R topics documented:

clusters_by_doc_table

Description

Returns the number of segment of each cluster for each source document

Usage

```r
clusters_by_doc_table(obj, clust_var = NULL, doc_id = NULL, prop = FALSE)
```

Arguments

- `obj` a corpus, tokens or dtm object
- `clust_var` name of the docvar with the clusters
- `doc_id` docvar identifying the source document
- `prop` if TRUE, returns the percentage of each cluster by document

Details

This function is only useful for previously segmented corpus. If `doc_id` is NULL and there is a `segment_source` docvar, it will be used instead.
cluster_tab

Split a dtm into two clusters with reinert algorithm

Description

Split a dtm into two clusters with reinert algorithm

Usage

```r
cluster_tab(dtm, cc_test = 0.3, tsj = 3)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dtm</td>
<td>to be split, passed by rainette</td>
</tr>
<tr>
<td>cc_test</td>
<td>maximum contingency coefficient value for the feature to be kept in both groups.</td>
</tr>
<tr>
<td>tsj</td>
<td>minimum feature frequency in the dtm</td>
</tr>
</tbody>
</table>

Details

Internal function, not to be used directly

Value

An object of class hclust and rainette

Examples

```r
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 2)
res <- rainette(dtm, k = 3, min_segment_size = 15)
corpus$cluster <- cutree(res, k = 3)
clusters_by_doc_table(corpus, clust_var = "cluster", prop = TRUE)
```
cutree
__Cut a tree into groups__

Description
Cut a tree into groups

Usage
`cutree(tree, ...)`

Arguments
- `tree` the hclust tree object to be cut
- `...` arguments passed to other methods

Details
If `tree` is of class `rainette`, invokes `cutree_rainette()`. Otherwise, just run `stats::cutree()`.

Value
A vector with group membership.

cutree_rainette
__Cut a rainette result tree into groups of documents__

Description
Cut a rainette result tree into groups of documents

Usage
`cutree_rainette(hres, k = NULL, h = NULL, ...)`

Arguments
- `hres` the rainette result object to be cut
- `k` the desired number of clusters
- `h` unsupported
- `...` arguments passed to other methods

Value
A vector with group membership.
cutree_rainette2
Cut a rainette2 result object into groups of documents

Description
Cut a rainette2 result object into groups of documents

Usage
cutree_rainette2(res, k, criterion = c("chi2", "n"), ...)

Arguments

res
the rainette2 result object to be cut

k
the desired number of clusters

criterion
criterion to use to choose the best partition. chi2 means the partition with the
maximum sum of chi2, n the partition with the maximum size.

...
arguments passed to other methods

Value
A vector with group membership.

See Also
rainette2_complete_groups()

docs_by_cluster_table Returns, for each cluster, the number of source documents with at least
n segments of this cluster

Description
Returns, for each cluster, the number of source documents with at least n segments of this cluster

Usage
docs_by_cluster_table(obj, clust_var = NULL, doc_id = NULL, threshold = 1)

Arguments

obj
a corpus, tokens or dtm object

clust_var
ame of the docvar with the clusters

doc_id
docvar identifying the source document

threshold
the minimal number of segments of a given cluster that a document must include
to be counted
import_corpus_iramuteq

Details

This function is only useful for previously segmented corpus. If doc_id is NULL and there is a
segment_source docvar, it will be used instead.

See Also

clusters_by_doc_table()

Examples

```
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 2)
res <- rainette(dtm, k = 3, min_segment_size = 15)
corpus$cluster <- cutree(res, k = 3)
docs_by_cluster_table(corpus, clust_var = "cluster")
```

import_corpus_iramuteq

Import a corpus in Iramuteq format

Description

Import a corpus in Iramuteq format

Usage

```
import_corpus_iramuteq(f, id_var = NULL, thematics = c("remove", "split"), ...)
```

Arguments

- **f**
a file name or a connection
- **id_var**
name of metadata variable to be used as documents id
- **thematics**
if "remove", thematics lines are removed. If "split", texts as splitted at each thematic, and metadata duplicated accordingly
- **...**
arguments passed to file if f is a file name.

Details

A description of the Iramuteq corpus format can be found here: http://www.iramuteq.org/
documentation/html/2-2-2-les-regles-de-formatages
merge_segments

Value

A quanteda corpus object. Note that metadata variables in docvars are all imported as characters.

merge_segments Merges uces into uc according to minimum uc size

Description

rainette_uc_index docvar

Usage

merge_segments(dtm, min_segment_size = 10, doc_id = NULL)

Arguments

dtm dtm of uces, with a rainette_uce_id docvar
min_segment_size minimum number of forms by uc
doc_id character name of a dtm docvar which identifies source documents.

Details

If min_segment_size == 0, different uc ids are added to the dtm docvars (ie no uce are merged together). If min_segment_size > 0 then doc_id must be provided unless the corpus comes from split_segments, in this case segment_source is used by default.

Value

the original dtm with a new rainette_uc_id docvar.

order_docs

return documents indices ordered by CA first axis coordinates

Description

return documents indices ordered by CA first axis coordinates

Usage

order_docs(m)

Arguments

m dtm on which to compute the CA and order documents, converted to an integer matrix.
Details

Internal function, not to be used directly

Value

ordered list of document indices

Usage

rainette(
 dtm,
 k = 10,
 min_segment_size = 0,
 doc_id = NULL,
 min_split_members = 5,
 cc_test = 0.3,
 tsj = 3,
 min_members,
 min_uc_size
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dtm</td>
<td>quanteda dfm object of documents to cluster, usually the result of split_segments()</td>
</tr>
<tr>
<td>k</td>
<td>maximum number of clusters to compute</td>
</tr>
<tr>
<td>min_segment_size</td>
<td>minimum number of forms by document</td>
</tr>
<tr>
<td>doc_id</td>
<td>character name of a dtm docvar which identifies source documents.</td>
</tr>
<tr>
<td>min_split_members</td>
<td>don’t try to split groups with fewer members</td>
</tr>
<tr>
<td>cc_test</td>
<td>contingency coefficient value for feature selection</td>
</tr>
<tr>
<td>tsj</td>
<td>minimum frequency value for feature selection</td>
</tr>
<tr>
<td>min_members</td>
<td>deprecated, use min_split_members instead</td>
</tr>
<tr>
<td>min_uc_size</td>
<td>deprecated, use min_segment_size instead</td>
</tr>
</tbody>
</table>
Details

See the references for original articles on the method. Computations and results may differ quite a bit, see the package vignettes for more details.

The dtm object is automatically converted to boolean.

If `min_segment_size > 0` then `doc_id` must be provided unless the corpus comes from `split_segments`, in this case `segment_source` is used by default.

Value

The result is a list of both class `hclust` and `rainette`. Besides the elements of an `hclust` object, two more results are available:

- `uce_groups` give the group of each document for each k
- `group` give the group of each document for the maximum value of k available

References

See Also

- `split_segments()`, `rainette2()`, `cutree_rainette()`, `rainette_plot()`, `rainette_explor()`

Examples

```r
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)
res <- rainette(dtm, k = 3, min_segment_size = 15)
```
Description

Corpus clustering based on the Reinert method - Double clustering

Usage

```r
rainette2(
  x,
  y = NULL,
  max_k = 5,
  min_segment_size1 = 10,
  min_segment_size2 = 15,
  doc_id = NULL,
  min_members = 10,
  min_chi2 = 3.84,
  uc_size1,
  uc_size2,
  ...
)
```

Arguments

- **x**: either a `quanteda dfm` object or the result of `rainette()`
- **y**: if `x` is a `rainette()` result, this must be another `rainette()` result from same `dfm` but with different `uc size`.
- **max_k**: maximum number of clusters to compute
- **min_segment_size1**: if `x` is a `dfm`, minimum `uc size` for first clustering
- **min_segment_size2**: if `x` is a `dfm`, minimum `uc size` for second clustering
- **doc_id**: character name of a `dtm docvar` which identifies source documents.
- **min_members**: minimum members of each cluster
- **min_chi2**: minimum chi2 for each cluster
- **uc_size1** and **uc_size2**: deprecated, use `min_segment_size1` and `min_segment_size2` instead
- **...**: if `x` is a `dfm` object, parameters passed to `rainette()` for both simple clusterings
Details

You can pass a quanteda dfm as x object, the function then performs two simple clustering with varying minimum uc size, and then proceed to find optimal partitions based on the results of both clusterings.

If both clusterings have already been computed, you can pass them as x and y arguments and the function will only look for optimal partitions.

doc_id must be provided unless the corpus comes from split_segments, in this case segment_source is used by default.

For more details on optimal partitions search algorithm, please see package vignettes.

Value

A tibble with optimal partitions found for each available value of k as rows, and the following columns:

- clusters list of the crossed original clusters used in the partition
- k the number of clusters
- chi2 sum of the chi2 value of each cluster
- n sum of the size of each cluster
- groups group membership of each document for this partition (NA if not assigned)

References

See Also

rainette(), cutree_rainette2(), rainette2_plot(), rainette2_explor()

Examples

require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)

res1 <- rainette(dtm, k = 5, min_segment_size = 10)
res2 <- rainette(dtm, k = 5, min_segment_size = 15)
res <- rainette2(res1, res2, max_k = 4)

rainette2_complete_groups

Complete groups membership with knn classification

Description

Starting with groups membership computed from a *rainette2* clustering, every document not assigned to a cluster is reassigned using a k-nearest neighbour classification.

Usage

```r
rainette2_complete_groups(dfm, groups, k = 1, ...)
```

Arguments

- `dfm`: dfm object used for *rainette2* clustering.
- `groups`: group membership computed by `cutree` on *rainette2* result.
- `k`: number of neighbours considered.
- `...`: other arguments passed to `FNN::knn`.

Value

Completed group membership vector.

See Also

`cutree_rainette2`, `FNN::knn`.

Description

Shiny gadget for *rainette2* clustering exploration

Usage

```r
rainette2_explor(res, dtm = NULL, corpus_src = NULL)
```
Arguments

res result object of a rainette2 clustering

dtm the dfm object used to compute the clustering

corpus_src the quanteda corpus object used to compute the dtm

Value

No return value, called for side effects.

See Also

rainette2_plot()

Description

Generate a clustering description plot from a rainette2 result

Usage

rainette2_plot(
 res,
 dtm,
 k = NULL,
 criterion = c("chi2", "n"),
 complete_groups = FALSE,
 type = c("bar", "cloud"),
 n_terms = 15,
 free_scales = FALSE,
 measure = c("chi2", "lr", "frequency", "docprop"),
 show_negative = FALSE,
 text_size = 10
)

Arguments

res result object of a rainette2 clustering

dtm the dfm object used to compute the clustering

k number of groups. If NULL, use the biggest number possible

criterion criterion to use to choose the best partition. chi2 means the partition with the maximum sum of chi2, n the partition with the maximum size.

complete_groups if TRUE, documents with NA cluster are reaffected by k-means clustering initialised with current groups centers.
Shiny gadget for rainette clustering exploration

Description

Shiny gadget for rainette clustering exploration

Usage

rainette_explor(res, dtm = NULL, corpus_src = NULL)

Arguments

res
result object of a rainette clustering
dtm
the dfm object used to compute the clustering
corpus_src
the quanteda corpus object used to compute the dtm

Value

No return value, called for side effects.

See Also

rainette_plot
Examples

```r
## Not run:
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)
res <- rainette(dtm, k = 3, min_segment_size = 15)
rainette_explor(res, dtm, corpus)

## End(Not run)
```

Description

Generate a clustering description plot from a rainette result

Usage

```r
rainette_plot(
  res, 
  dtm, 
  k = NULL, 
  type = c("bar", "cloud"),
  n_terms = 15,
  free_scales = FALSE,
  measure = c("chi2", "lr", "frequency", "docprop"),
  show_negative = FALSE,
  text_size = NULL
)
```

Arguments

- `res` : result object of a rainette clustering
- `dtm` : the dfm object used to compute the clustering
- `k` : number of groups. If NULL, use the biggest number possible
- `type` : type of term plots : barplot or wordcloud
- `n_terms` : number of terms to display in keyness plots
- `free_scales` : if TRUE, all the keyness plots will have the same scale
- `measure` : statistics to compute
- `show_negative` : if TRUE, show negative keyness features
- `text_size` : font size for barplots, max word size for wordclouds
rainette_stats

Generate cluster keyness statistics from a rainette result

Description

Generate cluster keyness statistics from a rainette result

Usage

```
rainette_stats(
  groups,
  dtm,
  measure = c("chi2", "lr", "frequency", "docprop"),
  n_terms = 15,
  show_negative = TRUE,
  max_p = 0.05
)
```

Arguments

- **groups**: groups membership computed by `cutree_rainette` or `cutree_rainette2`
- **dtm**: the dfm object used to compute the clustering
- **measure**: statistics to compute
- **n_terms**: number of terms to display in keyness plots
- **show_negative**: if TRUE, show negative keyness features
- **max_p**: maximum keyness statistic p-value

Examples

```
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)
res <- rainette(dtm, k = 3, min_segment_size = 15)
rainette_plot(res, dtm)
```
Value

A list with, for each group, a data.frame of keyness statistics for the most specific n_terms features.

See Also

quanteda.textstats::textstat_keyness(), rainette_explor(), rainette_plot()

Examples

```r
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)
res <- rainette(dtm, k = 3, min_segment_size = 15)
groups <- cutree_rainette(res, k = 3)
rainette_stats(groups, dtm)
```

Description

Remove features from dtm of each group base don cc_test and tsj

Usage

```r
select_features(m, indices1, indices2, cc_test = 0.3, tsj = 3)
```

Arguments

- `m`: global dtm
- `indices1`: indices of documents of group 1
- `indices2`: indices of documents of group 2
- `cc_test`: maximum contingency coefficient value for the feature to be kept in both groups.
- `tsj`: minimum feature frequency in the dtm

Details

Internal function, not to be used directly
Value

a list of two character vectors: cols1 is the name of features to keep in group 1, cols2 the name of features to keep in group 2

split_segments

Split a character string or corpus into segments

Description

Split a character string or corpus into segments, taking into account punctuation where possible

Usage

split_segments(obj, segment_size = 40, segment_size_window = NULL)

S3 method for class 'character'
split_segments(obj, segment_size = 40, segment_size_window = NULL)

S3 method for class 'Corpus'
split_segments(obj, segment_size = 40, segment_size_window = NULL)

S3 method for class 'corpus'
split_segments(obj, segment_size = 40, segment_size_window = NULL)

S3 method for class 'tokens'
split_segments(obj, segment_size = 40, segment_size_window = NULL)

Arguments

- obj: character string, quanteda or tm corpus object
- segment_size: segment size (in words)
- segment_size_window: window around segment size to look for best splitting point

Value

If obj is a tm or quanteda corpus object, the result is a quanteda corpus.

Examples

require(quanteda)
split_segments(data_corpus_inaugural)
Switch documents between two groups to maximize chi-square value

Description

Switch documents between two groups to maximize chi-square value

Usage

```r
going { switch_docs(m, indices, max_index, max_chisq) }
```

Arguments

- `m`: original dtm
- `indices`: documents indices ordered by first CA axis coordinates
- `max_index`: document index where the split is maximum
- `max_chisq`: maximum chi-square value

Details

Internal function, not to be used directly

Value

A list of two vectors `indices1` and `indices2`, which contain the documents indices of each group after documents switching, and a `chisq` value, the new corresponding chi-square value after switching
Index

cluster_tab, 3
clusters_by_doc_table, 2
clusters_by_doc_table(), 6
cutree, 4
cutree_rainette, 4
cutree_rainette(), 4, 9
cutree_rainette2, 5
cutree_rainette2(), 11, 12
docs_by_cluster_table, 5
docs_by_cluster_table(), 3

file, 6
FNN::knn(), 12

import_corpus_iramuteq, 6

merge_segments, 7

order_docs, 7

quanteda.textstats::textstat_keyness(), 14, 16, 17

rainette, 8
rainette(), 10, 11
rainette2, 10
rainette2(), 9
rainette2_complete_groups, 12
rainette2_complete_groups(), 5, 14
rainette2_explor, 12
rainette2_explor(), 11, 14
rainette2_plot, 13
rainette2_plot(), 11, 13
rainette_explor, 14
rainette_explor(), 9, 16, 17
rainette_plot, 15
rainette_plot(), 9, 17
rainette_stats, 16
rainette_stats(), 16

select_features, 17
split_segments, 18
split_segments(), 8, 9
stats::cutree(), 4
switch_docs, 19