Package ‘ramcmc’

October 6, 2021

Title Robust Adaptive Metropolis Algorithm
Version 0.1.2
Date 2021-10-06
The package also includes fast functions for rank-one Cholesky update and downdate. These functions can be used directly from R or the corresponding C++ header files can be easily linked to other R packages.
License GPL (>= 2)
BugReports https://github.com/helske/ramcmc/issues
Suggests testthat, knitr, rmarkdown
Imports Rcpp (>= 0.12.8)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 5.0.1
VignetteBuilder knitr
NeedsCompilation yes
Author Jouni Helske [aut, cre] (<https://orcid.org/0000-0001-7130-793X>)
Maintainer Jouni Helske <jouni.helske@iki.fi>
Repository CRAN
Date/Publication 2021-10-06 21:40:02 UTC

R topics documented:

adapt_S .. 2
chol_downdate .. 3
chol_update .. 4

Index 5
adapt_S

Update the Proposal of RAM Algorithm

Description

Given the lower triangular matrix \(S \) obtained from the Cholesky decomposition of the shape of the proposal distribution, function \(\text{adapt}_S \) updates \(S \) according to the RAM algorithm.

Usage

\[
\text{adapt}_S(S, u, \text{current}, n, \text{target} = 0.234, \text{gamma} = 2/3)
\]

Arguments

- \(S \): A lower triangular matrix corresponding to the Cholesky decomposition of the scale of the proposal distribution.
- \(u \): A vector with length matching with the dimensions of \(S \).
- \(\text{current} \): The current acceptance probability.
- \(n \): Scaling parameter corresponding to the current iteration number.
- \(\text{target} \): The target acceptance rate. Default is 0.234.
- \(\text{gamma} \): Scaling parameter. Default is 2/3.

Value

If the resulting matrix is positive definite, an updated value of \(S \). Otherwise original \(S \) is returned.

Note

If the downdating would result non-positive definite matrix, no adaptation is performed.

References

Examples

```r
# sample from standard normal distribution
# use proposals from the uniform distribution on interval (-s, s), where we adapt s
adapt_mcmc <- function(n = 10000, s) {
  x <- numeric(n)
  loglik_old <- dnorm(x[1], log = TRUE)
  for (i in 2:n) {
    u <- s * runif(1, -1, 1)
    # adapt the proposal distribution
  }
  return(x)
}
```
prop <- x[i] + u
loglik <- dnorm(prop, log = TRUE)
accept_prob <- min(1, exp(loglik - loglik_old))
if (runif(1) < accept_prob) {
x[i] <- prop
loglik_old <- loglik
} else {
 x[i] <- x[i - 1]
}
Adapt only during the burn-in
if (i < n/2) {
 s <- adapt_S(s, u, accept_prob, i)
}
list(x = x[(n/2):n], s = s)

out <- adapt_mcmc(1e5, 2)
out$s
hist(out$x)
acceptance rate:
1 / mean(rle(out$x)$lengths)

chol_downdate

Rank-one Downdate of Cholesky Decomposition

Description

Given the lower triangular matrix L obtained from the Cholesky decomposition of A, function chol_downdate updates L such that it corresponds to the decomposition of A - u' * u' (if such decomposition exists).

Usage

chol_downdate(L, u)

Arguments

- **L**: A lower triangular matrix. Strictly upper diagonal part is not referenced.
- **u**: A vector with length matching with the dimensions of L.

Value

Updated L.

Note

The function does not check that the resulting matrix is positive semidefinite.
chol_update

Rank-one Update of Cholesky Decomposition

Description

Given the lower triangular matrix L obtained from the Cholesky decomposition of A, function `chol_update` updates L such that it corresponds to the decomposition of $A + uu'$.

Usage

```r
chol_update(L, u)
```

Arguments

- **L**: A lower triangular matrix. Strictly upper diagonal part is not referenced.
- **u**: A vector with length matching with the dimensions of L.

Value

Updated L.

Examples

```r
L <- matrix(c(4, 3, 0, 5), 2, 2)
u <- c(1, 2)
chol_update(L, u)
t(chol(L %*% t(L) + u %*% t(u)))
```
Index

adapt_S, 2

chol_downdate, 3
chol_update, 4