Package ‘radiant.basics’

November 18, 2021

Type Package
Title Basics Menu for Radiant: Business Analytics using R and Shiny
Version 1.4.1
Date 2021-11-17
Description The Radiant Basics menu includes interfaces for probability calculation, central limit theorem simulation, comparing means and proportions, goodness-of-fit testing, cross-tabs, and correlation. The application extends the functionality in ‘radiant.data’.
Depends R (>= 3.4.0), radiant.data (>= 1.4.1)
Imports ggplot2 (>= 2.2.1), scales (>= 0.4.0), dplyr (>= 1.0.7), tidyr (>= 0.8.2), magrittr (>= 1.5), shiny (>= 1.7.1), psych (>= 1.8.3.3), import (>= 1.1.0), lubridate (>= 1.7.4), polycor (>= 0.7.10), patchwork (>= 1.0.0)
Suggests testthat (>= 2.0.0), pkgdown (>= 1.1.0), markdown
URL https://github.com/radiant-rstats/radiant.basics/,
 https://radiant-rstats.github.io/radiant.basics/,
 https://radiant-rstats.github.io/docs/
BugReports https://github.com/radiant-rstats/radiant.basics/issues/
License AGPL-3 | file LICENSE
LazyData true
Encoding UTF-8
Language en-US
RoxygenNote 7.1.1
NeedsCompilation no
Author Vincent Nijs [aut, cre]
Maintainer Vincent Nijs <radiant@rady.ucsd.edu>
Repository CRAN
Date/Publication 2021-11-18 06:30:02 UTC
R topics documented:

- clt ... 3
- compare_means .. 4
- compare_props .. 6
- consider .. 7
- cor2df .. 7
- correlation .. 8
- cross_tabs .. 9
- demand_uk ... 10
- goodness ... 10
- newspaper .. 11
- plot.clt .. 12
- plot.compare_means ... 12
- plot.compare_props ... 13
- plot.correlation ... 14
- plot.cross_tabs .. 15
- plot.goodness ... 16
- plot.prob_binom ... 17
- plot.prob_chisq ... 18
- plot.prob_disc ... 18
- plot.prob_expo .. 19
- plot.prob_fdist .. 20
- plot.prob_lnorm ... 21
- plot.prob_norm ... 21
- plot.prob_pois ... 22
- plot.prob_tdist ... 23
- plot.prob_unif ... 24
- plot.single_mean .. 24
- plot.single_prop .. 25
- print.rcorr .. 26
- prob_binom ... 27
- prob_chisq .. 28
- prob_disc .. 29
- prob_expo .. 30
- prob_fdist .. 31
- prob_lnorm .. 32
- prob_norm .. 33
- prob_pois .. 34
- prob_tdist .. 35
- prob_unif .. 36
- radiant.basics ... 37
- radiant.basics_viewer .. 37
- radiant.basics_window .. 38
- salary ... 38
- single_mean ... 39
- single_prop .. 40
- summary.compare_means ... 41
Central Limit Theorem simulation

Usage

clt(
 dist,
 n = 100,
 m = 100,
 norm_mean = 0,
 norm_sd = 1,
 binom_size = 10,
 binom_prob = 0.2,
 unif_min = 0,
 unif_max = 1,
 expo_rate = 1
)

Arguments

dist Distribution to simulate
n Sample size
m Number of samples
norm_mean Mean for the normal distribution
norm_sd Standard deviation for the normal distribution
binom_size Size for the binomial distribution
binom_prob Probability for the binomial distribution
unif_min Minimum for the uniform distribution
unif_max Maximum for the uniform distribution
expo_rate Rate for the exponential distribution

Details
See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Value
A list with the name of the Distribution and a matrix of simulated data

Examples
clt("Uniform", 10, 10, unif_min = 10, unif_max = 20)
Arguments

- **dataset** Dataset
- **var1** A numeric variable or factor selected for comparison
- **var2** One or more numeric variables for comparison. If var1 is a factor only one variable can be selected and the mean of this variable is compared across (factor) levels of var1
- **samples** Are samples independent ("independent") or not ("paired")
- **alternative** The alternative hypothesis ("two.sided", "greater" or "less")
- **conf_lev** Span of the confidence interval
- **comb** Combinations to evaluate
- **adjust** Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
- **test** t-test ("t") or Wilcox ("wilcox")
- **data_filter** Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- **envir** Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class compare_means

See Also

- `summary.compare_means` to summarize results
- `plot.compare_means` to plot results

Examples

```r
compare_means(diamonds, "cut", "price") %>% str()
```
compare_props

Compare sample proportions across groups

Description

Compare sample proportions across groups

Usage

```r
compare_props(
  dataset,
  var1,
  var2,
  levs = "",
  alternative = "two.sided",
  conf_lev = 0.95,
  comb = "",
  adjust = "none",
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

dataset Dataset
var1 A grouping variable to split the data for comparisons
var2 The variable to calculate proportions for
levs The factor level selected for the proportion comparison
alternative The alternative hypothesis ("two.sided", "greater" or "less")
conf_lev Span of the confidence interval
comb Combinations to evaluate
adjust Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir Environment to extract data from

Details

See [https://radiant-rstats.github.io/docs/basics/compare Props.html](https://radiant-rstats.github.io/docs/basics/compare_props.html) for an example in Radiant

Value

A list of all variables defined in the function as an object of class compare_props
See Also

summary.compare_props to summarize results
plot.compare_props to plot results

Examples

```
compare_props(titanic, "pclass", "survived") %>% str()
```

consider

Car brand consideration

Description

Car brand consideration

Usage

```
data(consider)
```

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(consider,"description")

cor2df

Store a correlation matrix as a (long) data.frame

Description

Store a correlation matrix as a (long) data.frame

Usage

```
cor2df(object, labels = c("label1", "label2"), ...)
```

Arguments

<table>
<thead>
<tr>
<th>argument</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Return value from correlation</td>
</tr>
<tr>
<td>labels</td>
<td>Column names for the correlation pairs</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods</td>
</tr>
</tbody>
</table>
correlation

Details

Return the correlation matrix as a (long) data.frame. See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

| correlation | Calculate correlations for two or more variables |

Description

Calculate correlations for two or more variables

Usage

correlation(
 dataset,
 vars = "",
 method = "pearson",
 hcor = FALSE,
 hcor_se = FALSE,
 data_filter = "",
 envir = parent.frame()
)

Arguments

- **dataset**: Dataset
- **vars**: Variables to include in the analysis. Default is all but character and factor variables with more than two unique values are removed
- **method**: Type of correlations to calculate. Options are "pearson", "spearman", and "kendall". "pearson" is the default
- **hcor**: Use polycor::hetcor to calculate the correlation matrix
- **hcor_se**: Calculate standard errors when using polycor::hetcor
- **data_filter**: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- **envir**: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class compare_means
cross_tabs

See Also

summary.correlation to summarize results
plot.correlation to plot results

Examples

correlation(diamonds, c("price", "carat")) %>% str()
correlation(diamonds, "x:z") %>% str()

cross_tabs

Evaluate associations between categorical variables

Description

Evaluate associations between categorical variables

Usage

cross_tabs(
 dataset,
 var1,
 var2,
 tab = NULL,
 data_filter = "",
 envir = parent.frame()
)

Arguments

dataset Dataset (i.e., a data.frame or table)
var1 A categorical variable
var2 A categorical variable
tab Table with frequencies as alternative to dataset
data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

Value

A list of all variables used in cross_tabs as an object of class cross_tabs
See Also

- summary.cross_tabs to summarize results
- plot.cross_tabs to plot results

Examples

cross_tabs(newspaper, "Income", "Newspaper") %>% str()
table(select(newspaper, Income, Newspaper)) %>% cross_tabs(tab = .)

demand_uk

Demand in the UK

Description

Demand in the UK

Usage

data(demand_uk)

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(demand_uk, "description")

goodness

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Description

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Usage

goodness(
 dataset,
 var,
 p = NULL,
 tab = NULL,
 data_filter = "",
 envir = parent.frame()
)
Arguments

- **dataset**: Dataset
- **var**: A categorical variable
- **p**: Hypothesized distribution as a number, fraction, or numeric vector. If unspecified, defaults to an even distribution
- **tab**: Table with frequencies as alternative to dataset
- **data_filter**: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- **envir**: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/goodness.html for an example in Radiant

Value

A list of all variables used in goodness as an object of class goodness

See Also

- `summary.goodness` to summarize results
- `plot.goodness` to plot results

Examples

```r
goodness(newspaper, "Income") %>% str()
goodness(newspaper, "Income", p = c(3/4, 1/4)) %>% str()
table(select(newspaper, Income)) %>% goodness(tab = .)
```

newspaper

Newspaper readership

Description

Newspaper readership

Usage

data(newspaper)

Format

A data frame with 580 rows and 2 variables
plot.compare_means

Description
Plot method for the compare_means function

Usage
S3 method for class 'compare_means'
plot(x, plots = "scatter", shiny = FALSE, custom = FALSE, ...)

plot.clt

Plot method for the Central Limit Theorem simulation

Description
Plot method for the Central Limit Theorem simulation

Usage
S3 method for class 'clt'
plot(x, stat = "sum", bins = 15, ...)

Arguments
- x: Return value from clt
- stat: Statistic to use (sum or mean)
- bins: Number of bins to use
- ...: further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Examples
clt("Uniform", 100, 100, unif_min = 10, unif_max = 20) %>% plot()
plot.compare.props

Arguments

- **x**: Return value from `compare_means`
- **plots**: One or more plots ("bar", "density", "box", or "scatter")
- **shiny**: Did the function call originate inside a shiny app
- **custom**: Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.
- **...**: Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

See Also

- `compare_means` to calculate results
- `summary.compare_means` to summarize results

Examples

```r
result <- compare_means(diamonds, "cut", "price")
plot(result, plots = c("bar", "density"))
```

Description

Plot method for the `compare.props` function

Usage

```r
## S3 method for class 'compare.props'
plot(x, plots = "bar", shiny = FALSE, custom = FALSE, ...)
```

Arguments

- **x**: Return value from `compare.props`
- **plots**: One or more plots of proportions ("bar" or "dodge")
- **shiny**: Did the function call originate inside a shiny app
plot.correlation

custom: Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

- compare_props to calculate results
- summary.compare_props to summarize results

Examples

```r
result <- compare_props(titanic, "pclass", "survived")
plot(result, plots = c("bar", "dodge"))
```

plot.correlation

Plot method for the correlation function

Description

Plot method for the correlation function

Usage

```r
# S3 method for class 'correlation'
plot(x, nrobs = -1, jit = c(0, 0), dec = 2, ...)
```

Arguments

- `x`: Return value from `correlation`
- `nrobs`: Number of data points to show in scatter plots (-1 for all)
- `jit`: A numeric vector that determines the amount of jittering to apply to the x and y variables in a scatter plot. Default is 0. Use, e.g., 0.3 to add some jittering
- `dec`: Number of decimals to show
- `...`: further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant
plot.cross_tabs

See Also

- `correlation` to calculate results
- `summary.correlation` to summarize results

Examples

```r
result <- correlation(diamonds, c("price", "carat", "table"))
plot(result)
```

plot.cross_tabs
Plot method for the cross_tabs function

Description

Plot method for the cross_tabs function

Usage

```r
## S3 method for class 'cross_tabs'
plot(x, check = "", shiny = FALSE, custom = FALSE, ...)
```

Arguments

- `x` Return value from `cross_tabs`
- `check` Show plots for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "row_perc", "col_perc", and "perc" for row, column, and table percentages respectively
- `shiny` Did the function call originate inside a shiny app
- `custom` Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and <https://ggplot2.tidyverse.org/> for options.
- `...` further arguments passed to or from other methods

Details

See <https://radiant-rstats.github.io/docs/basics/cross_tabs.html> for an example in Radiant
See Also

cross_tabs to calculate results
summary.cross_tabs to summarize results

Examples

result <- cross_tabs(newspaper, "Income", "Newspaper")
plot(result, check = c("observed", "expected", "chi_sq"))

plot.goodness

Plot method for the goodness function

Description

Plot method for the goodness function

Usage

S3 method for class 'goodness'
plot(x, check = "", fillcol = "blue", shiny = FALSE, custom = FALSE, ...)

Arguments

x
check
fillcol
shiny
custom
...

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant
See Also

- `goodness` to calculate results
- `summary.goodness` to summarize results

Examples

```
result <- goodness(newspaper, "Income")
plot(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income") %>% plot(c("observed","expected"))
```

plot.prob_binom
Plot method for the probability calculator (binomial)

Description

Plot method for the probability calculator (binomial)

Usage

```
## S3 method for class 'prob_binom'
plot(x, type = "values", ...)
```

Arguments

- `x`
 Return value from `prob_binom`

- `type`
 Probabilities ("probs") or values ("values")

- `...`
 further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_binom` to calculate results
- `summary.prob_binom` to summarize results

Examples

```
result <- prob_binom(n = 10, p = 0.3, ub = 3)
plot(result, type = "values")
```
plot.prob_chisq
Plot method for the probability calculator (Chi-squared distribution)

Description

Plot method for the probability calculator (Chi-squared distribution)

Usage

```r
## S3 method for class 'prob_chisq'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_chisq`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_chisq` to calculate results
- `summary.prob_chisq` to summarize results

Examples

```r
result <- prob_chisq(df = 1, ub = 3.841)
plot(result, type = "values")
```

plot.prob_disc
Plot method for the probability calculator (discrete)

Description

Plot method for the probability calculator (discrete)

Usage

```r
## S3 method for class 'prob_disc'
plot(x, type = "values", ...)
```

See Also

- `prob_disc` to calculate results
- `summary.prob_disc` to summarize results

Examples

```r
result <- prob_disc(df = 1, ub = 3.841)
plot(result, type = "values")
```
Arguments

- **x**: Return value from `prob_disc`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_disc` to calculate results
- `summary.prob_disc` to summarize results

Examples

```r
result <- prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
plot(result, type = "probs")
```

Description

Plot method for the probability calculator (Exponential distribution)

Usage

```r
## S3 method for class 'prob_expo'
plot(x, type = "values", ...)  
```

Arguments

- **x**: Return value from `prob_expo`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
See Also

prob_exp to calculate results
summary.prob_exp to summarize results

Examples

result <- prob_exp(rate = 1, ub = 2.996)
plot(result, type = "values")

plot.prob_fdist

Plot method for the probability calculator (F-distribution)

Description

Plot method for the probability calculator (F-distribution)

Usage

S3 method for class 'prob_fdist'
plot(x, type = "values", ...)

Arguments

x
Return value from prob_fdist

type
Probabilities ("probs") or values ("values")

...
further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_fdist to calculate results
summary.prob_fdist to summarize results

Examples

result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
plot(result, type = "values")
Description

Plot method for the probability calculator (log normal)

Usage

```r
## S3 method for class 'prob_lnorm'
plot(x, type = "values", ...)  
```

Arguments

- `x`: Return value from `prob_lnorm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_lnorm` to calculate results
- `plot.prob_lnorm` to plot results

Examples

```r
result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
plot(result, type = "values")
```

Description

Plot method for the probability calculator (normal)

Usage

```r
## S3 method for class 'prob_norm'
plot(x, type = "values", ...)  
```

Arguments

- `x`: Return value from `prob_norm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods
Arguments

- **x**: Return value from `prob_norm`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_norm` to calculate results
- `summary.prob_norm` to summarize results

Examples

```r
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
plot(result)
```

plot.prob_pois
Plot method for the probability calculator (poisson)

Description

Plot method for the probability calculator (poisson)

Usage

```r
## S3 method for class 'prob_pois'
plot(x, type = "values", ...)
```

Arguments

- **x**: Return value from `prob_pois`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
See Also

prob_poiss to calculate results
summary.prob_poiss to summarize results

Examples

```r
result <- prob_poiss(lambda = 1, ub = 3)
plot(result, type = "values")
```

plot.prob_tdist

* Plot method for the probability calculator (t-distribution)*

Description

Plot method for the probability calculator (t-distribution)

Usage

```r
## S3 method for class 'prob_tdist'
plot(x, type = "probs", ...)  # or "values"
```

Arguments

- **x**: Return value from `prob_tdist`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_tdist to calculate results
summary.prob_tdist to summarize results

Examples

```r
result <- prob_tdist(df = 10, ub = 2.228)
plot(result, type = "values")
```
plot.prob_unif
Plot method for the probability calculator (uniform)

Description

Plot method for the probability calculator (uniform)

Usage

```r
## S3 method for class 'prob_unif'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_unif`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_unif` to calculate results
- `summary.prob_unif` to summarize results

Examples

```r
result <- prob_unif(min = 0, max = 1, ub = 0.3)
plot(result, type = "values")
```

plot.single_mean
Plot method for the single_mean function

Description

Plot method for the single_mean function

Usage

```r
## S3 method for class 'single_mean'
plot(x, plots = "hist", shiny = FALSE, custom = FALSE, ...)
```
Arguments

x Return value from single_mean
plots Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample mean and the confidence interval. "simulate" shows the location of the sample mean and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny Did the function call originate inside a shiny app
custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

See Also

single_mean to generate the result
summary.single_mean to summarize results

Examples

result <- single_mean(diamonds, "price", comp_value = 3500)
plot(result, plots = c("hist", "simulate"))
Arguments

- **x**: Return value from `single_prop`.
- **plots**: Plots to generate. "bar" shows a bar chart of the data. The "simulate" chart shows the location of the sample proportion and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis.
- **shiny**: Did the function call originate inside a shiny app.
- **custom**: Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.
- **...**: further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant.

See Also

- `single_prop` to generate the result
- `summary.single_prop` to summarize the results

Examples

```r
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
plot(result, plots = c("bar", "simulate"))
```

```
print.rcorr

Print method for the correlation function

Description

Print method for the correlation function

Usage

### S3 method for class 'rcorr'

```r
print(x, ...)
```

Arguments

- **x**: Return value from `correlation`.
- **...**: further arguments passed to or from other methods.
Description

Probability calculator for the binomial distribution

Usage

prob_binom(n, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- **n**: Number of trials
- **p**: Probability
- **lb**: Lower bound on the number of successes
- **ub**: Upper bound on the number of successes
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

See Also

- `summary.prob_binom` to summarize results
- `plot.prob_binom` to plot results

Examples

```r
prob_binom(n = 10, p = 0.3, ub = 3)
```
Description

Probability calculator for the chi-squared distribution

Usage

prob_chisq(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

df Degrees of freedom
lb Lower bound (default is 0)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_chisq to summarize results
plot.prob_chisq to plot results

Examples

prob_chisq(df = 1, ub = 3.841)
**Description**

Probability calculator for a discrete distribution

**Usage**

```r
prob_disc(v, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

**Arguments**

- `v`: Values
- `p`: Probabilities
- `lb`: Lower bound on the number of successes
- `ub`: Upper bound on the number of successes
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

**Details**

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

**See Also**

- `summary.prob_disc` to summarize results
- `plot.prob_disc` to plot results

**Examples**

```r
prob_disc(v = 1:6, p = 1/6, pub = 0.95)
prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
```
prob_expo

Probability calculator for the exponential distribution

Description

Probability calculator for the exponential distribution

Usage

\[
\text{prob_expo}(\text{rate, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3})
\]

Arguments

- **rate**: Rate
- **lb**: Lower bound (default is 0)
- **ub**: Upper bound (default is Inf)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

See Also

- `summary.prob_expo` to summarize results
- `plot.prob_expo` to plot results

Examples

\[
\text{prob_expo}(\text{rate = 1, ub = 2.996})
\]
Description

Probability calculator for the F-distribution

Usage

prob_fdist(df1, df2, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

df1 Degrees of freedom
df2 Degrees of freedom
lb Lower bound (default is 0)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_fdist to summarize results
plot.prob_fdist to plot results

Examples

prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
Description

Probability calculator for the log normal distribution

Usage

prob_lnorm(meanlog, sdlog, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

meanlog  Mean of the distribution on the log scale
sdlog   Standard deviation of the distribution on the log scale
lb       Lower bound (default is -Inf)
ub       Upper bound (default is Inf)
plb      Lower probability bound
pub      Upper probability bound
dec      Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_lnorm to summarize results
plot.prob_lnorm to plot results

Examples

prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
**Description**

Probability calculator for the normal distribution

**Usage**

```r
prob_norm(mean, stdev, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

**Arguments**

- **mean**: Mean
- **stdev**: Standard deviation
- **lb**: Lower bound (default is -Inf)
- **ub**: Upper bound (default is Inf)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

**Details**

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

**See Also**

- `summary.prob_norm` to summarize results
- `plot.prob_norm` to plot results

**Examples**

```r
prob_norm(mean = 0, stdev = 1, ub = 0)
```
**Probability calculator for the poisson distribution**

**Description**

Probability calculator for the poisson distribution

**Usage**

```r
prob_pois(lambda, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

**Arguments**

- `lambda`: Rate
- `lb`: Lower bound (default is 0)
- `ub`: Upper bound (default is Inf)
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

**Details**

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

**See Also**

- `summary.prob_pois` to summarize results
- `plot.prob_pois` to plot results

**Examples**

```r
prob_pois(lambda = 1, ub = 3)
```
Description

Probability calculator for the t-distribution

Usage

prob_tdist(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

df Degrees of freedom
lb Lower bound (default is -Inf)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_tdist to summarize results
plot.prob_tdist to plot results

Examples

prob_tdist(df = 10, ub = 2.228)
prob_unif  Probability calculator for the uniform distribution

Description

Probability calculator for the uniform distribution

Usage

prob_unif(min, max, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- **min**: Minimum value
- **max**: Maximum value
- **lb**: Lower bound (default = 0)
- **ub**: Upper bound (default = 1)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

See Also

- `summary.prob_unif` to summarize results
- `plot.prob_unif` to plot results

Examples

```
prob_unif(min = 0, max = 1, ub = 0.3)
```
## radiant.basics

Description

Launch radiant.basics in the default web browser

Usage

```
radiant.basics(state, ...)
```

Arguments

- `state` Path to state file to load
- `...` additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details

See [https://radiant-rstats.github.io/docs/](https://radiant-rstats.github.io/docs/) for documentation and tutorials

Examples

```r
Not run:
radiant.basics()
End(Not run)
```

## radiant.basics_viewer

Launch radiant.basics in the Rstudio viewer

Description

Launch radiant.basics in the Rstudio viewer

Usage

```
radiant.basics_viewer(state, ...)
```

Arguments

- `state` Path to state file to load
- `...` additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details

See [https://radiant-rstats.github.io/docs/](https://radiant-rstats.github.io/docs/) for documentation and tutorials
Examples

```r
Not run:
radiant.basics_viewer()

End(Not run)
```

---

`radiant.basics_window`  
*Launch radiant.basics in an Rstudio window*

**Description**  
Launch radiant.basics in an Rstudio window

**Usage**

```r
radiant.basics_window(state, ...)
```

**Arguments**

- `state`  
  Path to state file to load

- `...`  
  Additional arguments to pass to shiny::runApp (e.g., port = 8080)

**Details**

See [https://radiant-rstats.github.io/docs/](https://radiant-rstats.github.io/docs/) for documentation and tutorials

**Examples**

```r
Not run:
radiant.basics_window()

End(Not run)
```

---

### salary

*Salaries for Professors*

**Description**

Salaries for Professors

**Usage**

```r
data(salary)
```

**Format**

A data frame with 397 rows and 6 variables
Details

2008-2009 nine-month salary for professors in a college in the US. Description provided in attr(salary,description)

---

single_mean  
*Compare a sample mean to a population mean*

Description

Compare a sample mean to a population mean

Usage

```r
single_mean(
 dataset,
 var,
 comp_value = 0,
 alternative = "two.sided",
 conf_lev = 0.95,
 data_filter = "",
 envir = parent.frame()
)
```

Arguments

- `dataset` : Dataset
- `var` : The variable selected for the mean comparison
- `comp_value` : Population value to compare to the sample mean
- `alternative` : The alternative hypothesis ("two.sided", "greater", or "less")
- `conf_lev` : Span for the confidence interval
- `data_filter` : Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- `envir` : Environment to extract data from

Details

See [https://radiant-rstats.github.io/docs/basics/single_mean.html](https://radiant-rstats.github.io/docs/basics/single_mean.html) for an example in Radiant

Value

A list of variables defined in single_mean as an object of class single_mean

See Also

- `summary.single_mean` to summarize results
- `plot.single_mean` to plot results
Examples

```r
single_mean(diamonds, "price") %>% str()
```

---

**single_prop**  
*Compare a sample proportion to a population proportion*

**Description**

Compare a sample proportion to a population proportion

**Usage**

```r
single_prop(
 dataset,
 var,
 lev = "",
 comp_value = 0.5,
 alternative = "two.sided",
 conf_lev = 0.95,
 test = "binom",
 data_filter = "",
 envir = parent.frame()
)
```

**Arguments**

- `dataset`  
  Dataset
- `var`  
  The variable selected for the proportion comparison
- `lev`  
  The factor level selected for the proportion comparison
- `comp_value`  
  Population value to compare to the sample proportion
- `alternative`  
  The alternative hypothesis ("two.sided", "greater", or "less")
- `conf_lev`  
  Span of the confidence interval
- `test`  
  binomial exact test ("binom") or Z-test ("z")
- `data_filter`  
  Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- `envir`  
  Environment to extract data from

**Details**

See [https://radiant-rstats.github.io/docs/basics/single_prop.html](https://radiant-rstats.github.io/docs/basics/single_prop.html) for an example in Radiant

**Value**

A list of variables used in single_prop as an object of class single_prop
See Also

summary.single_prop to summarize the results
plot.single_prop to plot the results

Examples

single_prop(titanic, "survived") %>% str()
single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less") %>% str()

# S3 method for class 'compare_means'
summary(object, show = FALSE, dec = 3, ...)

Arguments

object Return value from compare_means
show Show additional output (i.e., t.value, df, and confidence interval)
dec Number of decimals to show
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

See Also

compare_means to calculate results
plot.compare_means to plot results

Examples

result <- compare_means(diamonds, "cut", "price")
summary(result)
## S3 method for class `compare_props`

summary(object, show = FALSE, dec = 3, ...)

### Arguments

- **object**: Return value from `compare_props`
- **show**: Show additional output (i.e., chisq.value, df, and confidence interval)
- **dec**: Number of decimals to show
- **...**: further arguments passed to or from other methods

### Details

See [https://radiant-rstats.github.io/docs/basics/compare_props.html](https://radiant-rstats.github.io/docs/basics/compare_props.html) for an example in Radiant

### See Also

- `compare_props` to calculate results
- `plot.compare_props` to plot results

### Examples

```r
result <- compare_props(titanic, "pclass", "survived")
summary(result)
```

## S3 method for class `correlation`

summary(object, cutoff = 0, covar = FALSE, dec = 2, ...)

### Arguments

- **object**: Return value from `correlation`
- **cutoff**: Value for the correlation cutoff
- **covar**: Include correlation coefficients
- **dec**: Number of decimals to show
- **...**: further arguments passed to or from other methods

### Details

See [https://radiant-rstats.github.io/docs/basics/correlation.html](https://radiant-rstats.github.io/docs/basics/correlation.html) for an example in Radiant

### See Also

- `correlation` to calculate correlations
- `plot.correlation` to plot correlations

### Examples

```r
result <- correlation(titanic, "pclass", "survived")
summary(result)
```
Arguments

- **object**: Return value from `correlation`
- **cutoff**: Show only correlations larger than the cutoff in absolute value. Default is a cutoff of 0
- **covar**: Show the covariance matrix (default is FALSE)
- **dec**: Number of decimals to show
- **...**: Further arguments passed to or from other methods.

Details

See [https://radiant-rstats.github.io/docs/basics/correlation.html](https://radiant-rstats.github.io/docs/basics/correlation.html) for an example in Radiant

See Also

- `correlation` to calculate results
- `plot.correlation` to plot results

Examples

```r
result <- correlation(diamonds, c("price", "carat", "table"))
summary(result, cutoff = .3)
```

```r

summary.cross_tabs
Summary method for the cross_tabs function

Description

Summary method for the cross_tabs function

Usage

```r
## S3 method for class 'cross_tabs'
summary(object, check = "", dec = 2, ...)
```

Arguments

- **object**: Return value from `cross_tabs`
- **check**: Show table(s) for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., \((o - e)^2 / e\)), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., \((o - e) / sqrt(e)\)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., \((o - e) / e\))
- **dec**: Number of decimals to show
- **...**: Further arguments passed to or from other methods.
summary.goodness

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

See Also

cross_tabs to calculate results

plot.cross_tabs to plot results

Examples

result <- cross_tabs(newspaper, "Income", "Newspaper")
summary(result, check = c("observed", "expected", "chi_sq"))

summary.goodness

Summary method for the goodness function

Description

Summary method for the goodness function

Usage

```r
## S3 method for class 'goodness'
summary(object, check = "", dec = 2, ...)
```

Arguments

- `object`: Return value from `goodness`
- `check`: Show table(s) for the selected variable (var). "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., \((o - e)^2 / e\)), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., \((o - e) / \sqrt{e}\)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., \((o - e) / e\))
- `dec`: Number of decimals to show
- `...`: further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant
summary.prob_binom

See Also

- `goodness` to calculate results
- `plot.goodness` to plot results

Examples

```r
result <- goodness(newspaper, "Income", c(.3, .7))
summary(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income", c(1/3, 2/3)) %>% summary("observed")
```

summary.prob_binom

Summary method for the probability calculator (binomial)

Description

Summary method for the probability calculator (binomial)

Usage

```r
## S3 method for class 'prob_binom'
summary(object, type = "values", ...)
```

Arguments

- `object` Return value from `prob_binom`
- `type` Probabilities ("probs") or values ("values")
- `...` further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_binom` to calculate results
- `plot.prob_binom` to plot results

Examples

```r
result <- prob_binom(n = 10, p = 0.3, ub = 3)
summary(result, type = "values")
```
Summary method for the probability calculator (Chi-squared distribution)

Description
Summary method for the probability calculator (Chi-squared distribution)

Usage
S3 method for class 'prob_chisq'
summary(object, type = "values", ...)

Arguments
object
Return value from prob_chisq
type
Probabilities ("probs") or values ("values")
... further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also
prob_chisq to calculate results
plot.prob_chisq to plot results

Examples
result <- prob_chisq(df = 1, ub = 3.841)
summary(result, type = "values")

Summary method for the probability calculator (discrete)

Description
Summary method for the probability calculator (discrete)

Usage
S3 method for class 'prob_disc'
summary(object, type = "values", ...)
Arguments

object Return value from `prob_disc`

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

`prob_disc` to calculate results

`plot.prob_disc` to plot results

Examples

```r
result <- prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
summary(result, type = "probs")
```

summary.prob_expo

Summary method for the probability calculator (exponential)

Description

Summary method for the probability calculator (exponential)

Usage

```r
## S3 method for class 'prob_exp'
summary(object, type = "values", ...)
```

Arguments

object Return value from `prob_expo`

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
See Also

prob_expo to calculate results
plot.prob_expo to plot results

Examples

result <- prob_expo(rate = 1, ub = 2.996)
summary(result, type = "values")

result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
summary(result, type = "values")
Summary method for the probability calculator (log normal)

Usage

```r
## S3 method for class 'prob_lnorm'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_lnorm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_lnorm` to calculate results
- `plot.prob_lnorm` to summarize results

Examples

```r
result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
summary(result, type = "values")
```

Summary method for the probability calculator (normal)

Usage

```r
## S3 method for class 'prob_norm'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_norm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_norm` to calculate results
- `plot.prob_norm` to summarize results

Examples

```r
result <- prob_norm(mean = 0, sd = 1, lb = 0, ub = 1)
summary(result, type = "values")
```
Arguments

- **object**: Return value from `prob_norm`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_norm` to calculate results
- `plot.prob_norm` to plot results

Examples

```
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
summary(result)
```

summary.prob_pois

Summary method for the probability calculator (poisson)

Description

Summary method for the probability calculator (poisson)

Usage

```
## S3 method for class 'prob_pois'
summary(object, type = "values", ...)
```

Arguments

- **object**: Return value from `prob_pois`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
See Also

prob_pois to calculate results
plot.prob_pois to plot results

Examples

result <- prob_pois(lambda = 1, ub = 3)
summary(result, type = "values")

S3 method for class 'prob_tdist'
summary(object, type = "values", ...)

Arguments

object Return value from prob_tdist
type Probabilities ("probs") or values ("values")
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_tdist to calculate results
plot.prob_tdist to plot results

Examples

result <- prob_tdist(df = 10, ub = 2.228)
summary(result, type = "values")
summary.prob_unif

Summary method for the probability calculator (uniform)

Description
Summary method for the probability calculator (uniform)

Usage

```r
## S3 method for class 'prob_unif'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_unif`
- `type`: Probabilities ("probs") or values ("values")
- `...`: Further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also
- `prob_unif` to calculate results
- `plot.prob_unif` to plot results

Examples

```r
result <- prob_unif(min = 0, max = 1, ub = 0.3)
summary(result, type = "values")
```

summary.single_mean

Summary method for the single_mean function

Description
Summary method for the single_mean function

Usage

```r
## S3 method for class 'single_mean'
summary(object, dec = 3, ...)
```
Arguments

object Return value from `single_mean`
dec Number of decimals to show
...
 further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

See Also

- `single_mean` to generate the results
- `plot.single_mean` to plot results

Examples

```r
result <- single_mean(diamonds, "price")
summary(result)
diamonds %>% single_mean("price") %>% summary()
```

summary.single_prop Summary method for the single_prop function

Description

Summary method for the single_prop function

Usage

```r
## S3 method for class 'single_prop'
summary(object, dec = 3, ...)
```

Arguments

object Return value from `single_prop`
dec Number of decimals to show
...
 further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant
See Also

- `single_prop` to generate the results
- `plot.single_prop` to plot the results

Examples

```r
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
summary(result)
```
Index

* datasets
 consider, 7
demand_uk, 10
newspaper, 11
salary, 38
clt, 3, 12
compare_means, 4, 13, 41
compare_props, 6, 13, 14, 42
consider, 7
cor2df, 7
correlation, 7, 8, 14, 15, 26, 43
cross_tabs, 9, 15, 16, 43, 44
demand_uk, 10
goodness, 10, 16, 17, 44, 45
newspaper, 11
plot.clt, 12
plot.compare_means, 5, 12, 41
plot.compare_props, 7, 13, 42
plot.correlation, 9, 14, 43
plot.cross_tabs, 10, 15, 44
plot.goodness, 11, 16, 45
plot.prob_binom, 17, 27, 45
plot.prob_disc, 19, 29, 47
plot.prob_chisq, 18, 28, 46
plot.prob_exp, 19, 30, 48
plot.prob_fdist, 20, 31, 48
plot.prob_lnorm, 21, 23, 32, 49
plot.prob_norm, 21, 33, 50
plot.prob_pois, 22, 34, 51
plot.prob_tdist, 23, 35, 51
plot.prob_unif, 24, 36, 52
plot.single_mean, 24, 39, 53
plot.single_prop, 25, 41, 54
print.rcorr, 26
prob_binom, 17, 27, 45
prob_chisq, 18, 28, 46
prob_disc, 19, 29, 47
prob_exp, 19, 20, 30, 47, 48
prob_fdist, 20, 31, 48
prob_lnorm, 21, 32, 49
prob_norm, 21, 22, 33, 49, 50
prob_pois, 22, 23, 34, 50, 51
prob_tdist, 23, 35, 51
prob_unif, 24, 36, 52
radiant.basics, 37
radiant.basics_viewer, 37
radiant.basics_window, 38
salary, 38
single_mean, 25, 39, 53
single_prop, 26, 40, 53, 54
summary.compare_means, 5, 13, 41
summary.compare_props, 7, 14, 42
summary.correlation, 9, 15, 42
summary.cross_tabs, 10, 16, 43
summary.goodness, 11, 17, 44
summary.prob_binom, 17, 27, 45
summary.prob_chisq, 18, 28, 46
summary.prob_disc, 19, 29, 46
summary.prob_exp, 20, 30, 47
summary.prob_fdist, 20, 31, 48
summary.prob_lnorm, 32, 49
summary.prob_norm, 22, 33, 49
summary.prob_pois, 23, 34, 50
summary.prob_tdist, 23, 35, 51
summary.prob_unif, 24, 36, 52
summary.single_mean, 24, 39, 52
summary.single_prop, 26, 41, 53