z <- dat$Z

  if(length(par) < 1)
    # requested the dimension of the parameter
    return(c(global_dim = NROW(dat$X), private_dim = NROW(dat$Z)))

  y <- dat$y
  Sigma_inv <- dat$Sigma_inv

  beta <- par[1:p]
  uhat <- par[1:q + p]
  eta <- drop(beta %*% X + uhat %*% Z)
  exp_eta <- exp(eta)

  out <- -sum(y * eta) + sum(log(1 + exp_eta)) +
    sum(uhat * (Sigma_inv %*% uhat)) / 2

  if(comp_grad){
    d_eta <- -y + exp_eta / (1 + exp_eta)
    grad <- c(X %*% d_eta,
              Z %*% d_eta + dat$Sigma_inv %*% uhat)
    attr(out, "grad") <- grad
  }

  out
}

# optimize the log integrand
res <- psqn(par = rep(0, p + q * n_clusters), fn = r_func,
            n_ele_func = n_clusters)

head(res$par, p) # the estimated global parameters
tail(res$par, n_clusters * q) # the estimated private parameters

# compare with
beta
c(sapply(sim_dat, "[", "u"))
Usage

```r
psqn_bfgs(par, fn, gr, rel_eps = 1e-08, max_it = 100L, c1 = 1e-04, c2 = 0.9, trace = 0L, env = NULL)
```

Arguments

- **par**: Initial values for the parameters.
- **fn**: Function to evaluate the function to be minimized.
- **gr**: Gradient of `fn`. Should return the function value as an attribute called "value".
- **rel_eps**: Relative convergence threshold.
- **max_it**: Maximum number of iterations.
- **c1**: Thresholds for the Wolfe condition.
- **c2**: Thresholds for the Wolfe condition.
- **trace**: Integer where larger values gives more information during the optimization.
- **env**: Environment to evaluate `fn` and `gr` in. NULL yields the global environment.

Value

An object like the object returned by `psqn`.

References


Examples

```r
declare function and gradient from the example from help(optim)
fn <- function(x) {
 x1 <- x[1]
 x2 <- x[2]
 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
gr <- function(x) {
 x1 <- x[1]
 x2 <- x[2]
 c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
```
# we need a different function for the method in this package
gr_psqn <- function(x) {
  x1 <- x[1]
  x2 <- x[2]
  out <- c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
           200 * (x2 - x1 * x1))
  attr(out, "value") <- 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
  out
}

# we get the same
optim (c(-1.2, 1), fn, gr, method = "BFGS")
psqn_bfgs(c(-1.2, 1), fn, gr_psqn)

# compare the computation time
system.time(replicate(1000,
  optim (c(-1.2, 1), fn, gr, method = "BFGS")))
system.time(replicate(1000,
  psqn_bfgs(c(-1.2, 1), fn, gr_psqn)))

---

**Description**

Optimization method for generic partially separable functions.

**Usage**

```r
psqn_generic(par, fn, n_ele_func, rel_eps = 1e-08, max_it = 100L, n_threads = 1L, c1 = 1e-04, c2 = 0.9, use_bfgs = TRUE, trace = 0L, cg_tol = 0.5, strong_wolfe = TRUE, env = NULL, max_cg = 0L, pre_method = 1L)
```
Arguments

par  Initial values for the parameters.
fn   Function to compute the element functions and their derivatives. Each call computes an element function. See the examples section.
n_ele_func  Number of element functions.
rel_eps  Relative convergence threshold.
max_it  Maximum number of iterations.
n_threads  Number of threads to use.
c1   Thresholds for the Wolfe condition.
c2   Thresholds for the Wolfe condition.
use_bfgs  Logical for whether to use BFGS updates or SR1 updates.
trace  Integer where larger values gives more information during the optimization.
cg_tol  Threshold for the conjugate gradient method.
strong_wolfe  TRUE if the strong Wolfe condition should be used.
env  Environment to evaluate fn in. NULL yields the global environment.
max_cg  Maximum number of conjugate gradient iterations in each iteration. Use zero if there should not be a limit.
pre_method  Preconditioning method in the conjugate gradient method. Zero yields no preconditioning, one yields diagonal preconditioning, and two yields the incomplete Cholesky factorization from Eigen.

Details

The function follows the method described by Nocedal and Wright (2006) and mainly what is described in Section 7.4. Details are provided in the psqn vignette. See vignette("psqn",package = "psqn").

The partially separable function we consider can be quite general and the only restriction is that we can write the function to be minimized as a sum of so-called element functions each of which only depends on a small number of the parameters. A more restricted version is available through the psqn function.

The optimization function is also available in C++ as a header-only library. Using C++ may reduce the computation time substantially. See the vignette in the package for examples.

Value

A list like psqn.

References

Examples

# example with a GLM as in the vignette

# assign the number of parameters and number of observations
set.seed(1)
K <- 20L
n <- 5L * K

# simulate the data
truth_limit <- runif(K, -1, 1)
dat <- replicate(n, {
    # sample the indices
    n_samp <- sample.int(5L, 1L) + 1L
    indices <- sort(sample.int(K, n_samp))

    # sample the outcome, y, and return
    list(y = rpois(1, exp(sum(truth_limit[indices]))),
        indices = indices)
}, simplify = FALSE)

# we need each parameter to be present at least once
stopifnot(length(unique(unlist(lapply(dat, grave.Var)[grave.Var], "indices"))) == K) # otherwise we need to change the code

# assign the function we need to pass to psqn_generic
#
# Args:
# i cluster/element function index.
# par the parameters that this element function depends on. It has length zero
# if we need to pass the one-based indices of the parameters that this the
# i'th element function depends on.
# comp_grad TRUE of the gradient should be computed.
r_func <- function(i, par, comp_grad){
    z <- dat[[i]]
    if(length(par) == 0L)
        # return the indices
        return(z$indices)
    eta <- sum(par)
    exp_eta <- exp(eta)
    out <- -z$y * eta + exp_eta
    if(comp_grad)
        attr(out, "grad") <- rep(-z$y + exp_eta, length(z$indices))
    out
}

# minimize the function
R_res <- psqn_generic(par = numeric(K), fn = r_func, n_ele_func = length(dat), c1 = 1e-4, c2 = .1,
                      trace = 0L, rel_eps = 1e-9, max_it = 1000L, env = environment())
# get the same as if we had used optim
R_func <- function(x){
  out <- vapply(dat, function(z){
    eta <- sum(x[z$indices])
    -z$y * eta + exp(eta)
  }, 0.)
  sum(out)
}
R_func_gr <- function(x){
  out <- numeric(length(x))
  for(z in dat){
    idx_i <- z$indices
    eta <- sum(x[idx_i])
    out[idx_i] <- out[idx_i] -z$y + exp(eta)
  }
  out
}

opt <- optim(numeric(K), R_func, R_func_gr, method = "BFGS",
             control = list(maxit = 1000L))

# we got the same
all.equal(opt$value, R_res$value)

# the overhead here is though quite large with the R interface from the psqn
# package. A C++ implementation is much faster as shown in
# vignette("psqn", package = "psqn"). The reason it is that it is very fast
# to evaluate the element functions in this case
Index

_PACKAGE (psqn-package), 2

optim, 5

psqn, 2, 2, 6, 8
psqn-package, 2
psqn_bfgs, 5
psqn_generic, 2, 3, 7