Package ‘psychtm’

November 2, 2021

Type Package

Title Text Mining Methods for Psychological Research

Version 2021.1.0

License LGPL (>= 3)

URL https://github.com/ktw5691/psychtm/

BugReports https://github.com/ktw5691/psychtm/issues

Depends R (>= 3.3.0)

Imports coda (>= 0.4), label.switching, methods, Rcpp (>= 0.11.0), rlang (>= 0.4.10), tibble (>= 2.1.3)

Suggests spelling, knitr (>= 1.22), covr, dplyr, ggplot2, lda, testthat (>= 3.0.2), rmarkdown

LinkingTo Rcpp (>= 0.11.0), RcppArmadillo, RcppProgress (>= 0.4.2)

SystemRequirements C++11

VignetteBuilder knitr

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.1.2

Collate 'RcppExports.R' 'aaa-classes.R' 'aaa-generics.R' 'data.R'
'deprec-functions.R' 'helper-functions.R' 'onUnload.R'
'psychtm-package.R' 'psychtm.R' 'sldax-methods.R' 'utils.R'

NeedsCompilation yes

Author Kenneth Wilcox [aut, cre, cph]
Maintainer Kenneth Wilcox <kwilcox3@nd.edu>
Repository CRAN
Date/Publication 2021-11-02 09:20:05 UTC

R topics documented:

a0 . 3
a0<- . 4
alpha . 4
alpha<- . 5
b0 . 6
b0<- . 6
beta_ . 7
beta_<- . 7
eta . 8
eta<- . 8
eta_start . 9
eta_start<- . 9
extra . 10
extra<- . 10
gamma_ . 11
gamma_<- . 12
gibbs_logistic . 12
gibbs_mlr . 14
gibbs_sldax . 15
Logistic-class . 18
loglike . 19
loglike<- . 19
logpost . 20
logpost<- . 20
lpd . 21
lpd<- . 21
Mlr-class . 22
Model-class . 23
mu0 . 26
mu0<- . 27
nchain . 27
nchain<- . 28
ndocs . 28
ndocs<- . 29
ntopics . 29
ntopics<- . 30
nvocab . 30
nvocab<- . 31
prep_docs . 32
proposal_sd . 33
proposal_sd<- . 33
Create generic \(a\theta \) function for class

Description

Create generic \(a\theta \) function for class

Usage

\[
a\theta(x)
\]

Arguments

\(x \)
An \(Mlr \) object.

Value

Double value of shape prior parameter for residual variance.

Examples

\[
\begin{align*}
m1 & \leftarrow Mlr(ndocs = 1) \\
a\theta(m1)
\end{align*}
\]
Create generic a0<- function for class

Usage

a0(x) <- value

Arguments

- x: An Mlr object.
- value: Numeric shape parameter for residual variance prior to assign to slot.

Value

None.

Examples

m1 <- Mlr(ndocs = 1)
a0(m1) <- 1.0

Create generic alpha function for class

Usage

alpha(x)

Arguments

- x: An Sldax object.

Value

Double value of parameter for symmetric Dirichlet distribution prior on the topic proportions.
alpha<-

Examples

```r  
m1 <- Sldax(ndocs = 1, nvocab = 2,  
  topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),  
  theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),  
  beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))  
alpha(m1) <- 1.0  
```  

alpha<-

Create generic alpha<- function for class

Description

Create generic alpha<- function for class

Usage

```r  
alpha(x) <- value  
```  

Arguments

- `x`: An Sldax object.
- `value`: Numeric parameter for symmetric Dirichlet prior on topic proportions to assign to slot.

Value

None.

Examples

```r  
m1 <- Sldax(ndocs = 1, nvocab = 2,  
  topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),  
  theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),  
  beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))  
alpha(m1) <- 1.0  
```
b0
Create generic b0 function for class

Description
Create generic b0 function for class

Usage
b0(x)

Arguments
x
An Mlr object.

Value
Double value of rate prior parameter for residual variance.

Examples
m1 <- Mlr(ndocs = 1)
b0(m1)

b0<-

Create generic b0<- function for class

Description
Create generic b0<- function for class

Usage
b0(x) <- value

Arguments
x
An Mlr object.
value
Numeric value of rate parameter for residual variance prior to assign to slot.

Value
None.

Examples
m1 <- Mlr(ndocs = 1)
b0(m1) <- 1.0
beta_

Create generic beta_ function for class

Description
Create generic beta_ function for class

Usage
beta_(x)

Arguments
x An Sldax object.

Value
A numeric array of topic-word probability distributions across sampler iterations.

Examples
m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
beta_(m1)

beta_<-

Create generic beta_<- function for class

Description
Create generic beta_<- function for class

Usage
beta_(x) <- value

Arguments
x An Sldax object.
value Numeric array of topic-word probabilities to assign to slot.

Value
None.
Examples

```r
m1 <- Slda(ndocs = 1, nvocab = 2,
          topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
          theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
          beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
beta_(m1) <- array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1))
```

Description

Create generic \texttt{eta} function for class

Usage

\texttt{eta(x)}

Arguments

\texttt{x} \hspace{1cm} \text{An Model object.}

Value

A numeric matrix of posterior draws of regression coefficients.

Examples

```r
m1 <- Model(ndocs = 1)
eta(m1)
```

Description

Create generic \texttt{eta<-} function for class

Usage

\texttt{eta(x) <- value}

Arguments

\texttt{x} \hspace{1cm} \text{An Model object.}

\texttt{value} \hspace{1cm} \text{Numeric vector of regression coefficients to assign to slot.}
Value
None.

Examples
```r
m1 <- Model(ndocs = 1)
eta(m1) <- matrix(c(-1.0, 1.0), nrow = 1, ncol = 2)
```

Description
Create generic `eta_start` function for class

Usage
```r
eta_start(x)
```

Arguments

x An `Model` object.

Value
Numeric vector of starting values for regression coefficients.

Examples
```r
m1 <- Model(ndocs = 1)
eta_start(m1)
```

Description
Create generic `eta_start<-` function for class

Usage
```r
eta_start(x) <- value
```

Arguments

x An `Model` object.
value Numeric vector of starting values for regression coefficients to assign to slot.
Value

None.

Examples

m1 <- Model(ndocs = 1)
eta_start(m1) <- rep(0.0, times = 2)

```r
extra(m1)
```

extra<-

Create generic extra<- function for class

Description

Create generic extra<- function for class

Usage

extra(x) <- value

Arguments

x An Model object.

Value

A list of model fitting information including time elapsed, label switching correction status, and the original function call.

Examples

m1 <- Model(ndocs = 1)
extra(m1)

```r
extra(m1)
```

extra<- Create generic extra<- function for class

Description

Create generic extra<- function for class

Usage

extra(x) <- value
Arguments

x An Model object.

Value

List of additional model fitting information to assign to slot.

Value

None.

Description

Create generic gamma_ function for class

Usage

gamma_(x)

Arguments

x An Sldax object.

Value

Double value of parameter for symmetric Dirichlet distribution prior on the topic-word probabilities.

Examples

m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))

gamma_(m1)
gibbs_logistic

Create generic gamma_- function for class

Description
Create generic gamma_- function for class

Usage
gamma_(x) <- value

Arguments
x
An Sldax object.

value
Numeric parameter for symmetric Dirichlet prior on topic-word probabilities to assign to slot.

Value
None.

Examples
m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1))
 gamma_(m1) <- 1.0

gibbs_logistic
Fit logistic regression model

Description
gibbs_logistic() is used to fit a Bayesian logistic regression model using Gibbs sampling.

Usage
gibbs_logistic(
 formula,
 data,
 m = 100,
 burn = 0,
 thin = 1,
 mu0 = NULL,
 sigma0 = NULL,
eta_start = NULL,
proposal_sd = NULL,
verbose = FALSE,
display_progress = FALSE)

Arguments

formula An object of class formula: a symbolic description of the model to be fitted.
data An optional data frame containing the variables in the model.
m The number of iterations to run the Gibbs sampler (default: 100).
burn The number of iterations to discard as the burn-in period (default: 0).
thin The period of iterations to keep after the burn-in period (default: 1).
mu0 An optional p x 1 mean vector for the prior on the regression coefficients. See 'Details'.
sigma0 A p x p variance-covariance matrix for the prior on the regression coefficients. See 'Details'.
eta_start A p x 1 vector of starting values for the regression coefficients.
proposal_sd The proposal standard deviations for drawing the regression coefficients, N(0, proposal_sd(j)), j = 1,...,p (default: 2.38 for all coefficients).
verbose Should parameter draws be output during sampling? (default: FALSE).
display_progress Show progress bar? (default: FALSE). Do not use with verbose = TRUE.

Details

For mu0, by default, we use a vector of p 0s for p regression coefficients.
For sigma0, by default, we use a p x p diagonal matrix with diagonal elements (variances) of 6.25.

Value

An object of class Logistic.

See Also

Other Gibbs sampler: gibbs_mlr(), gibbs_sldax()

Examples

data(mtcars)
m1 <- gibbs_logistic(vs ~ hp, data = mtcars)
gibbs_mlr

Fit linear regression model

Description

gibbs_mlr() is used to fit a Bayesian linear regression model using Gibbs sampling.

Usage

gibbs_mlr(
 formula,
 data,
 m = 100,
 burn = 0,
 thin = 1,
 mu0 = NULL,
 sigma0 = NULL,
 a0 = NULL,
 b0 = NULL,
 eta_start = NULL,
 verbose = FALSE,
 display_progress = FALSE
)

Arguments

formula An object of class formula: a symbolic description of the model to be fitted.
data An optional data frame containing the variables in the model.
m The number of iterations to run the Gibbs sampler (default: 100).
burn The number of iterations to discard as the burn-in period (default: 0).
thin The period of iterations to keep after the burn-in period (default: 1).
mu0 An optional p x 1 mean vector for the prior on the regression coefficients. See 'Details'.
sigma0 A p x p variance-covariance matrix for the prior on the regression coefficients. See 'Details'.
a0 The shape parameter for the prior on sigma2 (default: 0.001).
b0 The scale parameter for the prior on sigma2 (default: 0.001).
eta_start A p x 1 vector of starting values for the regression coefficients.
verbose Should parameter draws be output during sampling? (default: FALSE).
display_progress Show progress bar? (default: FALSE). Do not use with verbose = TRUE.
Details

For μ_0, by default, we use a vector of p 0s for p regression coefficients.
For σ_0, by default, we use a $p \times p$ identity matrix.

Value

An object of class `Mlr`.

See Also

Other Gibbs sampler: `gibbs_logistic()`, `gibbs_sldax()`

Examples

```r
data(mtcars)
m1 <- gibbs_mlr(mpg ~ hp, data = mtcars)
```

gibbs_sldax

Fit supervised or unsupervised topic models (SLDAX or LDA)

Description

`gibbs_sldax()` is used to fit both supervised and unsupervised topic models.

Usage

```r
  gibbs_sldax(
    formula,
    data,
    m = 100,
    burn = 0,
    thin = 1,
    docs,
    V,
    K = 2L,
    model = c("lda", "slda", "sldax", "slda_logit", "sldax_logit"),
    sample_beta = TRUE,
    sample_theta = TRUE,
    interaction_xcol = -1L,
    alpha_ = 1,
    gamma_ = 1,
    mu0 = NULL,
    sigma0 = NULL,
    a0 = NULL,
    b0 = NULL,
    eta_start = NULL,
  )
```
gibbs_sldax

constrain_eta = FALSE,
proposal_sd = NULL,
return_assignments = FALSE,
correct_ls = TRUE,
verbose = FALSE,
display_progress = FALSE

Arguments

formula An object of class formula: a symbolic description of the model to be fitted.
data An optional data frame containing the variables in the model.
m The number of iterations to run the Gibbs sampler (default: 100).
burn The number of iterations to discard as the burn-in period (default: 0).
thin The period of iterations to keep after the burn-in period (default: 1).
docs A D x max(N_d) matrix of word indices for all documents.
V The number of unique terms in the vocabulary.
K The number of topics.
model A string denoting the type of model to fit. See 'Details'. (default: "lda").
sample_beta A logical (default = TRUE): If TRUE, the topic-vocabulary distributions are sampled from their full conditional distribution.
sample_theta A logical (default = TRUE): If TRUE, the topic proportions will be sampled. CAUTION: This can be memory-intensive.
interaction_xcol EXPERIMENTAL: The column number of the design matrix for the additional predictors for which an interaction with the K topics is desired (default: -1L, no interaction). Currently only supports a single continuous predictor or a two-category categorical predictor represented as a single dummy-coded column.
alpha_ The hyper-parameter for the prior on the topic proportions (default: 1.0).
gamma_ The hyper-parameter for the prior on the topic-specific vocabulary probabilities (default: 1.0).
mu0 An optional q x 1 mean vector for the prior on the regression coefficients. See 'Details'.
sigma0 A q x q variance-covariance matrix for the prior on the regression coefficients. See 'Details'.
a0 The shape parameter for the prior on sigma2 (default: 0.001).
b0 The scale parameter for the prior on sigma2 (default: 0.001).
eta_start A q x 1 vector of starting values for the regression coefficients.
constrain_eta A logical (default = FALSE): If TRUE, the regression coefficients will be constrained so that they are in descending order; if FALSE, no constraints will be applied.
proposal_sd The proposal standard deviations for drawing the regression coefficients, \(N(0, proposal_sd(j)), j = 1, \ldots, q \). Only used for model = "slda_logit" and model = "sldax_logit" (default: 2.38 for all coefficients).
Details

The number of regression coefficients q in supervised topic models is determined as follows: For the SLDA model with only the K topics as predictors, q = K; for the SLDAX model with K topics and p additional predictors, there are two possibilities: (1) If no interaction between an additional covariate and the K topics is desired (default: interaction_xcol = -1L), q = p + K; (2) if an interaction between an additional covariate and the K topics is desired (e.g., interaction_xcol = 1), q = p + 2K − 1. If you supply custom values for prior parameters mu0 or sigma0, be sure that the length of mu0 (q) and/or the number of rows and columns of sigma0 (q x q) are correct. If you supply custom starting values for eta_start, be sure that the length of eta_start is correct.

For model, one of c("lda", "slda", "sldax", "slda_logit", "sldax_logit").

- "lda": unsupervised topic model;
- "slda": supervised topic model with a continuous outcome;
- "sldax": supervised topic model with a continuous outcome and additional predictors of the outcome;
- "slda_logit": supervised topic model with a dichotomous outcome (0/1);
- "sldax_logit": supervised topic model with a dichotomous outcome (0/1) and additional predictors of the outcome.

For mu0, the first p elements correspond to coefficients for the p additional predictors (if none, p = 0), while elements p + 1 to p + K correspond to coefficients for the K topics, and elements p + K + 1 to p + 2K − 1 correspond to coefficients for the interaction (if any) between one additional predictor and the K topics. By default, we use a vector of q 0s.

For sigma0, the first p rows/columns correspond to coefficients for the p additional predictors (if none, p = 0), while rows/columns p + 1 to p + K correspond to coefficients for the K topics, and rows/columns p + K + 1 to p + 2K − 1 correspond to coefficients for the interaction (if any) between one additional predictor and the K topics. By default, we use an identity matrix for model = "slda" and model = "sldax" and a diagonal matrix with diagonal elements (variances) of 6.25 for model = "slda_logit" and model = "sldax_logit".

Value

An object of class Sldax.

See Also

Other Gibbs sampler: gibbs_logistic(), gibbs_mlr()
Examples

```r
library(lda) # Required if using 'prep_docs()'
data(teacher_rate) # Synthetic student ratings of instructors
docs_vocab <- prep_docs(teacher_rate, "doc")
vocab_len <- length(docs_vocab$vocab)
m1 <- gibbs_sldax(rating ~ I(grade - 1), m = 2,
                   data = teacher_rate, docs = docs_vocab$documents,
                   V = vocab_len, K = 2, model = "sldax")
```

Logistic-class

* S4 class for a logistic regression model that inherits from `Model`

Description

S4 class for a logistic regression model that inherits from `Model`

Helper function (constructor) for Logistic class

Usage

```r
## S4 method for signature 'Logistic'
proposal_sd(x)

## S4 replacement method for signature 'Logistic'
proposal_sd(x) <- value

Logistic(proposal_sd = NaN, ...)
```

Arguments

- `x` An *Logistic* object.
- `value` A value to assign to a slot for `x`
- `proposal_sd` A vector of `p + 1` proposal scales/standard deviations for sampling of `p + 1` regression coefficients by Metropolis-Hastings.
- `...` additional arguments to be passed to the low level regression fitting functions (see below).

Value

A *Logistic* object.

Slots

- `proposal_sd` A vector of `p + 1` proposal scales/standard deviations for sampling of `p + 1` regression coefficients by Metropolis-Hastings.
Examples

```r
m1 <- Logistic(ndocs = 1)
print(m1)
```

Description

Create generic loglike function for class

Usage

```r
loglike(x)
```

Arguments

- `x`: An `Model` object.

Value

A numeric vector of log-likelihood values across sampler iterations.

Examples

```r
m1 <- Model(ndocs = 1)
loglike(m1)
```

Description

Create generic loglike<- function for class

Usage

```r
loglike(x) <- value
```

Arguments

- `x`: An `Model` object.
- `value`: Numeric vector of log likelihoods to assign to slot.
Value

None.

Examples

m1 <- Model(ndocs = 1)
loglike(m1) <- rep(NaN, times = nchain(m1))

logpost <- Create generic logpost function for class

Description

Create generic logpost function for class

Usage

logpost(x)

Arguments

x An Model object.

Value

A numeric vector of log-posterior values across sampler iterations.

Examples

m1 <- Model(ndocs = 1)
logpost(m1)

logpost<- Create generic logpost<- function for class

Description

Create generic logpost<- function for class

Usage

logpost(x) <- value

Arguments

x An Model object.
value Numeric vector of log posteriors to assign to slot.
Value

None.

Examples

```r
m1 <- Model(ndocs = 1)
logpost(m1) <- rep(NaN, times = nchain(m1))
```

lpd

Create generic **lpd** function for class

Description

Create generic **lpd** function for class

Usage

```r
lpd(x)
```

Arguments

- **x**
 An **Model** object.

Value

Numeric log-predictive density used in WAIC.

Examples

```r
m1 <- Model(ndocs = 1)
lpd(m1)
```

lpd<-

Create generic **lpd<-** function for class

Description

Create generic **lpd<-** function for class

Usage

```r
lpd(x) <- value
```

Arguments

- **x**
 An **Model** object.

- **value**
 Numeric matrix of log predictive densities in each document to assign to slot.
Value

None.

Examples

```r
m1 <- Model(ndocs = 1)
lpd(m1) <- matrix(NaN, nrow = 1, ncol = 1)
```

Description

S4 class for a regression model that inherits from `Model`.
Helper function (constructor) for `Mlr` class

Usage

```r
## S4 method for signature 'Mlr'
sigma2(x)

## S4 replacement method for signature 'Mlr'
sigma2(x) <- value

## S4 method for signature 'Mlr'
a0(x)

## S4 replacement method for signature 'Mlr'
a0(x) <- value

## S4 method for signature 'Mlr'
b0(x)

## S4 replacement method for signature 'Mlr'
b0(x) <- value

Mlr(a0 = 0.001, b0 = 0.001, sigma2 = NaN, ...)
```

Arguments

- `x` : An `Model` object.
- `value` : A value to assign to a slot for `x`.
- `a0` : A prior shape hyperparameter for `sigma2`.
- `b0` : A prior rate hyperparameter for `sigma2`.
- `sigma2` : A `nchain x 1` numeric vector of draws of the residual variance.
- `...` : Additional arguments to be passed to the low level regression fitting functions (see below).
Model-class

Value
An Mlr object.

Slots
a0 A prior shape hyperparameter for sigma2.
b0 A prior rate hyperparameter for sigma2.
sigma2 A nchain x 1 numeric vector of draws of the residual variance.

Examples
m1 <- Mlr(ndocs = 1)
print(m1)

Description
An S4 super class to represent a regression-like model
Helper function (constructor) for Model class

Usage
S4 method for signature 'Model'
ndocs(x)

S4 replacement method for signature 'Model'
ndocs(x) <- value

S4 method for signature 'Model'
nchain(x)

S4 replacement method for signature 'Model'
nchain(x) <- value

S4 method for signature 'Model'
mu0(x)

S4 replacement method for signature 'Model'
mu0(x) <- value

S4 method for signature 'Model'
sigma0(x)
S4 replacement method for signature 'Model'
sigma0(x) <- value

S4 method for signature 'Model'
eta_start(x)

S4 replacement method for signature 'Model'
eta_start(x) <- value

S4 method for signature 'Model'
eta(x)

S4 replacement method for signature 'Model'
eta(x) <- value

S4 method for signature 'Model'
loglike(x)

S4 replacement method for signature 'Model'
loglike(x) <- value

S4 method for signature 'Model'
logpost(x)

S4 replacement method for signature 'Model'
logpost(x) <- value

S4 method for signature 'Model'
waic(x)

S4 replacement method for signature 'Model'
waic(x) <- value

S4 method for signature 'Model'
se_waic(x)

S4 replacement method for signature 'Model'
se_waic(x) <- value

S4 method for signature 'Model'
p_eff(x)

S4 replacement method for signature 'Model'
p_eff(x) <- value

S4 method for signature 'Model'
lpd(x)
S4 replacement method for signature 'Model'
lpd(x) <- value

S4 method for signature 'Model'
extra(x)

S4 replacement method for signature 'Model'
extra(x) <- value

Model(
 ndocs,
 nchain = 1,
 mu0 = NaN,
 sigma0 = NaN,
 eta_start = NaN,
 eta = NaN,
 loglike = NaN,
 logpost = NaN,
 waic = NaN,
 se_waic = NaN,
 p_eff = NaN,
 lpd = NaN
)

Arguments

x An Model object.
value A value to assign to a slot for x
ndocs The number of documents/observations.
nchain The number of iterations of the Gibbs sampler.
mu0 A (p + 1) x 1 matrix of prior means for eta.
sigma0 A (p + 1) x (p + 1) prior covariance matrix for eta.
eta_start A (p + 1) x 1 matrix of starting values for eta.
eta A nchain x (p + 1) matrix of draws of regression coefficients.
loglike A nchain x 1 vector of the log-likelihood (up to an additive constant).
logpost A nchain x 1 vector of the log-posterior (up to an additive constant).
waic WAIC (up to an additive constant) on the deviance scale.
se_waic Standard error of the WAIC.
p_eff The effective number of parameters.
lpd A nchain x ndocs matrix of predictive posterior likelihoods.

Value

A Model object.
Slots

- `ndocs` The number of documents/observations.
- `nchain` The number of iterations of the Gibbs sampler.
- `mu0` A $(p + 1) \times 1$ matrix of prior means for η.
- `sigma0` A $(p + 1) \times (p + 1)$ prior covariance matrix for η.
- `eta_start` A $(p + 1) \times 1$ matrix of starting values for η.
- `eta` An `nchain` x $(p + 1)$ matrix of draws of regression coefficients.
- `loglike` A `nchain` x 1 vector of the log-likelihood (up to an additive constant).
- `logpost` A `nchain` x 1 vector of the log-posterior (up to an additive constant).
- `waic` WAIC (up to an additive constant) on the deviance scale.
- `se_waic` Standard error of the WAIC.
- `p_eff` The effective number of parameters.
- `lpd` A `nchain` x `ndocs` matrix of predictive posterior likelihoods.
- `extra` A list of additional model fitting information. Contains `time_elapsed`, `start_time`, `end_time`, `corrected_label_switching`, and `call`.

Examples

```r
m1 <- Model(ndocs = 1)
print(m1)
```

mu0

Create generic `mu0` function for class

Description

Create generic `mu0` function for class

Usage

```r
mu0(x)
```

Arguments

- `x` An `Model` object.

Value

Numeric vector of prior means for regression coefficients η.

Examples

```r
m1 <- Model(ndocs = 1)
mu0(m1)
```
mu0<-

Create generic mu0<- function for class

Description
Create generic mu0<- function for class

Usage
mu0(x) <- value

Arguments
x An Model object.
value Numeric vector of prior means for regression coefficients to assign to slot.

Value
None.

Examples
m1 <- Model(ndocs = 1)
mu0(m1) <- rep(0.0, times = 2)

nchain Create generic nchain function for class

Description
Create generic nchain function for class

Usage
nchain(x)

Arguments
x An Model object.

Value
Integer length of sampler chain.

Examples
m1 <- Model(ndocs = 1)
nchain(m1)
nchain<- Create generic nchain<- function for class

Description
Create generic nchain<- function for class

Usage
nchain(x) <- value

Arguments
- x: An `Model` object.
- value: Integer length of sampler chain to assign to slot.

Value
None.

Examples
m1 <- Model(ndocs = 1)
nchain(m1) <- 100

ndocs Create generic ndocs function for class

Description
Create generic ndocs function for class

Usage
ndocs(x)

Arguments
- x: An `Model` object.

Value
Integer number of documents.

Examples
m1 <- Model(ndocs = 1)
ndocs(m1)
ndocs<-

Create generic ndocs<- function for class

Description

Create generic ndocs<- function for class

Usage

```r
ndocs(x) <- value
```

Arguments

- `x` An `Model` object.
- `value` Integer number of documents to assign to slot.

Value

None.

Examples

```r
m1 <- Model(ndocs = 1)
ndocs(m1) <- 2
```

ntopics

Create generic ntopics function for class

Description

Create generic ntopics function for class

Usage

```r
ntopics(x)
```

Arguments

- `x` An `Sldax` object.

Value

Integer number of topics in model.
Examples

```r
m1 <- Slda(ndocs = 1, nvocab = 2,
        topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
        theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
        beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
ntopics(m1)
```

```r
ntopics<- Create generic ntopics<- function for class
```

Description

Create generic ntopics<- function for class

Usage

```r
ntopics(x) <- value
```

Arguments

- `x` An Slda object.
- `value` Integer number of topics to assign to slot.

Value

None.

Examples

```r
m1 <- Slda(ndocs = 1, nvocab = 2,
        topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
        theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
        beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
ntopics(m1) <- 2
```

```r
nvocab Create generic nvocab function for class
```

Description

Create generic nvocab function for class

Usage

```r
nvocab(x)
```

```r
```
Arguments

x An Sldax object.

Value

Integer number of unique terms in vocabulary.

Examples

m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
nvocab(m1)

m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
nvocab(m1) <- 2L
Description

prep_docs() takes documents stored as a column of a data frame and converts them into a list containing a matrix representation of documents and vocabulary character vector for modeling.

Usage

prep_docs(data, col, lower = TRUE)

Arguments

data A data frame containing a column of documents.
col A character string denoting the column of documents in data.
lower Should all terms be converted to lowercase? (default: TRUE).

Value

A list with two components: documents A matrix of term uses with one row per document and one column per term position up to the number of terms in the longest document; vocab A character vector of unique terms in the documents.

Note

This function does not perform further data preprocessing such as stop-word removal. It is assumed that the unit of analysis is each term, so this function will not be appropriate for other units of analysis such as n-grams or sentences.

Examples

data(teacher_rate) # Synthetic student ratings of instructors
docs_vocab <- prep_docs(teacher_rate, "doc")
str(docs_vocab) # A list with two components 'documents' and 'vocab'
Description

Create generic `proposal_sd` function for class

Usage

```r
proposal_sd(x)
```

Arguments

- `x` An `Logistic` object.

Value

Numeric vector of proposal scales for Metropolis step for regression coefficients sampling.

Examples

```r
m1 <- Logistic(ndocs = 1)
proposal_sd(m1)
```

Description

Create generic `proposal_sd<-` function for class

Usage

```r
proposal_sd(x) <- value
```

Arguments

- `x` An `Logistic` object.
- `value` Numeric vector of scale parameters for Metropolis sampling of regression coefficients to assign to slot.

Value

None.
Examples

\[
\begin{align*}
\text{m1} & \leftarrow \text{Logistic(} \text{ndocs} = 1\right) \\
\text{proposal.sd(m1)} & \leftarrow c(2.38, 2.38)
\end{align*}
\]

Description

The \texttt{psychtm} package provides estimation, summarization, and goodness-of-fit functions:

Model Fitting

The workhorse function for Bayesian estimation of topic models is \texttt{gibbs.sldax()}. Similarly, see \texttt{gibbs.mlr()} and \texttt{gibbs.logistic()} to estimate regression models with continuous and dichotomous outcomes, respectively.

Parameter Estimates and Goodness-of-Fit

See \texttt{sldax-summary} for functions to obtain and summarize parameter estimates and to compute goodness-of-fit metrics.

p_eff

Create generic p_eff function for class

Description

Create generic p_eff function for class

Usage

\[
p_eff(x)
\]

Arguments

\[
x \quad \text{An Model object.}
\]

Value

Numeric estimate of the number of effective parameters when computing WAIC.

Examples

\[
\begin{align*}
\text{m1} & \leftarrow \text{Model(} \text{ndocs} = 1\right) \\
p_eff(m1)
\end{align*}
\]
p_eff<-

Create generic p_eff<- function for class

Description
Create generic p_eff<- function for class

Usage
p_eff(x) <- value

Arguments
x
An Model object.

value
Numeric value of effective number of parameters estimate from WAIC to assign to slot.

Value
None.

Examples
m1 <- Model(ndocs = 1)
p_eff(m1) <- NaN

se_waic

Create generic se_waic function for class

Description
Create generic se_waic function for class

Usage
se_waic(x)

Arguments
x
An Model object.

Value
Numeric standard error for WAIC estimate.
Examples

```r
m1 <- Model(ndocs = 1)
se_waic(m1)
```

Create generic `se_waic<-` function for class

Description

Create generic `se_waic<-` function for class

Usage

```r
se_waic(x) <- value
```

Arguments

- `x`: An `Model` object.
- `value`: Numeric standard error of WAIC estimate to assign to slot.

Value

None.

Examples

```r
m1 <- Model(ndocs = 1)
se_waic(m1) <- NaN
```

Create generic `sigma0` function for class

Description

Create generic `sigma0` function for class

Usage

```r
sigma0(x)
```

Arguments

- `x`: An `Model` object.

Value

Double matrix of prior variances and covariances for regression coefficients.
Examples

```r
m1 <- Model(ndocs = 1)
sigma0(m1)
```

Description

Create generic `sigma0<-` function for class

Usage

```r
sigma0(x) <- value
```

Arguments

- `x` An `Model` object.
- `value` Numeric covariance matrix of prior for regression coefficients to assign to slot.

Value

None.

Examples

```r
m1 <- Model(ndocs = 1)
sigma0(m1) <- diag(1.0, 2)
```

Description

Create generic `sigma2` function for class

Usage

```r
sigma2(x)
```

Arguments

- `x` An `MLr` object.
Value

Numeric vector of posterior draws of residual variance.

Examples

```r
m1 <- Mlr(ndocs = 1)
sigma2(m1)
```

 sigma2<-
Create generic sigma2<- function for class

Description

Create generic sigma2<- function for class

Usage

```r
sigma2(x) <- value
```

Arguments

- `x`: An `Mlr` object.
- `value`: Numeric value of residual variance to assign to slot.

Value

None.

Examples

```r
m1 <- Mlr(ndocs = 1)
sigma2(m1) <- 1.0
```

Sldax-class

S4 class to represent a SLDAX general model that inherits from `Mlr` and `Logistic`.

Description

S4 class to represent a SLDAX general model that inherits from `Mlr` and `Logistic`.

Helper function (constructor) for Sldax class
Usage

```R
## S4 method for signature 'Sldax'
topics(x)

## S4 replacement method for signature 'Sldax'
topics(x) <- value

## S4 method for signature 'Sldax'
theta(x)

## S4 replacement method for signature 'Sldax'
theta(x) <- value

## S4 method for signature 'Sldax'
beta_(x)

## S4 replacement method for signature 'Sldax'
beta_(x) <- value

## S4 method for signature 'Sldax'
gamma_(x)

## S4 replacement method for signature 'Sldax'
gamma_(x) <- value

## S4 method for signature 'Sldax'
alpha(x)

## S4 replacement method for signature 'Sldax'
alpha(x) <- value

## S4 method for signature 'Sldax'
ntopics(x)

## S4 replacement method for signature 'Sldax'
ntopics(x) <- value

## S4 method for signature 'Sldax'
vocab(x)

## S4 replacement method for signature 'Sldax'
vocab(x) <- value
```

Sldax(nvocab, topics, theta, beta, ntopics = 2, alpha = 1, gamma = 1, ...)

Arguments

- `x` An Sldax object.
value A value to assign to a slot for x
nvocab The number of terms in the corpus vocabulary.
topics A $D \times \max(N_d) \times M$ numeric array of topic draws. 0 indicates an unused word index (i.e., the document did not have a word at that index).
theta A $D \times K \times M$ numeric array of topic proportions.
beta A $K \times V \times M$ numeric array of topic-vocabulary distributions.
ntopics The number of topics for the LDA model (default: 2).
alpha A numeric prior hyperparameter for theta (default: 1.0).
gamma A numeric prior hyperparameter for beta (default: 1.0).
... additional arguments to be passed to the low level regression fitting functions (see below).

Value

A Sldax object.

Slots

nvocab The number of terms in the corpus vocabulary.
ntopics The number of topics for the LDA model.
alpha A numeric prior hyperparameter for theta.
gamma A numeric prior hyperparameter for beta.
topics A $D \times \max(N_d) \times M$ numeric array of topic draws. 0 indicates an unused word index (i.e., the document did not have a word at that index).
theta A $D \times K \times M$ numeric array of topic proportions.
beta A $K \times V \times M$ numeric array of topic-vocabulary distributions.

Examples

m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
nvocab(m1) <- 2L
Description

Obtain parameter estimates, model goodness-of-fit metrics, and posterior summaries. For SLDA or SLDAX models, label switching is handled during estimation in the `gibbs_sldax()` function with argument `correct_ls`, so it is not addressed by this function.

Usage

```r
est_beta(mcmc_fit, burn = 0, thin = 1, stat = "mean")
est_theta(mcmc_fit, burn = 0, thin = 1, stat = "mean")
get_coherence(beta_, docs, nwords = 10)
get_exclusivity(beta_, nwords = 10, weight = 0.7)
ge_toptopics(theta, ntopics)
ge_topwords(beta_, nwords, vocab, method = "termscore")
ge_zbar(mcmc_fit, burn = 0L, thin = 1L)
post_regression(mcmc_fit)
gg_coef(mcmc_fit, burn = 0L, thin = 1L, stat = "mean", errorbw = 0.5)
```

S4 method for signature 'Sldax'

```r
gg_coef(mcmc_fit, burn = 0L, thin = 1L, stat = "mean", errorbw = 0.5)
```

S4 method for signature 'Sldax'

```r
est_beta(mcmc_fit, burn = 0, thin = 1, stat = "mean")
```

S4 method for signature 'Sldax'

```r
est_theta(mcmc_fit, burn = 0, thin = 1, stat = "mean")
```

S4 method for signature 'matrix,matrix'

```r
get_coherence(beta_, docs, nwords = 10)
```

S4 method for signature 'matrix'

```r
get_exclusivity(beta_, nwords = 10, weight = 0.7)
```

S4 method for signature 'matrix'

```r
g_e_toptopics(theta, ntopics)
```
S4 method for signature 'matrix,numeric,character'
get_topwords(beta_, nwords, vocab, method = "termscore")

S4 method for signature 'Sldax'
get_zbar(mcmc_fit, burn = 0L, thin = 1L)

S4 method for signature 'Mlr'
post_regression(mcmc_fit)

S4 method for signature 'Logistic'
post_regression(mcmc_fit)

S4 method for signature 'Sldax'
post_regression(mcmc_fit)

Arguments

- **mcmc_fit**: An object of class `Sldax`.
- **burn**: The number of draws to discard as a burn-in period (default: 0).
- **thin**: The number of draws to skip as a thinning period (default: 1; i.e., no thinning).
- **stat**: The summary statistic to use on the posterior draws (default: "mean").
- **beta_**: A $K \times V$ matrix of word-topic probabilities. Each row sums to 1.
- **docs**: The $D \times \text{max}(N_d)$ matrix of documents (word indices) used to fit the `Sldax` model.
- **nwords**: The number of words to retrieve (default: all).
- **weight**: The weight (between 0 and 1) to give to exclusivity (near 1) vs. frequency (near 0). (default: 0.7).
- **theta**: A $D \times K$ matrix of K topic proportions for all D documents.
- **ntopics**: The number of topics to retrieve (default: all topics).
- **vocab**: A character vector of length V containing the vocabulary.
- **method**: If "termscore", use term scores (similar to tf-idf). If "prob", use probabilities (default: "termscore").
- **errorbw**: Positive control parameter for the width of the +/- 2 posterior standard error bars (default: 0.5).

Details

- `get_zbar()` computes empirical topic proportions from slot @topics.
- `est_theta()` estimates the mean or median theta matrix.
- `est_beta()` estimates the mean or median beta matrix.
- `get_toptopics()` creates a `tibble` of the topic proportion estimates for the top ntopics topics per document sorted by probability.
• `get_topwords()` creates a tibble of topics and the top nwords words per topic sorted by probability or term score.

• `get_coherence()` computes the coherence metric for each topic (see Mimno, Wallach, Talley, Leenders, & McCallum, 2011).

• `get_exclusivity()` computes the exclusivity metric for each topic (see Roberts, Stewart, & Airoldi, 2013).

• `post_regression()` creates a `coda::mcmc` object containing posterior information for the regression model parameters.

• `gg_coef()` plots regression coefficients
 – Warning: this function is deprecated.
 – See `help("Deprecated")`.

Value

A matrix of topic-word probability estimates.

A matrix of topic proportion estimates.

A numeric vector of coherence scores for each topic (more positive is better).

A numeric vector of exclusivity scores (more positive is better).

A data frame of the ntopics most probable topics per document.

A $K \times V$ matrix of term-scores (comparable to tf-idf).

A matrix of empirical topic proportions per document.

An object of class `coda::mcmc` summarizing the posterior distribution of the regression coefficients and residual variance (if applicable). Convenience functions such as `summary()` and `plot()` can be used for posterior summarization.

A ggplot object.

Examples

```r
m1 <- Sldax(ndocs = 1, nvocab = 2,
    topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
    theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
    beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
est_beta(m1, stat = "mean")
est_beta(m1, stat = "median")
m1 <- Sldax(ndocs = 2, nvocab = 2, nchain = 2,
    topics = array(c(1, 2, 2, 1,
        1, 2, 2, 1), dim = c(2, 2, 2)),
    theta = array(c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 2)),
    loglike = rep(NaN, times = 2),
    logpost = rep(NaN, times = 2),
    lpd = matrix(NaN, nrow = 2, ncol = 2),
    eta = matrix(0.0, nrow = 2, ncol = 2),
    mu0 = c(0.0, 0.0),
```
```r
sigma0 = diag(1, 2),
eta_start = c(0.0, 0.0),
beta = array(c(0.5, 0.5, 0.5, 0.5,
              0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 2))
est_theta(m1, stat = "mean")
est_theta(m1, stat = "median")
mdoc <- matrix(c(1, 2, 2, 1), nrow = 1)
m1 <- Sldax(ndocs = 1, nvocab = 2,
          topics = array(c(1, 2, 2, 2), dim = c(1, 4, 1)),
          theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
          beta = array(c(0.5, 0.4, 0.5, 0.6), dim = c(2, 2, 1)))
bhat <- est_beta(m1)
get_coherence(bhat, docs = mdoc, nwords = nvocab(m1))
m1 <- Sldax(ndocs = 1, nvocab = 2,
          topics = array(c(1, 2, 2, 2), dim = c(1, 4, 1)),
          theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
          beta = array(c(0.5, 0.4, 0.5, 0.6), dim = c(2, 2, 1)))
bhat <- est_beta(m1)
get_exclusivity(bhat, nwords = nvocab(m1))
m1 <- Sldax(ndocs = 2, nvocab = 2, nchain = 2,
          topics = array(c(1, 2, 2, 1,
                         1, 2, 2, 1), dim = c(2, 2, 2)),
          theta = array(c(0.4, 0.3, 0.6, 0.7,
                         0.45, 0.5, 0.55, 0.5), dim = c(2, 2, 2)),
          loglike = rep(NaN, times = 2),
          logpost = rep(NaN, times = 2),
          lpd = matrix(NaN, nrow = 2, ncol = 2),
          eta = matrix(0.0, nrow = 2, ncol = 2),
          mu0 = c(0.0, 0.0),
          sigma0 = diag(1, 2),
          eta_start = c(0.0, 0.0),
          beta = array(c(0.5, 0.5, 0.5, 0.5,
                         0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 2)))
t_hat <- est_theta(m1, stat = "mean")
get_toptopics(t_hat, ntopics = ntopics(m1))
m1 <- Sldax(ndocs = 1, nvocab = 2,
          topics = array(c(1, 2, 2, 2), dim = c(1, 4, 1)),
          theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
          beta = array(c(0.5, 0.4, 0.5, 0.6), dim = c(2, 2, 1)))
bhat <- est_beta(m1)
get_topwords(bhat, nwords = nvocab(m1), method = "termscore")
get_topwords(bhat, nwords = nvocab(m1), method = "prob")
m1 <- Sldax(ndocs = 1, nvocab = 2,
          topics = array(c(1, 2, 2, 2), dim = c(1, 4, 1)),
          theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
          beta = array(c(0.5, 0.4, 0.5, 0.6), dim = c(2, 2, 1)))
get_zbar(m1)
data(mtcars)
m1 <- gibbs_mlr(mpg ~ hp, data = mtcars, m = 2)
post_regression(m1)
## Not run:
```

```
```
library(lda) # Required if using 'prep_docs()
data(teacher_rate) # Synthetic student ratings of instructors
docs_vocab <- prep_docs(teacher_rate, "doc")
vocab_len <- length(docs_vocab$vocab)
m1 <- gibbs_sldax(rating ~ I(grade - 1), m = 2,
 data = teacher_rate,
 docs = docs_vocab$documents,
 V = vocab_len,
 K = 2,
 model = "sldax")

gg_coef(m1)
End(Not run)

teacher_rate

Synthetic (fake) student ratings of instructor quality.

Description

A data set containing almost 3,800 student ratings and written comments regarding instructor quality along with the students’ grades associated with the course.

Usage

`teacher_rate`

Format

A data frame with 3,733 rows and 4 variables:

- **id** Row number to identify rater
- **rating** A numerical rating of instructor quality from 1 (worst) to 5 (best)
- **grade** A numerical grade received by the rater for the instructor’s course ranging from 1 (worst) to 13 (best)
- **doc** A character vector containing pseudo-written comments about the instructors

term_score

Compute term-scores for each word-topic pair

Description

Usage

`term_score(beta_)`
Arguments
beta_ A K x V matrix of V vocabulary probabilities for each of K topics.

Value
A K x V matrix of term-scores (comparable to tf-idf).

Examples

#' library(lda) # Required if using `prep_docs`

data(teacher_rate) # Synthetic student ratings of instructors
docs_vocab <- prep_docs(teacher_rate, "doc")
vocab_len <- length(docs_vocab$vocab)
m1 <- gibbs_sldax(rating ~ I(grade - 1), m = 2,
 data = teacher_rate, docs = docs_vocab$documents,
 V = vocab_len, K = 2, model = "sldax")
hbeta <- est_beta(m1)
ts_beta <- term_score(hbeta)
One row per topic, one column per unique term in the vocabulary
str(ts_beta)

theta Create generic theta function for class

Description
Create generic theta function for class

Usage
theta(x)

Arguments
x An Sldax object.

Value
Numeric array of topic proportions for each document across sampler iterations.

Examples

m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
theta(m1)
theta<-
Create generic theta<- function for class

Description
Create generic theta<- function for class

Usage

\[
\text{theta}(x) \leftarrow \text{value}
\]

Arguments

- `x`
 An Sldax object.
- `value`
 Numeric array of topic proportions to assign to slot.

Value
None.

Examples

m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))
theta(m1) <- array(c(0.5, 0.5), dim = c(1, 2, 1))

topics
Create generic topics function for class

Description
Create generic topics function for class

Usage

\[
\text{topics}(x)
\]

Arguments

- `x`
 An Sldax object.

Value
Integer array of categorical topic labels for each word in each document across sampler iterations.
Examples

m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))

topics(m1)

topics <- Create generic topics<- function for class

Description

Create generic topics<- function for class

Usage

topics(x) <- value

Arguments

x An Sldax object.
value Integer array of topic assignment draws for each word to assign to slot.

Value

None.

Examples

m1 <- Sldax(ndocs = 1, nvocab = 2,
 topics = array(c(1, 2, 2, 1), dim = c(1, 4, 1)),
 theta = array(c(0.5, 0.5), dim = c(1, 2, 1)),
 beta = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2, 1)))

topics(m1) <- array(c(2, 2, 2, 1), dim = c(1, 4, 1))

waic Create generic waic function for class

Description

Create generic waic function for class

Usage

waic(x)
Arguments

x An Model object.

Value

Numeric value of the Watanabe Information Criterion (WAIC).

Examples

m1 <- Model(ndocs = 1)
waic(m1)

waic<- Create generic waic<- function for class

Description

Create generic waic<- function for class

Usage

waic(x) <- value

Arguments

x An Model object.
value Numeric value of WAIC to assign to slot.

Value

None.

Examples

m1 <- Model(ndocs = 1)
waic(m1) <- NaN
waic_all

Compute WAIC for all outcomes.

Description

Compute WAIC for all outcomes.

Usage

waic_all(iter, l_pred)

Arguments

iter
The length of the sampled chain.
l_pred
A \text{iter} \times D matrix of predictive likelihoods (NOT log-likelihoods).

Value

Vector of (1) WAIC for model, (2) standard error for WAIC, and (3) the effective number of parameters.

Examples

data(teacher_rate)
fit_mlr <- gibbs_mlr(rating ~ grade, data = teacher_rate, m = 5)
waic_all(iter = 5, t(lpd(fit_mlr)))

waic_d

WAIC for observation y_d

Description

WAIC for observation y_d

Arguments

like_pred
A m x 1 vector of predictive likelihoods (NOT log-likelihoods) for y_d.
p_effd
The contribution to the effective number of parameters from obs y_d.

Value

WAIC contribution for observation d (on deviance scale).
Description

Compute difference (WAIC1 - WAIC2) in WAIC and its SE for two models.

Usage

```r
waic_diff(l_pred1, l_pred2)
```

Arguments

- `l_pred1`: A m1 x D matrix of predictive likelihoods (NOT log-likelihoods) from model 1.
- `l_pred2`: A m2 x D matrix of predictive likelihoods (NOT log-likelihoods) from model 2.

Value

A vector of (1) the difference in WAIC (on the deviance scale) between models and (2) the standard error of the difference in WAIC.

Examples

```r
data(teacher_rate)
fit_mlr <- gibbs_mlr(rating ~ grade, data = teacher_rate, m = 100)
fit_mlr2 <- gibbs_mlr(rating ~ grade + I(grade^2), data = teacher_rate, m = 100)
# Returns (1) D = WAIC(fit_mlr2) - WAIC(fit_mlr) and (2) SE(D)
# Suggests that a linear relationship is preferable
waic_diff(t(lpd(fit_mlr2)), t(lpd(fit_mlr)))
```
Index

* Gibbs sampler
 gibbs_logistic, 12
 gibbs_mlr, 14
 gibbs_sldax, 15

* classes
 Logistic-class, 18
 Mlr-class, 22
 Model-class, 23
 Sldax-class, 38

* datasets
 teacher_rate, 45

a0, 3
a0, Mlr-method (Mlr-class), 22
a0<-, 4
a0<-, Mlr-method (Mlr-class), 22
alpha, 4
alpha, Sldax-method (Sldax-class), 38
alpha<-, 5
alpha<-, Sldax-method (Sldax-class), 38

b0, 6
b0, Mlr-method (Mlr-class), 22
b0<-, 6
b0<-, Mlr-method (Mlr-class), 22
beta, 7
beta, Sldax-method (Sldax-class), 38
beta<-, 7
beta<-, Sldax-method (Sldax-class), 38

coda::mcmc, 43

est_beta (sldax-summary), 41
est_beta, Sldax-method (sldax-summary), 41
est_theta (sldax-summary), 41
est_theta, Sldax-method (sldax-summary), 41
eta, 8
eta, Model-method (Model-class), 23

extra, 10
extra, Model-method (Model-class), 23
extra<-, 10
extra<-, Model-method (Model-class), 23

formula, 13, 14, 16

gamma, 11
gamma, Sldax-method (Sldax-class), 38
gamma<-, 12
gamma<-, Sldax-method (Sldax-class), 38
get_coherence (sldax-summary), 41
get_coherence, matrix, matrix-method
 (sldax-summary), 41
get_exclusivity (sldax-summary), 41
get_exclusivity, matrix, matrix-method
 (sldax-summary), 41
get_toptopics (sldax-summary), 41
get_toptopics, matrix, matrix-method
 (sldax-summary), 41
gg_coef (sldax-summary), 41
gg_coef, Sldax-method (sldax-summary), 41
gibbs_logistic, 12, 15, 17
gibbs_logistic(), 34
gibbs_mlr, 13, 14, 17
gibbs_mlr(), 34
gibbs_sldax, 13, 15, 15
INDEX

```
gibbs_sldax(), 34, 41
Logistic, 13, 18, 38
Logistic (Logistic-class), 18
Logistic-class, 18
loglike, 19
loglike, Model-method (Model-class), 23
loglike<-, 19
loglike<-, Model-method (Model-class), 23
logpost, 20
logpost, Model-method (Model-class), 23
logpost<-, 20
logpost<-, Model-method (Model-class), 23
lpd, 21
lpd, Model-method (Model-class), 23
lpd<-, 21
lpd<-, Model-method (Model-class), 23
Mlr, 15, 23, 38
Mlr (Mlr-class), 22
Mlr-class, 22
Model, 18, 22, 25
Model (Model-class), 23
Model-class, 23
mu0, 26
mu0, Model-method (Model-class), 23
mu0<-, 27
mu0<-, Model-method (Model-class), 23
nchain, 27
nchain, Model-method (Model-class), 23
nchain<-, 28
nchain<-, Model-method (Model-class), 23
ndocs, 28
ndocs, Model-method (Model-class), 23
ndocs<-, 29
ndocs<-, Model-method (Model-class), 23
ntopics, 29
ntopics, Sldax-method (Sldax-class), 38
ntopics<-, 30
ntopics<-, Sldax-method (Sldax-class), 38
nvocab, 30
nvocab, Sldax-method (Sldax-class), 38
nvocab<-, 31
nvocab<-, Sldax-method (Sldax-class), 38
p_eff, 34
p_eff, Model-method (Model-class), 23
p_eff<-, 35
p_eff<-, Model-method (Model-class), 23
plot(), 43
post_regression (sldax-summary), 41
post_regression, Logistic-method (sldax-summary), 41
post_regression, Mlr-method (sldax-summary), 41
post_regression, Sldax-method (sldax-summary), 41
prep_docs, 32
proposal_sd, 33
proposal_sd, Logistic-method (Logistic-class), 18
proposal_sd<-, 33
proposal_sd<-, Logistic-method (Logistic-class), 18
psychtm, 34
se_waic, 35
se_waic, Model-method (Model-class), 23
se_waic<-, 36
se_waic<-, Model-method (Model-class), 23
sigma0, 36
sigma0, Model-method (Model-class), 23
sigma0<-, 37
sigma0<-, Model-method (Model-class), 23
sigma2, 37
sigma2, Mlr-method (Mlr-class), 22
sigma2<-, 38
sigma2<-, Mlr-method (Mlr-class), 22
Sldax, 17, 40–42
Sldax (Sldax-class), 38
Sldax-class, 38
Sldax-summary, 41
summary(), 43
theta, 46
theta, Sldax-method (Sldax-class), 38
theta<-, 47
theta<-, Sldax-method (Sldax-class), 38
tibble, 42, 43
topics, 47
topics, Sldax-method (Sldax-class), 38
topics<-, 48
topics<-, Sldax-method (Sldax-class), 38
waic, 48
```

waic, Model-method (Model-class), 23
waic<-, 49
waic<-, Model-method (Model-class), 23
waic_all, 50
waic_d, 50
waic_diff, 51