Package ‘psqn’

March 2, 2022

Type Package
Title Partially Separable Quasi-Newton
Version 0.3.1
Maintainer Benjamin Christoffersen <boennecd@gmail.com>
License Apache License (>= 2)
Encoding UTF-8
RoxygenNote 7.1.2
Depends R (>= 3.5.0), Matrix
URL https://github.com/boennecd/psqn
BugReports https://github.com/boennecd/psqn/issues
LinkingTo Rcpp, RcppEigen, testthat
Imports Rcpp
Suggests R.rsp, rmarkdown, RcppArmadillo, RcppEigen, bench, testthat, numDeriv, lbfgsb3c, lbfgs, alabama
VignetteBuilder R.rsp
SystemRequirements C++11
NeedsCompilation yes
Author Benjamin Christoffersen [cre, aut]
 (<https://orcid.org/0000-0002-7182-1346>)
Repository CRAN
Date/Publication 2022-03-02 14:20:10 UTC
R topics documented:

psqn-package ... 2
psqn ... 2
psqn_bfgs ... 8
psqn_generic ... 10
psqn_hess ... 16

Description

The main methods in the psqn package are the psqn and psqn_generic function. Notice that it is also possible to use the package from C++. This may yield a large reduction in the computation time. See the vignette for details e.g. by calling vignette("psqn",package = "psqn"). A brief introduction is provided in the "quick-intro" vignette (see vignette("quick-intro",package = "psqn").

This package is fairly new. Thus, results may change and contributions and feedback is much appreciated.

Author(s)

Maintainer: Benjamin Christoffersen <boennec@gmail.com> (ORCID)

See Also

Useful links:

- https://github.com/boennec/psqn

Description

Optimization method for specially structured partially separable functions. The psqn_aug_Lagrang function supports non-linear equality constraints using an augmented Lagrangian method.
Usage

```r
psqn(
  par,
  fn,
  n_ele_func,
  rel_eps = 1e-08,
  max_it = 100L,
  n_threads = 1L,
  c1 = 1e-04,
  c2 = 0.9,
  use_bfgs = TRUE,
  trace = 0L,
  cg_tol = 0.5,
  strong_wolfe = TRUE,
  env = NULL,
  max_cg = 0L,
  pre_method = 1L,
  mask = as.integer(c()),
  gr_tol = -1
)
```

```r
psqn_aug_Lagrang(
  par,
  fn,
  n_ele_func,
  consts,
  n_constraints = as.numeric(c()),
  multipliers = as.numeric(c()),
  penalty_start = 1L,
  rel_eps = 1e-08,
  max_it = 100L,
  max_it_outer = 100L,
  violations_norm_thresh = 1e-06,
  n_threads = 1L,
  c1 = 1e-04,
  c2 = 0.9,
  tau = 1.5,
  use_bfgs = TRUE,
  trace = 0L,
  cg_tol = 0.5,
  strong_wolfe = TRUE,
  env = NULL,
  max_cg = 0L,
  pre_method = 1L,
  mask = as.integer(c()),
  gr_tol = -1
)
```
Arguments

par

Initial values for the parameters. It is a concatenated vector of the global parameters and all the private parameters.

fn

Function to compute the element functions and their derivatives. Each call computes an element function. See the examples section.

n_ele_func

Number of element functions.

rel_eps

Relative convergence threshold.

max_it

Maximum number of iterations.

n_threads

Number of threads to use.

c1, c2

Thresholds for the Wolfe condition.

use_bfgs

Logical for whether to use BFGS updates or SR1 updates.

trace

Integer where larger values gives more information during the optimization.

cg_tol

Threshold for the conjugate gradient method.

strong_wolfe

TRUE if the strong Wolfe condition should be used.

env

Environment to evaluate fn in. NULL yields the global environment.

max_cg

Maximum number of conjugate gradient iterations in each iteration. Use zero if there should not be a limit.

pre_method

Preconditioning method in the conjugate gradient method. Zero yields no preconditioning, one yields diagonal preconditioning, two yields the incomplete Cholesky factorization from Eigen, and three yields a block diagonal preconditioning. One and three are fast options with three seeming to work well for some poorly conditioned problems.

mask

zero based indices for parameters to mask (i.e. fix).

gr_tol

Convergence tolerance for the Euclidean norm of the gradient. A negative value yields no check.

consts

Function to compute the constraints which must be equal to zero. See the examples Section.

n_constraints

The number of constraints.

multipliers

Starting values for the multipliers in the augmented Lagrangian method. There needs to be the same number of multipliers as the number of constraints. An empty vector, numeric(), yields zero as the starting value for all multipliers.

penalty_start

Starting value for the penalty parameter in the augmented Lagrangian method.

max_it_outer

Maximum number of augmented Lagrangian steps.

violations_norm_thresh

Threshold for the norm of the constraint violations.

tau

Multiplier used for the penalty parameter between each outer iterations.
Details

The function follows the method described by Nocedal and Wright (2006) and mainly what is described in Section 7.4. Details are provided in the psqn vignette. See vignette("psqn",package = "psqn").

The partially separable function we consider are special in that the function to be minimized is a sum of so-called element functions which only depend on few shared (global) parameters and some private parameters which are particular to each element function. A generic method for other partially separable functions is available through the psqn_generic function.

The optimization function is also available in C++ as a header-only library. Using C++ may reduce the computation time substantially. See the vignette in the package for examples.

You have to define the PSQN_USE_EIGEN macro variable in C++ if you want to use the incomplete Cholesky factorization from Eigen. You will also have to include Eigen or RcppEigen. This is not needed when you use the R functions documented here. The incomplete Cholesky factorization comes with some additional overhead because of the allocations of the factorization, forming the factorization, and the assignment of the sparse version of the Hessian approximation. However, it may substantially reduce the required number of conjugate gradient iterations.

Value

pqne: An object with the following elements:

- **par**: the estimated global and private parameters.
- **value**: function value at par.
- **info**: information code. 0 implies convergence. -1 implies that the maximum number iterations is reached. -2 implies that the conjugate gradient method failed. -3 implies that the line search failed. -4 implies that the user interrupted the optimization.
- **counts**: An integer vector with the number of function evaluations, gradient evaluations, and the number of conjugate gradient iterations.
- **convergence**: TRUE if info == 0.

psqn_aug_Lagrang: Like psqn with a few exceptions:

- **multipliers**: final multipliers from the augmented Lagrangian method.
- **counts**: has an additional element called n_aug_Lagrang with the number of augmented Lagrangian iterations.
- **penalty**: the final penalty parameter from the augmented Lagrangian method.

References

Examples

example with inner problem in a Taylor approximation for a GLMM as in the
vignette

assign model parameters, number of random effects, and fixed effects
q <- 2 # number of private parameters per cluster
p <- 1 # number of global parameters
beta <- sqrt((1:p) / sum(1:p))
Sigma <- diag(q)

simulate a data set
set.seed(66608927)
n_clusters <- 20L # number of clusters
sim_dat <- replicate(n_clusters, {
 n_members <- sample.int(8L, 1L) + 2L
 X <- matrix(runif(p * n_members, -sqrt(6 / 2), sqrt(6 / 2)),
 p)
 u <- drop(rnorm(q) %*% chol(Sigma))
 Z <- matrix(runif(q * n_members, -sqrt(6 / 2 / q), sqrt(6 / 2 / q)),
 q)
 eta <- drop(beta %*% X + u %*% Z)
 y <- as.numeric((1 + exp(-eta))^(-1) > runif(n_members))
 list(X = X, Z = Z, y = y, u = u, Sigma_inv = solve(Sigma))
}, simplify = FALSE)

evaluates the negative log integrand.
#
Args:
i cluster/element function index.
par the global and private parameter for this cluster. It has length
zero if the number of parameters is requested. That is, a 2D integer
vector the number of global parameters as the first element and the
number of private parameters as the second element.
comp_grad logical for whether to compute the gradient.
r_func <- function(i, par, comp_grad){
dat <- sim_dat[[i]]
X <- dat$X
Z <- dat$Z
#
if(length(par) < 1)
requested the dimension of the parameter
return(c(global_dim = NROW(dat$X), private_dim = NROW(dat$Z)))
y <- dat$y
Sigma_inv <- dat$Sigma_inv
beta <- par[1:p]
uhat <- par[1:q + p]
eta <- drop(beta %*% X + uhat %*% Z)
exp_eta <- exp(eta)
return(-sum(y * log(exp_eta) + (1 - y) * log(1 - exp_eta))
+ log(det(Sigma_inv) / (det(Sigma) ** q)))
}
out <- -sum(y * eta) + sum(log(1 + exp_eta)) +
sum(uhat * (Sigma_inv %*% uhat)) / 2
if(comp_grad){
 d_eta <- -y + exp_eta / (1 + exp_eta)
 grad <- c(X %*% d_eta,
 Z %*% d_eta + dat$Sigma_inv %*% uhat)
 attr(out, "grad") <- grad
}
out

optimize the log integrand
res <- psqn(par = rep(0, p + q * n_clusters), fn = r_func,
 n_ele_func = n_clusters)
head(res$par, p) # the estimated global parameters
tail(res$par, n_clusters * q) # the estimated private parameters

compare with
beta
c(sapply(sim_dat, "[", "u"))

add equality constraints
idx_constrained <- list(c(2L, 19L), c(1L, 5L, 8L))

evaluates the c(x) in equalities c(x) = 0.
const <- function(i, par, what){
 if(length(par) == 0)
 return(idx_constrained[[i]])
 if(i == 1){
 # a linear equality constrain. It is implemented as a non-linear constrain
 out <- sum(par) - 3
 if(what == 1)
 attr(out, "grad") <- rep(1, length(par))
 } else if(i == 2){
 # the parameters need to be on a circle
 out <- sum(par^2) - 1
 if(what == 1)
 attr(out, "grad") <- 2 * par
 }
 out
optimize with the constraints
res_consts <- psqn_aug_Lagrang(
 par = rep(0, p + q * n_clusters), fn = r_func, consts = consts,
 n_ele_func = n_clusters, n_constraints = length(idx_constrained))

res_consts
res_consts$multipliers # the estimated multipliers
res_consts$penalty # the penalty parameter

the function value is higher (worse) as expected
res$value - res_consts$value

the two constraints are satisfied
sum(res_consts$par[idx_constrained[[1]]]) - 3 # ~ 0
sum(res_consts$par[idx_constrained[[2]]]^2) - 1 # ~ 0

we can also use another pre conditioner
res_consts_chol <- psqn_aug_Lagrang(
 par = rep(0, p + q * n_clusters), fn = r_func, consts = consts,
 n_ele_func = n_clusters, n_constraints = length(idx_constrained),
 pre_method = 2L)

res_consts_chol

psqn_bfgs

BFGS Implementation Used Internally in the psqn Package

Description

The method seems to mainly differ from `optim` by the line search method. This version uses the interpolation method with a zoom phase using cubic interpolation as described by Nocedal and Wright (2006).

Usage

```r
psqn_bfgs(
  par,
  fn,
  gr,
  rel_eps = 1e-08,
  max_it = 100L,
  c1 = 1e-04,
  c2 = 0.9,
  trace = 0L,
  env = NULL,
  gr_tol = -1,
```
Arguments

- **par**: Initial values for the parameters.
- **fn**: Function to evaluate the function to be minimized.
- **gr**: Gradient of `fn`. Should return the function value as an attribute called "value".
- **rel_eps**: Relative convergence threshold.
- **max_it**: Maximum number of iterations.
- **c1**: Thresholds for the Wolfe condition.
- **c2**: Thresholds for the Wolfe condition.
- **trace**: Integer where larger values gives more information during the optimization.
- **env**: Environment to evaluate `fn` and `gr` in. `NULL` yields the global environment.
- **gr_tol**: Convergence tolerance for the Euclidean norm of the gradient. A negative value yields no check.
- **abs_eps**: Absolute convergence threshold. A negative values yields no check.

Value

An object like the object returned by `psqn`.

References

Examples

```r
# declare function and gradient from the example from help(optim)
fn <- function(x) {
  x1 <- x[1]
  x2 <- x[2]
  100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
gr <- function(x) {
  x1 <- x[1]
  x2 <- x[2]
  c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
     200 * (x2 - x1 * x1))
}

# we need a different function for the method in this package
gr_psqn <- function(x) {
  x1 <- x[1]
  x2 <- x[2]
  out <- c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
           200 * (x2 - x1 * x1))
  attr(out, "value") <- 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
```

```r
abs_eps = -1
```
we get the same

optim(c(-1.2, 1), fn, gr, method = "BFGS")
psqn_bfgs(c(-1.2, 1), fn, gr_psqn)

compare the computation time
system.time(replicate(1000,
optim(c(-1.2, 1), fn, gr, method = "BFGS")))

system.time(replicate(1000,
psqn_bfgs(c(-1.2, 1); fn, gr_psqn)))

we can use an alternative convergence criterion
org <- psqn_bfgs(c(-1.2, 1); fn, gr_psqn, rel_eps = 1e-4)

sqrt(sum(gr_psqn(org$par)^2))

new_res <- psqn_bfgs(c(-1.2, 1); fn, gr_psqn, rel_eps = 1e-4, gr_tol = 1e-8)

sqrt(sum(gr_psqn(new_res$par)^2))

new_res <- psqn_bfgs(c(-1.2, 1); fn, gr_psqn, rel_eps = 1, abs_eps = 1e-2)

new_res$value - org$value # ~ there (but this is not guaranteed)

psqn_generic

Generic Partially Separable Function Optimization

Description

Optimization method for generic partially separable functions.

Usage

```r
psqn_generic(par,
  fn,
  n_ele_func,
  rel_eps = 1e-08,
  max_it = 100L,
  n_threads = 1L,
  c1 = 1e-04,
  c2 = 0.9,
  use_bfgs = TRUE,
  trace = 0L,
  cg_tol = 0.5,
  strong_wolfe = TRUE,
  env = NULL,
  max_cg = 0L,
  pre_method = 1L,
  mask = as.integer(c())),
```
gr_tol = -1
)

psqn_aug_Lagrang_generic(
 par,
 fn,
 n_ele_func,
 consts,
 n_constraints,
 multipliers = as.numeric(c()),
 penalty_start = 1L,
 rel_eps = 1e-08,
 max_it = 100L,
 max_it_outer = 100L,
 violations_norm_thresh = 1e-06,
 n_threads = 1L,
 c1 = 1e-04,
 c2 = 0.9,
 tau = 1.5,
 use_bfgs = TRUE,
 trace = 0L,
 cg_tol = 0.5,
 strong_wolfe = TRUE,
 env = NULL,
 max_cg = 0L,
 pre_method = 1L,
 mask = as.integer(c()),
 gr_tol = -1
)

Arguments

par Initial values for the parameters.

fn Function to compute the element functions and their derivatives. Each call computes an element function. See the examples section.

n_ele_func Number of element functions.

rel_eps Relative convergence threshold.

max_it Maximum number of iterations.

n_threads Number of threads to use.

c1 Thresholds for the Wolfe condition.

c2 Thresholds for the Wolfe condition.

use_bfgs Logical for whether to use BFGS updates or SR1 updates.

trace Integer where larger values gives more information during the optimization.

cg_tol Threshold for the conjugate gradient method.

strong_wolfe TRUE if the strong Wolfe condition should be used.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>env</td>
<td>Environment to evaluate fn in. NULL yields the global environment.</td>
</tr>
<tr>
<td>max_cg</td>
<td>Maximum number of conjugate gradient iterations in each iteration. Use zero if there should not be a limit.</td>
</tr>
<tr>
<td>pre_method</td>
<td>Preconditioning method in the conjugate gradient method. Zero yields no preconditioning, one yields diagonal preconditioning, two yields the incomplete Cholesky factorization from Eigen, and three yields a block diagonal preconditioning. One and three are fast options with three seeming to work well for some poorly conditioned problems.</td>
</tr>
<tr>
<td>mask</td>
<td>zero based indices for parameters to mask (i.e. fix).</td>
</tr>
<tr>
<td>gr_tol</td>
<td>convergence tolerance for the Euclidean norm of the gradient. A negative value yields no check.</td>
</tr>
<tr>
<td>consts</td>
<td>Function to compute the constraints which must be equal to zero. See the example Section.</td>
</tr>
<tr>
<td>n_constraints</td>
<td>The number of constraints.</td>
</tr>
<tr>
<td>multipliers</td>
<td>Staring values for the multipliers in the augmented Lagrangian method. There needs to be the same number of multipliers as the number of constraints. An empty vector, numeric(), yields zero as the starting value for all multipliers.</td>
</tr>
<tr>
<td>penalty_start</td>
<td>Starting value for the penalty parameter in the augmented Lagrangian method.</td>
</tr>
<tr>
<td>max_it_outer</td>
<td>Maximum number of augmented Lagrangian steps.</td>
</tr>
<tr>
<td>violations_norm_thresh</td>
<td>Threshold for the norm of the constraint violations.</td>
</tr>
<tr>
<td>tau</td>
<td>Multiplier used for the penalty parameter between each outer iterations.</td>
</tr>
</tbody>
</table>

Details

The function follows the method described by Nocedal and Wright (2006) and mainly what is described in Section 7.4. Details are provided in the psqn vignette. See `vignette("psqn", package = "psqn")`.

The partially separable function we consider can be quite general and the only restriction is that we can write the function to be minimized as a sum of so-called element functions each of which only depends on a small number of the parameters. A more restricted version is available through the `psqn` function.

The optimization function is also available in C++ as a header-only library. Using C++ may reduce the computation time substantially. See the vignette in the package for examples.

Value

A list like `psqn` and `psqn_aug_Lagrang`.

References

Examples

example with a GLM as in the vignette

assign the number of parameters and number of observations
set.seed(1)
K <- 20L
n <- 5L * K

simulate the data
truth_limit <- runif(K, -1, 1)
dat <- replicate(n, {
 # sample the indices
 n_samp <- sample.int(5L, 1L) + 1L
 indices <- sort(sample.int(K, n_samp))
 # sample the outcome, y, and return
 list(y = rpois(1, exp(sum(truth_limit[indices]))),
 indices = indices)
}, simplify = FALSE)

we need each parameter to be present at least once
stopifnot(length(unique(unlist(lapply(dat, Var))) == K))

assign the function we need to pass to psqn_generic
Args:
i cluster/element function index.
par the parameters that this element function depends on. It has length zero
if we need to pass the one-based indices of the parameters that the i'th
element function depends on.
comp_grad TRUE if the gradient should be computed.
r_func <- function(i, par, comp_grad){
 z <- dat[[i]]
 if(length(par) == 0L)
 # return the indices
 return(z$indices)
 eta <- sum(par)
 exp_eta <- exp(eta)
 out <- -z$y * eta + exp_eta
 if(comp_grad)
 attr(out, "grad") <- rep(-z$y + exp_eta, length(z$indices))
 out
}

minimize the function
R_res <- psqn_generic(par = numeric(K), fn = r_func, n_ele_func = length(dat), c1 = 1e-4, c2 = .1,
 trace = 0L, rel_eps = 1e-9, max_it = 1000L, env = environment())
get the same as if we had used optim
R_func <- function(x){
 out <- vapply(dat, function(z){
 eta <- sum(x[z$indices])
 -z$y * eta + exp(eta)
 }, 0.)
 sum(out)
}
R_func_gr <- function(x){
 out <- numeric(length(x))
 for(z in dat){
 idx_i <- z$indices
 eta <- sum(x[idx_i])
 out[idx_i] <- out[idx_i] -z$y + exp(eta)
 }
 out
}

opt <- optim(numeric(K), R_func, R_func_gr, method = "BFGS",
 control = list(maxit = 1000L))

we got the same
all.equal(opt$value, R_res$value)

also works if we fix some parameters

to_fix <- c(7L, 1L, 18L)
par_fix <- numeric(K)
par_fix[to_fix] <- c(-1, -.5, 0)

R_res <- psqn_generic(
 par = par_fix, fn = r_func, n_ele_func = length(dat), c1 = 1e-4, c2 = .1,
 trace = 0L, rel_eps = 1e-9, max_it = 1000L, env = environment(),
 mask = to_fix - 1L) # notice the -1L because of the zero based indices

the equivalent optim version is
opt <- optim(numeric(K - length(to_fix)),
 function(par) { par_fix[-to_fix] <- par; R_func (par_fix) },
 function(par) { par_fix[-to_fix] <- par; R_func_gr(par_fix)[-to_fix] },
 method = "BFGS", control = list(maxit = 1000L))

res_optim <- par_fix
res_optim[-to_fix] <- opt$par

we got the same
all.equal(res_optim, R_res$par, tolerance = 1e-5)
all.equal(R_res$par[to_fix], par_fix[to_fix]) # the parameters are fixed

add equality constraints
idx_constrained <- list(c(2L, 19L, 11L, 7L), c(3L, 5L, 8L), 9:7)

evaluates the c(x) in equalities c(x) = 0.
Args:
i constrain index.
par the constrained parameters. It has length zero if we need to pass the
one-based indices of the parameters that the i'th constrain depends on.
what integer which is zero if the function should be returned and one if the
gradient should be computed.
consts <- function(i, par, what){
 if(length(par) == 0)
 # need to return the indices
 return(idx_constrained[[i]])
 if(i == 1){
 out <- exp(sum(par[1:2])) + exp(sum(par[3:4])) - 1
 if(what == 1)
 attr(out, "grad") <- c(rep(exp(sum(par[1:2])), 2),
 rep(exp(sum(par[3:4])), 2))
 } else if(i == 2){
 # the parameters need to be on a circle
 out <- sum(par^2) - 1
 if(what == 1)
 attr(out, "grad") <- 2 * par
 } else if(i == 3){
 out <- sum(par) - .5
 if(what == 1)
 attr(out, "grad") <- rep(1, length(par))
 }
 out
}
optimize with the constraints and masking
res_consts <- psqn_aug_Lagrang_generic(par = par_fix, fn = r_func, n_ele_func = length(dat),
 c1 = 1e-4, c2 = .1,
 trace = 0L, rel_eps = 1e-8, max_it = 1000L, env = environment(),
 consts = consts, n_constraints = length(idx_constrained),
 mask = to_fix - 1L)
res_consts
the constraints are satisfied
consts(1, res_consts$par[idx_constrained[[1]]], 0) # ~ 0
consts(2, res_consts$par[idx_constrained[[2]]], 0) # ~ 0
consts(3, res_consts$par[idx_constrained[[3]]], 0) # ~ 0
compare with the alabama package
if(require(alabama)){
 ala_fit <- auglag(par_fix, R_func, R_func_gr,
 heq = function(x){
 c(x[to_fix] - par_fix[to_fix],
 consts(1, x[idx_constrained[[1]]], 0),
 consts(2, x[idx_constrained[[2]]], 0),
 consts(3, x[idx_constrained[[3]]], 0))
 },...}
const(2, x[idx_constrained[[2]]], 0),
cost(3, x[idx_constrained[[3]]], 0))
}, control.outer = list(trace = 0L))

cat(sprintf("Difference in objective value is %.6f. Parameters are\n",
 ala_fit$value - res_consts$value))
print(rbind(alabama = ala_fit$par,
 psqn = res_consts$par))

cat("\nOutput from all.equal\n")
print(all.equal(ala_fitpar, res_constspar))
}

the overhead here is though quite large with the R interface from the psqn
package. A C++ implementation is much faster as shown in
vignette("psqn", package = "psqn"). The reason it is that it is very fast
to evaluate the element functions in this case

psqn_hess

Computes the Hessian.

Description

Computes the Hessian using numerical differentiation with Richardson extrapolation.

Usage

```
psqn_hess(
  val,
  fn,
  n_ele_func,
  n_threads = 1L,
  env = NULL,
  eps = 0.001,
  scale = 2,
  tol = 1e-09,
  order = 6L
)
```

```
psqn_generic_hess(
  val,
  fn,
  n_ele_func,
  n_threads = 1L,
  env = NULL,
  eps = 0.001,
  scale = 2,
  ord = 6L
)```
```r
tol = 1e-09,
 order = 6L
)

Arguments

val Where to evaluate the function at.
fn Function to compute the element functions and their derivatives. See `psqn` and `psqn_generic`.
n_ele_func Number of element functions.
n_threads Number of threads to use.
env Environment to evaluate `fn` in. NULL yields the global environment.
eps Determines the step size. See the details.
scale Scaling factor in the Richardson extrapolation. See the details.
tol Relative convergence criteria. See the details.
order Maximum number of iteration of the Richardson extrapolation.

Details

The function computes the Hessian using numerical differentiation with centered differences and subsequent use of Richardson extrapolation to refine the estimate.

The additional arguments are as follows: The numerical differentiation is applied for each argument with a step size of \(s = \max(\text{eps}, |x| \times \text{eps}) \). The Richardson extrapolation at iteration \(i \) uses a step size of \(s \times \text{scale}^{(-i)} \). The convergence threshold for each compartment of the gradient is \(\max(\text{tol}, |\text{gr}(x)[j]| \times \text{tol}) \).

The numerical differentiation is done on each element function and thus much more efficient than doing it on the whole gradient.

Examples

```r
# assign model parameters, number of random effects, and fixed effects
q <- 2 # number of private parameters per cluster
p <- 1 # number of global parameters
beta <- sqrt((1:p) / sum(1:p))
Sigma <- diag(q)

# simulate a data set
set.seed(66608927)
n_clusters <- 20L # number of clusters
sim_dat <- replicate(n_clusters, {
    n_members <- sample.int(8L, 1L) + 2L
    X <- matrix(runif(p * n_members, -sqrt(6 / 2), sqrt(6 / 2)),
                 p)
    u <- drop(rnorm(q) %*% chol(Sigma))
    Z <- matrix(runif(q * n_members, -sqrt(6 / 2 / q), sqrt(6 / 2 / q)),
                  q)
    eta <- drop(beta %*% X + u %*% Z)
})
```

```
y <- as.numeric((1 + exp(-eta))^(-1) > runif(n_members))

list(X = X, Z = Z, y = y, u = u, Sigma_inv = solve(Sigma))
}

# evaluates the negative log integrand.
#
# Args:
# i cluster/element function index.
# par the global and private parameter for this cluster. It has length
# zero if the number of parameters is requested. That is, a 2D integer
# vector the number of global parameters as the first element and the
# number of private parameters as the second element.
# comp_grad logical for whether to compute the gradient.

r_func <- function(i, par, comp_grad){
  dat <- sim_dat[[i]]
  X <- dat$X
  Z <- dat$Z

  if(length(par) < 1)
    # requested the dimension of the parameter
    return(c(global_dim = NROW(dat$X), private_dim = NROW(dat$Z)))

  y <- dat$y
  Sigma_inv <- dat$Sigma_inv

  beta <- par[1:p]
  uhat <- par[1:q + p]
  eta <- drop(beta %*% X + uhat %*% Z)
  exp_eta <- exp(eta)

  out <- -sum(y * eta) + sum(log(1 + exp_eta)) +
    sum(uhat * (Sigma_inv %*% uhat)) / 2

  if(comp_grad){
    d_eta <- -y + exp_eta / (1 + exp_eta)
    grad <- c(X %*% d_eta, Z %*% d_eta + dat$Sigma_inv %*% uhat)
    attr(out, "grad") <- grad
  }

  out
}

# compute the hessian

set.seed(1)
par <- runif(p + q * n_clusters, -1)

hess <- psqn_hess(val = par, fn = r_func, n_ele_func = n_clusters)

# compare with numerical differentiation from R
if(require(numDeriv)){
  hess_num <- jacobian(function(x){
    out <- numeric(length(x))
  })
}
for(i in seq_len(n_clusters)){
  out_i <- r_func(i, x[c(1:p, 1:q + (i - 1L) * q + p)], TRUE)
  out[1:q + (i - 1L) * q + p] <- attr(out_i, "grad")[1:q + p]
}
out
}

cat("Output of all.equal\n")
print(all.equal(Matrix(hess_num, sparse = TRUE), hess))
}
Index

_PACKAGE (psqn-package), 2

optim, 8

psqn, 2, 2, 9, 12, 17
psqn-package, 2
psqn_aug_Lagrang, 12
psqn_aug_Lagrang (psqn), 2
psqn_aug_Lagrang_generic
  (psqn_generic), 10
psqn_bfgs, 8
psqn_generic, 2, 5, 10, 17
psqn_generic_hess (psqn_hess), 16
psqn_hess, 16