Package ‘rankinma’

March 8, 2024

Type Package

Title Rank in Network Meta-Analysis

Version 0.2.1

Date 2024-03-08

Maintainer Enoch Kang <y.enoch.kang@gmail.com>

Description A supportive collection of functions for gathering and plotting treatment ranking metrics after network meta-analysis.

License GPL (>= 3)

URL https://rankinma.shinyapps.io/rankinma/

Depends R (>= 4.2.0)

Imports graphics, grDevices, mvtnorm, netmeta, stats, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Language en-US

Encoding UTF-8

RoxygenNote 7.2.2

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Chiehfeng Chen [aut] (<https://orcid.org/0000-0002-1595-6553>), Enoch Kang [aut, cre, trl] (<https://orcid.org/0000-0002-4903-942X>), Wen-Hsuan Hou [aut] (<https://orcid.org/0000-0002-4376-6298>), Jin-Hua Chen [aut] (<https://orcid.org/0000-0002-3130-4125>), Yu-Chieh Chuang [aut] (<https://orcid.org/0000-0002-7124-6556>), Edwin Chan [aut]

Repository CRAN

Date/Publication 2024-03-08 22:00:02 UTC
R topics documented:

- rankinma-package ... 2
- GetMetrics .. 3
- PlotBar .. 4
- PlotBeads ... 5
- PlotHeat ... 7
- PlotLine .. 8
- PlotSpie .. 10
- SetMetrics .. 11

Index

<table>
<thead>
<tr>
<th>rankinma-package</th>
<th>rankinma: Rank in Network Meta-Analysis</th>
</tr>
</thead>
</table>

Description

`rankinma` is an R package that supports users to easily obtain and visualize various metrics of treatment ranking from network meta-analysis no matter using either frequentist or Bayesian approach. Development of package `rankinma` is based on **R version 4.2.2 (2022-10-31 ucrt)**. Extra imported packages are as follows:

- `mvtnorm` (version 1.1-3)
- `netmeta` (version 2.6-0)

Details

Current version consists of seven functions, including two functions for data preparation (function `GetMetrics` and `SetMetrics`) and five functions for visualization of treatment ranking metrics (i.e. `PlotBeads`, `PlotLine`, `PlotBar`, `PlotHeat`, and `PlotSpie`). Probabilities of treatments on each possible rank can be visualized using `PlotLine` and `PlotBar`. Due to concise information, `PlotBeads` is recommended to be used for global metrics of treatment ranking, such as P-score and SUCRA. The other four visualization functions can also generate graphics of the global metrics.

References

GetMetrics

GetMetrics

Get treatment ranking metrics from network meta-analysis output

Description

GetMetrics() is a function for gathering metrics of treatment ranking from netmeta output.

Usage

```r
GetMetrics(
  data,
  outcome = NULL,
  prefer = NULL,
  metrics = NULL,
  model = "random",
  simt = 1000
)
```

Arguments

- `data` DATA of netmeta output.
- `outcome` STRING for name of outcome.
- `prefer` STRING for indicating which direction is beneficial treatment effect in terms of "small" and "large" values in statistic test.
- `metrics` STRING for metrics of treatment ranking in terms of "SUCRA", "P-score", and "P-best" for the value of surface under the cumulative ranking curve, P-score, and probability of achieving the best treatment.
- `model` STRING for analysis model in terms of "random" and "common" for random-effects model and common-effect model.
- `simt` INTEGER for times of simulations to estimate surface under the cumulative ranking curve (SUCRA).

Value

GetMetrics() returns a data.frame with three columns, including treatment, metrics of treatment ranking, and outcome name.
References

See Also

SetMetrics

Examples

```r
## Not run:
#library(netmeta)
data(Senn2013)
nma <- netmeta(TE, seTE, treat1, treat2, studlab, data = Senn2013, sm = "SMD")

# Get SUCRA
dataMetrics <- GetMetrics(nma, outcome = "HbA1c", prefer = "small", metrics = "SUCRA", model = "random", simt = 1000)

# Get P-score
dataMetrics <- GetMetrics(nma, outcome = "HbA1c", prefer = "small", metrics = "P-score", model = "random", simt = 1000)
## End(Not run)
```

PlotBar

Illustrate bar chart of treatment ranking metrics

Description

PlotBar() is a function for illustrating bar chart in both separated and accumulative styles.

Usage

```r
PlotBar(data, accum = NULL, merge = NULL, color = NULL, rotateX = NULL)
```

Arguments

- `data`: DATA of metrics for treatment ranking.
- `accum`: LOGIC value for indicating whether use accumulative probabilities. This parameter is only for probabilities but not global metrics of treatment ranking.
- `merge`: LOGIC value for indicating whether merge bar charts together.
- `color`: LIST of colors for treatments in a network meta-analysis, or CHARACTER of a color for the bar on not accumulated bar chart.
- `rotateX`: NUMERIC value between 0 and 360 for rotating x axis labels of bars.
PlotBeads

Value

PlotBar() returns a bar chart.

References

See Also

GetMetrics, SetMetrics, PlotBeads, PlotLine, PlotHeat, PlotSpie

Examples

Not run:
#library(netmeta)
#data(Senn2013)
#nma <- netmeta(TE, seTE, treat1, treat2,
#studlab, data = Senn2013, sm = "SMD")

Get SUCRA
#dataMetrics <- GetMetrics(nma, outcome = "HbA1c", prefer = "small", metrics = "SUCRA",
#model = "random", simt = 1000)

Set data for rankinma
#dataRankinma <- SetMetrics(dataMetrics, tx = tx, outcome = outcome,
#metrics = SUCRA, metrics.name = "SUCRA")

Illustrate bar plot
#PlotBar(dataRankinma)
End(Not run)

PlotBeads Illustrate beading plot

Description

PlotBeads() is a function for illustrating beading plot.

Usage

PlotBeads(
 data,
 scaleX = "Rank",
 txtValue = "Effects",
 color = NULL,
 lgcBlind = FALSE,
szPnt = NULL,
szFntTtl = NULL,
szFntTtlX = NULL,
szFntX = NULL,
szFntY = NULL,
szFntTxt = NULL,
szFntLgnd = NULL,
rotateTxt = 60
)

Arguments

data DATA of metrics for treatment ranking.
scaleX STRING for indicating scale on the x axis.
txtValue STRING for indicating labels of metrics or effects on each point.
color LIST of colors for treatments in a network meta-analysis.
lgcBlind LOGIC value for indicating whether to display with color-blind friendly.
szPnt NUMERIC value for indicating point size of ranking metrics.
szFntTtl NUMERIC value for indicating font size of main title.
szFntTtlX NUMERIC value for indicating font size of title on X-axis.
szFntX NUMERIC value for indicating font size of numeric scale on X-axis.
szFntY NUMERIC value for indicating font size of outcome name(s).
szFntTxt NUMERIC value for indicating font size of value of each point.
szFntLgnd NUMERIC value for indicating legend font size.
rotateTxt NUMERIC value between 0 and 360 for rotating labels of text values of each point.

Value

PlotBeads() returns a beading plot.

Author(s)

Chiehfeng Chen & Enoch Kang

References

See Also

GetMetrics, SetMetrics
PlotHeat

Illustrate heat plot for treatment ranking

Description

PlotHeat() is a function for illustrating heat plot.

Usage

PlotHeat(data, sorttx = NULL, rotateX = NULL, szFntY = NULL)

Arguments

- **data**: DATA of metrics for treatment ranking.
- **sorttx**: LOGIC value for indicating whether sort heat plot by treatments.
- **rotateX**: NUMERIC value between 0 and 360 for rotating x axis labels of heat plot.
- **szFntY**: NUMERIC value for indicating font size of outcome name(s).

Value

PlotHeat() returns a heat plot.
See Also

- GetMetrics, SetMetrics, PlotBeads, PlotBar, PlotLine, PlotSpie

Examples

```r
## Not run:
#library(netmeta)
data(Senn2013)
nma <- netmeta(TE, seTE, treat1, treat2,
#studlab, data = Senn2013, sm = "SMD")

# Get SUCRA
nma.1 <- GetMetrics(nma, outcome = "HbA1c.random", prefer = "small", metrics = "SUCRA",
#model = "random", simt = 1000)
nma.2 <- GetMetrics(nma, outcome = "HbA1c.common", prefer = "small", metrics = "SUCRA",
#model = "common", simt = 1000)

# Combine metrics of multiple outcomes
dataMetrics <- rbind(nma.1, nma.2)

# Set data for rankinma
dataRankinma <- SetMetrics(dataMetrics, tx = tx, outcome = outcome,
#metrics = SUCRA, metrics.name = "SUCRA")

# Illustrate heat plot
#PlotHeat(data = dataRankinma)
## End(Not run)
```

PlotLine
Illustrate line chart of treatment ranking metrics

Description

PlotLine() is a function for illustrating line chart in both simple and composite styles.

Usage

```r
PlotLine(
  data,
  accum = NULL,
  compo = NULL,
  merge = NULL,
  color = NULL,
  rotateX = NULL
)
```
Arguments

- **data**: DATA of metrics for treatment ranking.
- **accum**: LOGIC value for indicating whether use accumulative probabilities. This parameter is only for probabilities but not global metrics of treatment ranking.
- **compo**: LOGIC value for indicating whether use composite line chart. This parameter is only for probabilities but not global metrics of treatment ranking.
- **merge**: LOGIC value for indicating whether merge line charts together.
- **color**: LIST of colors for treatments in a network meta-analysis, or CHARACTER of a color for the line on not composite line chart.
- **rotateX**: NUMERIC value between 0 and 360 for rotating x axis labels of line chart.

Value

- **PlotLine()** returns a line chart.

References

See Also

- GetMetrics
- SetMetrics
- PlotBeads
- PlotBar
- PlotHeat
- PlotSpie

Examples

```r
## Not run:
#library(netmeta)
#data(Senn2013)
#nma <- netmeta(TE, seTE, treat1, treat2,
#studlab, data = Senn2013, sm = "SMD")

# Get SUCRA
#dataMetrics <- GetMetrics(nma, outcome = "HbA1c", prefer = "small", metrics = "SUCRA",
#model = "random", simt = 1000)

# Set data for rankinma
#dataRankinma <- SetMetrics(dataMetrics, tx = tx, outcome = outcome,
#metrics = SUCRA, metrics.name = "SUCRA")

# Illustrate bar plot
#PlotLine(dataRankinma)
## End(Not run)
```
PlotSpie
Illustrate beading plot

Description

`PlotSpie()` is a function for illustrating spie plot.

Usage

```r
PlotSpie(data, color = NULL)
```

Arguments

- `data`
 DATA of metrics for treatment ranking.
- `color`
 LIST of colors for outcomes in a network meta-analysis.

Value

`PlotSpie()` returns a spie plot.

References

See Also

`GetMetrics`, `SetMetrics`, `PlotBeads`, `PlotBar`, `PlotLine`, `PlotHeat`

Examples

```r
## Not run:
library(netmeta)
data(Senn2013)
nma <- netmeta(TE, seTE, treat1, treat2, studlab, data = Senn2013, sm = "SMD")

# Get SUCRA
nma.1 <- GetMetrics(nma, outcome = "HbA1c.random", prefer = "small", metrics = "SUCRA",
  model = "random", simt = 1000)
nma.2 <- GetMetrics(nma, outcome = "HbA1c.common", prefer = "small", metrics = "SUCRA",
  model = "common", simt = 1000)

# Combine metrics of multiple outcomes
dataMetrics <- rbind(nma.1, nma.2)

# Set data for rankinma
dataRankinma <- SetMetrics(dataMetrics, tx = tx, outcome = outcome,

```
SetMetrics

```r
#metrics = SUCRA, metrics.name = "SUCRA")

# Illustrate beading plot
#PlotSpie(data = dataRankinma)
## End(Not run)
```

Description

`SetMetrics()` is a function for checking and preparing data set of metrics for further plotting in `rankinma`.

Usage

```r
SetMetrics(
  data,
  outcome = NULL,
  tx = NULL,
  metrics = NULL,
  metrics.name = NULL,
  trans = 0.8
)
```

Arguments

- `data`
 DATAFRAME of treatment, metrics, and name of outcomes.
- `outcome`
 VARIABLE string data for of outcome(s).
- `tx`
 VARIABLE with string data for treatments.
- `metrics`
 VARIABLE with numeric data for global metrics, but it should be "NULL" when using "Probabilities" as metrics.
- `metrics.name`
 STRING for metrics of treatment ranking in terms of "SUCRA","P-score", and "P-best" for the value of surface under the cumulative ranking curve, P-score, and probability of achieving the best treatment.
- `trans`
 NUMERIC for indicating transparency of colors of treatments.

Value

`SetMetrics()` returns a confirmed data.frame of treatment, metrics of treatment ranking, and outcome name.

- `metrics.name`
 A string shows type of metrics of treatment ranking.
- `ls.outcome`
 Strings list outcomes.
- `ls.tx`
 Strings list treatments.
n.outcome
An integer shows numbers of outcomes.

n.tx
An integer shows numbers of treatments.

data
A data frame consists of seven columns of core information among all outcomes.

data.sets
A list shows data frame of core information by each outcome.

ptrn.tx
A data frame shows treatments on each outcome.

ptrn.outcome
A data frame shows outcomes by treatments.

color.txs
A data frame shows color of each treatment.

trans
A numeric value shows transparency for colors of each treatment.

See Also

GetMetrics

Examples

```r
## Not run:
library(netmeta)
data(Senn2013)
nma <- netmeta(TE, seTE, treat1, treat2, studlab, data = Senn2013, sm = "SMD")

# Get SUCRA
nma.1 <- GetMetrics(nma, outcome = "HbA1c.random", prefer = "small", metrics = "SUCRA", model = "random", simt = 1000)
nma.2 <- GetMetrics(nma, outcome = "HbA1c.common", prefer = "small", metrics = "SUCRA", model = "common", simt = 1000)

# Combine metrics of multiple outcomes
dataMetrics <- rbind(nma.1, nma.2)

# Set data for rankinma
dataRankinma <- SetMetrics(dataMetrics, tx = tx, outcome = outcome, metrics = "SUCRA", metrics.name = "SUCRA")
## End(Not run)
```
Index

* package
 rankinma-package, 2

GetMetrics, 2, 3, 5, 6, 8–10, 12
PlotBar, 2, 4, 8–10
PlotBeads, 2, 5, 5, 8–10
PlotHeat, 2, 5, 7, 9, 10
PlotLine, 2, 5, 8, 8, 10
PlotSpie, 2, 5, 8, 9, 10

rankinma-package, 2

SetMetrics, 2, 4–6, 8–10, 11