
Package ‘reclin2’
October 14, 2022

Type Package

Title Record Linkage Toolkit

Version 0.2.0

Description Functions to assist in performing probabilistic record linkage and
deduplication: generating pairs, comparing records, em-algorithm for
estimating m- and u-probabilities
(I. Fellegi & A. Sunter (1969) <doi:10.1080/01621459.1969.10501049>,
T.N. Herzog, F.J. Scheuren, & W.E. Winkler (2007),
``Data Quality and Record Linkage Techniques'', ISBN:978-0-387-69502-0),
forcing one-to-one matching. Can also be
used for pre- and post-processing for machine learning methods for record
linkage. Focus is on memory, CPU performance and flexibility.

BugReports https://github.com/djvanderlaan/reclin2/issues

URL https://github.com/djvanderlaan/reclin2

Depends data.table, R (>= 3.6.0)

Imports stringdist, stats, utils, lpSolve, Rcpp, parallel

Suggests simplermarkdown

LinkingTo Rcpp

VignetteBuilder simplermarkdown

SystemRequirements C++11

License GPL-3

LazyLoad yes

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation yes

Author Jan van der Laan [aut, cre] (<https://orcid.org/0000-0002-0693-1514>)

Maintainer Jan van der Laan <r@eoos.dds.nl>

Repository CRAN

Date/Publication 2022-09-24 20:30:02 UTC

1

https://doi.org/10.1080/01621459.1969.10501049
https://github.com/djvanderlaan/reclin2/issues
https://github.com/djvanderlaan/reclin2
https://orcid.org/0000-0002-0693-1514

2 add_from_x

R topics documented:

add_from_x . 2
cluster_call . 3
cluster_collect . 4
cluster_modify_pairs . 5
cluster_pair . 6
cluster_pair_blocking . 7
cluster_pair_minsim . 9
compare_pairs.cluster_pairs . 10
compare_vars.cluster_pairs . 12
deduplicate_equivalence . 13
get_inspect_pairs . 14
greedy . 15
identical . 15
link . 17
linkexample1 . 18
match_n_to_m . 18
merge_pairs.cluster_pairs . 19
pair . 20
pair_blocking . 21
pair_minsim . 22
predict.problink_em . 23
problink_em . 25
select_greedy.cluster_pairs . 26
select_threshold.cluster_pairs . 29
summary.problink_em . 30
tabulate_patterns.cluster_pairs . 31
town_names . 32

Index 33

add_from_x Add a variable from one of the data sets to pairs

Description

Add a variable from one of the data sets to pairs

Usage

add_from_x(pairs, variable, new_variable = variable, ...)

add_from_y(pairs, variable, new_variable = variable, ...)

cluster_call 3

Arguments

pairs data.table with pairs. Should contain the columns .x and .y.

variable name of the variable that should be added

new_variable optional variable name of the new variable in pairs. When omitted variable
is used.

... other parameters are passed on to compare_vars. Especially inplace, x and y
might be of interest.

Value

Returns the pairs with the column added. When inplace = TRUE pairs is returned invisibly and
the original pairs is modified.

cluster_call Call a function on each of the worker nodes and pass it the pairs

Description

Call a function on each of the worker nodes and pass it the pairs

Usage

cluster_call(pairs, fun, ...)

Arguments

pairs an object or type cluster_pairs as created for example by cluster_pair.

fun a function to call on each of the worker nodes. See details on the arguments of
this function.

... additional arguments are passed on to fun.

Details

The function will have to accept the following arguments as its first three arguments:

pairs the data.table with the pairs of the worker node.

x a data.table with the portion of x present on the worker node.

y a data.table with y.

Value

The function will return a list with for each worker the result of the function call. When the functions
return NULL the result is returned invisibly. Because the result is returned to main node, make sure
you don’t accidentally return all pairs. If you don’t want to return anything end your function with
NULL.

4 cluster_collect

Examples

Generate some pairs
library(parallel)
data("linkexample1", "linkexample2")
cl <- makeCluster(2)
pairs <- cluster_pair(cl, linkexample1, linkexample2)
compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))

Add a new column to pairs
cluster_call(pairs, function(pairs, ...) {

pairs[, name := firstname & lastname]
we don't want to return the pairs; so make sure to return something
else
NULL

})

Get the number of pairs on each node
lenghts <- cluster_call(pairs, function(pairs, ...) {

nrow(pairs)
})
lengths <- unlist(lenghts)
lenghts

Cleanup
stopCluster(cl)

cluster_collect Collect pairs from cluster nodes

Description

Collect pairs from cluster nodes

Usage

cluster_collect(pairs, select = NULL, clear = FALSE)

Arguments

pairs an object or type cluster_pairs as created for example by cluster_pair.

select the name of a logical column that is used to select the pairs that will be collected

clear remove the pairs from the cluster nodes

Value

Returns an object of type pairs which is a data.table. This object can be used as a regular
(non-cluster) set of pairs

cluster_modify_pairs 5

Examples

library(parallel)
data("linkexample1", "linkexample2")
cl <- makeCluster(2)

pairs <- cluster_pair(cl, linkexample1, linkexample2)
local_pairs <- cluster_collect(pairs, clear = FALSE)

compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))
model <- problink_em(~ lastname + firstname + address + sex, data = pairs)
predict(model, pairs, type = "mpost", add = TRUE, binary = TRUE)
Select pairs with a mpost > 0.5
select_threshold(pairs, "selected", "mpost", 0.5)
Collect the selected pairs
local_pairs <- cluster_collect(pairs, "selected")

stopCluster(cl)

cluster_modify_pairs Call a function on each of the worker nodes to modify the pairs on the
node

Description

Call a function on each of the worker nodes to modify the pairs on the node

Usage

cluster_modify_pairs(pairs, fun, ..., new_name = NULL)

Arguments

pairs an object or type cluster_pairs as created for example by cluster_pair.

fun a function to call on each of the worker nodes. See details on the arguments of
this function.

... additional arguments are passed on to fun.

new_name name of new object to assign the pairs to on the cluster nodes.

Details

The function will have to accept the following arguments as its first three arguments:

pairs the data.table with the pairs of the worker node.

x a data.table with the portion of x present on the worker node.

y a data.table with y.

6 cluster_pair

The function should either return a data.table with the new pairs, or NULL. When a data.table
is returned this values will replace the pairs when new_name is missing or create new pairs in the
environment new_name. When the function returns NULL it is assumed that the function modified
the pairs by reference (e.g. using pairs[, new_var := new_val]). Note that this also means that
new_name is ignored.

Value

Will return a cluster_pairs object. When new_name is not given it will return the input pairs
invisibly. Otherwise it will return a new cluster_pairs object.

Examples

Generate some pairs
library(parallel)
data("linkexample1", "linkexample2")
cl <- makeCluster(2)
pairs <- cluster_pair(cl, linkexample1, linkexample2)
compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))

Create a new set of pairs containing a random sample of the original
pairs.
sample <- cluster_call(pairs, new_name = "sample", function(pairs, ...) {

sel <- sample(nrow(pairs), round(nrow(pairs)*0.1))
pairs[sel,]

})

Cleanup
stopCluster(cl)

cluster_pair Generate all possible pairs using multiple processes

Description

Generates all combinations of records from x and y.

Usage

cluster_pair(cluster, x, y, deduplication = FALSE, name = "default")

Arguments

cluster a cluster object as created by makeCluster from parallel or from the snow
package.

x first data.frame
y second data.frame. Ignored when deduplication = TRUE.
deduplication generate pairs from only x. Ignore y. This is usefull for deduplication of x.
name the name of the resulting object to create locally on the different R processes.

cluster_pair_blocking 7

Details

Generating (all) pairs of the records of two data sets, is usually the first step when linking the two
data sets.

x is split into length{cluster} parts which are distributed over the worker nodes. y is copied
to each of the nodes. On the nodes then pair is called. The pairs are stored in the global object
reclin_env on the nodes in the variable name. The pairs can then be further processes using func-
tions such as compare_pairs, and tabulate_patterns. The function cluster_collect collects
the pairs from each of the nodes.

Value

A object of type cluster_pairs which is a list containing the cluster and the name of the pairs
object on the cluster nodes. For the pairs objects created on the nodes see the documentation of
pair.

See Also

cluster_pair_blocking and cluster_pair_minsim are other methods to generate pairs.

Examples

library(parallel)
data("linkexample1", "linkexample2")
cl <- makeCluster(2)
pairs <- cluster_pair(cl, linkexample1, linkexample2)
stopCluster(cl)

cluster_pair_blocking Generate pairs using simple blocking using multiple processes

Description

Generates all combinations of records from x and y where the blocking variables are equal.

Usage

cluster_pair_blocking(
cluster,
x,
y,
on,
deduplication = FALSE,
name = "default"

)

8 cluster_pair_blocking

Arguments

cluster a cluster object as created by makeCluster from parallel or from the snow
package.

x first data.frame

y second data.frame. Ignored when deduplication = TRUE.

on the variables defining the blocks or strata for which all pairs of x and y will be
generated.

deduplication generate pairs from only x. Ignore y. This is usefull for deduplication of x.

name the name of the resulting object to create locally on the different R processes.

Details

Generating (all) pairs of the records of two data sets, is usually the first step when linking the two
data sets. However, this often results in a too large number of records. Therefore, blocking is
usually applied.

x is split into length{cluster} parts which are distributed over the worker nodes. y is copied to
each of the nodes. On the nodes then pair_blocking is called. The pairs are stored in the global
object reclin_env on the nodes in the variable name. The pairs can then be further processes us-
ing functions such as compare_pairs, and tabulate_patterns. The function cluster_collect
collects the pairs from each of the nodes.

Value

A object of type cluster_pairs which is a list containing the cluster and the name of the pairs
object on the cluster nodes. For the pairs objects created on the nodes see the documentation of
pair.

See Also

cluster_pair and cluster_pair_minsim are other methods to generate pairs.

Examples

library(parallel)
data("linkexample1", "linkexample2")
cl <- makeCluster(2)
pairs <- cluster_pair_blocking(cl, linkexample1, linkexample2, "postcode")
stopCluster(cl)

cluster_pair_minsim 9

cluster_pair_minsim Generate pairs with a minimal similarity using multiple processes

Description

Generates all combinations of records from x and y where the blocking variables are equal.

Usage

cluster_pair_minsim(
cluster,
x,
y,
on,
minsim = 0,
comparators = list(default_comparator),
default_comparator = identical(),
keep_simsum = TRUE,
deduplication = FALSE,
name = "default"

)

Arguments

cluster a cluster object as created by makeCluster from parallel or makeCluster
from snow.

x first data.frame

y second data.frame. Ignored when deduplication = TRUE.

on the variables defining the blocks or strata for which all pairs of x and y will be
generated.

minsim minimal similarity score.

comparators named list of functions with which the variables are compared. This func-
tion should accept two vectors. Function should either return a vector or a
data.table with multiple columns.

default_comparator

variables for which no comparison function is defined using comparators is
compares with the function default_comparator.

keep_simsum add a variable minsim to the result with the similarity score of the pair.

deduplication generate pairs from only x. Ignore y. This is usefull for deduplication of x.

name the name of the resulting object to create locally on the different R processes.

10 compare_pairs.cluster_pairs

Details

Generating (all) pairs of the records of two data sets, is usually the first step when linking the two
data sets. However, this often results in a too large number of records. pair_minsim will only
keep pairs with a similarity score equal or larger than minsim. The similarity score is calculated by
summing the results of the comparators for all variables of on.

x is split into length{cluster} parts which are distributed over the worker nodes. y is copied
to each of the nodes. On the nodes then cluster_pair_minsim is called. The pairs are stored
in the global object reclin_env on the nodes in the variable name. The pairs can then be fur-
ther processes using functions such as compare_pairs, and tabulate_patterns. The function
cluster_collect collects the pairs from each of the nodes.

Value

A object of type cluster_pairs which is a list containing the cluster and the name of the pairs
object on the cluster nodes. For the pairs objects created on the nodes see the documentation of
pair.

See Also

cluster_pair and cluster_pair_blocking are other methods to generate pairs.

Examples

library(parallel)
data("linkexample1", "linkexample2")
cl <- makeCluster(2)
Either address or postcode has to match to keep a pair
pairs <- cluster_pair_minsim(cl, linkexample1, linkexample2,

on = c("postcode", "address"), minsim = 1)
stopCluster(cl)

compare_pairs.cluster_pairs

Compare pairs on a set of variables common in both data sets

Description

Compare pairs on a set of variables common in both data sets

Usage

S3 method for class 'cluster_pairs'
compare_pairs(
pairs,
on,
comparators = list(default_comparator),

compare_pairs.cluster_pairs 11

default_comparator = identical(),
new_name = NULL,
...

)

compare_pairs(
pairs,
on,
comparators = list(default_comparator),
default_comparator = identical(),
...

)

S3 method for class 'pairs'
compare_pairs(
pairs,
on,
comparators = list(default_comparator),
default_comparator = identical(),
x = attr(pairs, "x"),
y = attr(pairs, "y"),
inplace = FALSE,
...

)

Arguments

pairs data.table with pairs. Should contain the columns .x and .y.
on character vector of variables that should be compared.
comparators named list of functions with which the variables are compared. This func-

tion should accept two vectors. Function should either return a vector or a
data.table with multiple columns.

default_comparator

variables for which no comparison function is defined using comparators is
compares with the function default_comparator.

new_name name of new object to assign the pairs to on the cluster nodes.
... Ignored for now
x data.table with one half of the pairs.
y data.table with the other half of the pairs.
inplace logical indicating whether pairs should be modified in place. When pairs is

large this can be more efficient.

Details

It is assumed the variables in on are present in both x and y. Variables with the same names are
added to pairs. When the comparator returns a data.table multiple columns are added to pairs.
The names of these columns are variable pasted together with the names of the data.table
returned by comparator (separated by "_").

12 compare_vars.cluster_pairs

Value

Returns the data.table pairs with one or more columns added in case of compare_pairs.pairs.

In case of compare_pairs.cluster_pairs, compare_pair.pairs is called on each cluster node
and the resulting pairs are assigned to new_name in the environment reclin_env. When new_name
is not given (or equal to NULL) the original pairs on the nodes are overwritten.

compare_vars.cluster_pairs

Compare pairs on given variables

Description

Compare pairs on given variables

Usage

S3 method for class 'cluster_pairs'
compare_vars(
pairs,
variable,
on_x = variable,
on_y = on_x,
comparator = identical(),
new_name = NULL,
...

)

compare_vars(
pairs,
variable,
on_x = variable,
on_y = on_x,
comparator = identical(),
...

)

S3 method for class 'pairs'
compare_vars(
pairs,
variable,
on_x = variable,
on_y = on_x,
comparator = identical(),
x = attr(pairs, "x"),
y = attr(pairs, "y"),
inplace = FALSE,

deduplicate_equivalence 13

...
)

Arguments

pairs data.table with pairs. Should contain the columns .x and .y.

variable character vector with name of resulting column name that is added to pairs.

on_x character vector with the column names from x on which to compare.

on_y character vector with the column names from y on which to compare.

comparator function with which the variables are compared. When on_x and on_y have
length 1, this function should accept two vectors. Otherwise it will receive two
data.tables. Function should either return a vector or a data.table with
multiple columns.

new_name name of new object to assign the pairs to on the cluster nodes.

... Used to pass additional arguments to methods

x data.table with one half of the pairs.

y data.table with the other half of the pairs.

inplace logical indicating whether pairs should be modified in place. When pairs is
large this can be more efficient.

Details

When comparator returns a data.table multiple columns are added to pairs. The names of these
columns are variable pasted together with the names of the data.table returned by comparator
(separated by "_").

Value

Returns the data.table pairs with one or more columns added.

deduplicate_equivalence

Deduplication using equivalence groups

Description

Deduplication using equivalence groups

Usage

deduplicate_equivalence(pairs, variable, selection, x = attr(pairs, "x"))

14 get_inspect_pairs

Arguments

pairs a pairs object, such as generated by pair_blocking

variable name of the variable to create in x that will contain the group labels.

selection a logical variable with the same length as pairs has rows, or the name of such a
variable in pairs. Pairs are only selected when select is TRUE. When missing
it is assumed all pairs are selected.

x the first data set; when missing attr(pairs, "x") is used.

Value

Returns x with a variable containing the group labels. Records with the same group label (should)
correspond to the same entity.

get_inspect_pairs Get a subset of pairs to inspect

Description

Get a subset of pairs to inspect

Usage

get_inspect_pairs(
pairs,
variable,
threshold,
position = NULL,
n = 11,
x = attr(pairs, "x"),
y = attr(pairs, "y")

)

Arguments

pairs data.table with pairs.

variable name of variable to base the selection on; should be a variable with the similarity
score of the pairs.

threshold the threshold around which to select pairs. Used when position is not given.

position select pairs around this position (based on order of variable), e.g. position =
1 will select the pairs with the highest similarity score.

n number of pairs to select. Pairs are selected symmetric around the theshold.

x data.table with one half of the pairs.

y data.table with the other half of the pairs.

greedy 15

Value

Returns a list with elements pairs with the selected pairs; x records from x corresponding to the
pairs; y records from y corresponding to the pairs; position position of the selected pairs; index
index of the pairs in pairs.

greedy Greedy one-to-one matching of pairs

Description

Greedy one-to-one matching of pairs

Usage

greedy(x, y, weight)

Arguments

x id’s of lhs of pairs
y id’s of rhs of pairs
weight weight of pair

Details

Pairs with the highest weight are selected as long a neither the lhs as the rhs are already selected in
a pair with a higher weight.

Value

A logical vector with the same length as x.

identical Comparison functions

Description

Comparison functions

Usage

identical()

jaro_winkler(threshold = 0.95)

lcs(threshold = 0.8)

jaccard(threshold = 0.8)

16 identical

Arguments

threshold threshold to use for the Jaro-Winkler string distance when creating a binary
result.

Details

A comparison function should accept two arguments: both vectors. When the function is called
with both arguments it should compare the elements in the first vector to those in the second. When
called in this way, both vectors have the same length. What the function should return depends on
the methods used to score the pairs. Usually the comparison functions return a similarity score with
a value of 0 indication complete difference and a value > 0 indicating similarity (often a value of 1
will indicate perfect similarity).

Some methods, such as problink_em, can handle similarity scores, but also need binary values
(0/FALSE = complete dissimilarity; 1/TRUE = complete similarity). In order to allow for this the
comparison function is called with one argument.

When the comparison is called with one argument, it is passed the result of a previous comparison.
The function should translate that result to a binary (TRUE/FALSE or 1/0) result. The result should
not contain missing values.

The jaro_winkler, lcs and jaccard functions use the corresponding methods from stringdist
except that they are transformed from a distance to a similarity score.

Value

The functions return a comparison function (see details).

Examples

cmp <- identical()
x <- cmp(c("john", "mary", "susan", "jack"),

c("johan", "mary", "susanna", NA))
Applying the comparison function to the result of the comparison results
in a logical result, with NA's and values of FALSE set to FALSE
cmp(x)

cmp <- jaro_winkler(0.95)
x <- cmp(c("john", "mary", "susan", "jack"),

c("johan", "mary", "susanna", NA))
Applying the comparison function to the result of the comparison results
in a logical result, with NA's and values below the threshold FALSE
cmp(x)

link 17

link Use the selected pairs to generate a linked data set

Description

Use the selected pairs to generate a linked data set

Usage

link(
pairs,
selection = NULL,
all = FALSE,
all_x = all,
all_y = all,
x = attr(pairs, "x"),
y = attr(pairs, "y"),
suffixes = c(".x", ".y"),
keep_from_pairs = c(".x", ".y")

)

Arguments

pairs a pairs object, such as generated by pair_blocking

selection a logical variable with the same length as pairs has rows, or the name of such a
variable in pairs. Pairs are only selected when select is TRUE. When missing
attr(pairs, "selection") is used when available.

all return all records from x and y; even those that don’t match.

all_x return all records from x.

all_y return all records from y.

x the first data set; when missing attr(pairs, "x") is used.

y the second data set; when missing attr(pairs, "y") is used.

suffixes a character vector of length 2 specifying the suffixes to be used for making
unique the names of columns in the result.

keep_from_pairs

character vector with names of variables in pairs that should be included in the
output.

Details

Uses the selected pairs to link the two data sets to each other. Renames variables that are in both
data sets.

18 match_n_to_m

Value

Returns a data.table containing records from x and y and pairs. Columns that occur both in x
and y gain a suffix indicating from which data set they are.

linkexample1 Tiny example dataset for probabilistic linkage

Description

Contains fictional records of 7 persons.

Format

Two data frames with resp. 6 and 5 records and 6 columns.

Details

• id the id of the person; this contains no errors and can be used to validate the linkage.
• lastname the last name of the person; contains errors.
• firstname the first name of the persons; contains errors.
• address the address; contains errors.
• sex the sex; contains errors and missing values.
• postcode the postcode; contains no errors.

match_n_to_m Force n to m matching on a set of pairs

Description

Force n to m matching on a set of pairs

Usage

match_n_to_m(x, y, w, n = 1, m = 1)

Arguments

x a vector of identifiers for each x in each pair This vector should have a unique
value for each element in x.

y a vector of identifiers for each y in each pair This vector should have a unique
value for each element in y.

w a vector with weights for each pair. The algorithm will try to maximise the total
weight of the selected pairs.

n an integer. Each element of x can be linked to at most n elements of y.
m an integer. Each element of y can be linked to at most m elements of y.

merge_pairs.cluster_pairs 19

Details

The algorithm will try to select pairs in such a way each element of x is matched to at most n
elements of y and that each element of y is matched at most m elements of x. It tries to select
elements in such a way that the total weight w of the selected elements is maximised.

Value

A logical vector with the same length as x indicating the selected records.

Examples

d <- data.frame(x=c(1,1,1,2,2,3,3), y=c(1,2,3,4,5,6,7), w=1:7)
One-to-one matching:
d[match_n_to_m(dx, dy, d$w),]

N-to-one matching:
d[match_n_to_m(dx, dy, d$w, n=999),]

One-to-m matching:
d[match_n_to_m(dx, dy, d$w, m=999),]

N-to-M matching, e.g. select all pairs
d[match_n_to_m(dx, dy, d$w, n=999, m=999),]

merge_pairs.cluster_pairs

Merge two sets of pairs into one

Description

Merge two sets of pairs into one

Usage

S3 method for class 'cluster_pairs'
merge_pairs(
pairs1,
pairs2,
name = paste(pairs1$name, pairs2$name, sep = "+"),
...

)

S3 method for class 'cluster_pairs'
rbind(...)

20 pair

merge_pairs(pairs1, pairs2, ...)

S3 method for class 'pairs'
merge_pairs(pairs1, pairs2, ...)

S3 method for class 'pairs'
rbind(...)

Arguments

pairs1 the first set of pairs

pairs2 the second set of pairs

name name of new object to assign the pairs to on the cluster nodes.

... for rbind the pairs or cluster_pairs objects the need to be combined; for
merge_pairs these are passed on to other methods.

Details

The function will give an error when the two sets of pairs have different values for attr(pairs1,
"x") and attr(pairs1, "y"). When there attributes are missing the code will execute; the user is
then responsible for ensuring that the indices in pairs1 and pairs2 refer to the same datasets.

Value

Returns a pairs or cluster_pairs object where both sets of pairs are combined. Duplicate pairs
are removed.

In case of merge_pairs.cluster_pairs, merge_pairs.pairs is called on each cluster node and
the resulting pairs are assigned to name in the environment reclin_env.

pair Generate all possible pairs

Description

Generates all combinations of records from x and y.

Usage

pair(x, y, deduplication = FALSE, add_xy = TRUE)

Arguments

x first data.frame

y second data.frame. Ignored when deduplication = TRUE.

deduplication generate pairs from only x. Ignore y. This is usefull for deduplication of x.

add_xy add x and y as attributes to the returned pairs. This makes calling some subse-
quent operations that need x and y (such as compare_pairs easier.

pair_blocking 21

Details

Generating (all) pairs of the records of two data sets, is usually the first step when linking the two
data sets.

Value

A data.table with two columns, .x and .y, is returned. Columns .x and .y are row numbers from
data.frames .x and .y respectively.

See Also

pair_blocking and pair_minsim are other methods to generate pairs.

Examples

data("linkexample1", "linkexample2")
pairs <- pair(linkexample1, linkexample2)

pair_blocking Generate pairs using simple blocking

Description

Generates all combinations of records from x and y where the blocking variables are equal.

Usage

pair_blocking(x, y, on, deduplication = FALSE, add_xy = TRUE)

Arguments

x first data.frame

y second data.frame. Ignored when deduplication = TRUE.

on the variables defining the blocks or strata for which all pairs of x and y will be
generated.

deduplication generate pairs from only x. Ignore y. This is usefull for deduplication of x.

add_xy add x and y as attributes to the returned pairs. This makes calling some subse-
quent operations that need x and y (such as compare_pairs easier.

Details

Generating (all) pairs of the records of two data sets, is usually the first step when linking the two
data sets. However, this often results in a too large number of records. Therefore, blocking is
usually applied.

22 pair_minsim

Value

A data.table with two columns, .x and .y, is returned. Columns .x and .y are row numbers from
data.frames .x and .y respectively.

See Also

pair and pair_minsim are other methods to generate pairs.

Examples

data("linkexample1", "linkexample2")
pairs <- pair_blocking(linkexample1, linkexample2, "postcode")

pair_minsim Generate pairs with a minimal similarity

Description

Generates all combinations of records from x and y where the blocking variables are equal.

Usage

pair_minsim(
x,
y,
on,
minsim = 0,
comparators = list(default_comparator),
default_comparator = identical(),
keep_simsum = TRUE,
deduplication = FALSE,
add_xy = TRUE

)

Arguments

x first data.frame

y second data.frame. Ignored when deduplication = TRUE.

on the variables defining on which the pairs of records from x and y are compared.

minsim minimal similarity score.

comparators named list of functions with which the variables are compared. This func-
tion should accept two vectors. Function should either return a vector or a
data.table with multiple columns.

predict.problink_em 23

default_comparator

variables for which no comparison function is defined using comparators is
compares with the function default_comparator.

keep_simsum add a variable minsim to the result with the similarity score of the pair.

deduplication generate pairs from only x. Ignore y. This is usefull for deduplication of x.

add_xy add x and y as attributes to the returned pairs. This makes calling some subse-
quent operations that need x and y (such as compare_pairs easier.

Details

Generating (all) pairs of the records of two data sets, is usually the first step when linking the two
data sets. However, this often results in a too large number of records. pair_minsim will only
keep pairs with a similarity score equal or larger than minsim. The similarity score is calculated by
summing the results of the comparators for all variables of on.

Missing values in the variables on which the pairs are compared count as a similarity of 0.

Value

A data.table with two columns, .x and .y, is returned. Columns .x and .y are row numbers from
data.frames .x and .y respectively.

See Also

pair and pair_blocking are other methods to generate pairs.

Examples

data("linkexample1", "linkexample2")
pairs <- pair_minsim(linkexample1, linkexample2,

on = c("postcode", "address"), minsim = 1)
Either address or postcode has to match to keep a pair

predict.problink_em Calculate weights and probabilities for pairs

Description

Calculate weights and probabilities for pairs

Usage

S3 method for class 'problink_em'
predict(
object,
pairs = newdata,
newdata = NULL,

24 predict.problink_em

type = c("weights", "mpost", "probs", "all"),
binary = FALSE,
add = FALSE,
comparators,
new_name = NULL,
...

)

Arguments

object an object of type problink_em as produced by problink_em.

pairs a object with pairs for which to calculate weights.

newdata an alternative name for the pairs argument. Specify newdata or pairs.

type a character vector of length one specifying what to calculate. See results for
more information.

binary convert comparison vectors to binary vectors using the comparison function in
comparators.

add add the predictions to the original pairs object.

comparators a list of comparison functions (see compare_pairs). When missing attr(pairs,
'comparators') is used.

new_name name of new object to assign the pairs to on the cluster nodes (only relevant
when pairs is of type cluster_pairs.

... unused.

Value

When pairs is of type pairs, returns a data.table with either the .x and .y columns from pairs
(when add = FALSE) or all columns of pairs. To these columns are added:

• In case of type = "weights" a column weights with the calculated weights.

• In case of type = "mpost" a column mpost with the calculated posterior probabilities (proba-
bility that pair is a match given comparison vector.

• In case of type = "prob" the columns mprob and uprob with the m and u-probabilites and
mpost and upost with the posterior m- and u-probabilities.

• In case of type = "all" all of the above.

In case of compare_pairs.cluster_pairs, compare_pair.pairs is called on each cluster node
and the resulting pairs are assigned to new_name in the environment reclin_env. When new_name
is not given (or equal to NULL) the original pairs on the nodes are overwritten.

problink_em 25

problink_em Calculate EM-estimates of m- and u-probabilities

Description

Calculate EM-estimates of m- and u-probabilities

Usage

problink_em(
formula,
data,
patterns,
mprobs0 = list(0.95),
uprobs0 = list(0.02),
p0 = 0.05,
tol = 1e-05,
mprob_max = 0.999,
uprob_min = 1e-04

)

Arguments

formula a formula object with the variables for which to calculate the m- and u-probabilities.
Should be of the form ~ var1 + var2.

data data set with pairs on which to estimate the model. Alternatively one can use
the patterns argument.

patterns table of patterns (as output by tabulate_patterns).
mprobs0, uprobs0

initial values of the m- and u-probabilities. These should be lists with numeric
values. The names of the elements in the list should correspond to the names in
by_x in compare_pairs.

p0 the initial estimate of the probability that a pair is a match.

tol when the change in the m and u-probabilities is smaller than tol the algorithm
is stopped.

mprob_max maximum values of the estimated m-probabilities. Values equal to one can lead
to numerical instabilities.

uprob_min maximum values of the estimated m-probabilities. Values equal to zero can lead
to numerical instabilities.

Value

Returns an object of type problink_em. This is a list containing the estimated mprobs, uprobs and
overall linkage probability p. It also contains the table of comparison patterns.

26 select_greedy.cluster_pairs

References

Fellegi, I. and A. Sunter (1969). "A Theory for Record Linkage", Journal of the American Statistical
Association. 64 (328): pp. 1183-1210. doi:10.2307/2286061.

Herzog, T.N., F.J. Scheuren and W.E. Winkler (2007). Data Quality and Record Linkage Tech-
niques, Springer.

Examples

data("linkexample1", "linkexample2")
pairs <- pair_blocking(linkexample1, linkexample2, "postcode")
pairs <- compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))
model <- problink_em(~ lastname + firstname + address + sex, data = pairs)
summary(model)

select_greedy.cluster_pairs

Select matching pairs enforcing one-to-one linkage

Description

Select matching pairs enforcing one-to-one linkage

Usage

S3 method for class 'cluster_pairs'
select_greedy(
pairs,
variable,
score,
threshold,
preselect = NULL,
id_x = NULL,
id_y = NULL,
...

)

S3 method for class 'cluster_pairs'
select_n_to_m(
pairs,
variable,
score,
threshold,
preselect = NULL,
id_x = NULL,
id_y = NULL,
...

https://doi.org/10.2307/2286061

select_greedy.cluster_pairs 27

)

select_greedy(
pairs,
variable,
score,
threshold,
preselect = NULL,
id_x = NULL,
id_y = NULL,
...

)

S3 method for class 'pairs'
select_greedy(
pairs,
variable,
score,
threshold,
preselect = NULL,
id_x = NULL,
id_y = NULL,
x = attr(pairs, "x"),
y = attr(pairs, "y"),
inplace = FALSE,
...

)

select_n_to_m(
pairs,
variable,
score,
threshold,
preselect = NULL,
id_x = NULL,
id_y = NULL,
...

)

S3 method for class 'pairs'
select_n_to_m(
pairs,
variable,
score,
threshold,
preselect = NULL,
id_x = NULL,
id_y = NULL,

28 select_greedy.cluster_pairs

x = attr(pairs, "x"),
y = attr(pairs, "y"),
inplace = FALSE,
...

)

Arguments

pairs a pairs object, such as generated by pair_blocking

variable the name of the new variable to create in pairs. This will be a logical variable
with a value of TRUE for the selected pairs.

score name of the score/weight variable of the pairs. When not given and attr(pairs,
"score") is defined, that is used.

threshold the threshold to apply. Pairs with a score above the threshold are selected.

preselect a logical variable with the same length as pairs has rows, or the name of such
a variable in pairs. Pairs are only selected when preselect is TRUE. This
interacts with threshold (pairs have to be selected with both conditions).

id_x a integer vector with the same length a the number of rows in pairs, or the
name of a column in x. This vector should identify unique objects in x. When
not specified it is assumed that each element in x is unique.

id_y a integer vector with the same length a the number of rows in pairs, or the
name of a column in y. This vector should identify unique objects in y. When
not specified it is assumed that each element in y is unique.

... Used to pass additional arguments to methods

x data.table with one half of the pairs.

y data.table with the other half of the pairs.

inplace logical indicating whether pairs should be modified in place. When pairs is
large this can be more efficient.

Details

Both methods force one-to-one matching. select_greedy uses a greedy algorithm that selects the
first pair with the highest weight. select_n_to_m tries to optimise the total weight of all of the
selected pairs. In general this will result in a better selection. However, select_n_to_m uses much
more memory and is much slower and, therefore, can only be used when the number of possible
pairs is not too large.

Value

Returns the pairs with the variable given by variable added. This is a logical variable indicating
which pairs are selected a matches.

Examples

data("linkexample1", "linkexample2")
pairs <- pair_blocking(linkexample1, linkexample2, "postcode")

select_threshold.cluster_pairs 29

pairs <- compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))
model <- problink_em(~ lastname + firstname + address + sex, data = pairs)
pairs <- predict(model, pairs, type = "mpost", add = TRUE, binary = TRUE)

Select pairs with a mpost > 0.5 and force one-to-one linkage
pairs <- select_n_to_m(pairs, "ntom", "mpost", 0.5)
pairs <- select_greedy(pairs, "greedy", "mpost", 0.5)
table(pairs$ntom, pairs$greedy)

The same example as above using a cluster;
library(parallel)
cl <- makeCluster(2)
pairs <- cluster_pair_blocking(cl, linkexample1, linkexample2, "postcode")
compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))
model <- problink_em(~ lastname + firstname + address + sex, data = pairs)
predict(model, pairs, type = "mpost", add = TRUE, binary = TRUE)
Select pairs with a mpost > 0.5 and force one-to-one linkage
select_n_to_m and select_greedy only work on pairs that are local;
therefore we first collect the pairs
select_threshold(pairs, "selected", "mpost", 0.5)
local_pairs <- cluster_collect(pairs, "selected")
local_pairs <- select_n_to_m(local_pairs, "ntom", "mpost", 0.5)
local_pairs <- select_greedy(local_pairs, "greedy", "mpost", 0.5)
table(local_pairs$ntom, local_pairs$greedy)

stopCluster(cl)

select_threshold.cluster_pairs

Select matching pairs with a score above a threshold

Description

Select matching pairs with a score above a threshold

Usage

S3 method for class 'cluster_pairs'
select_threshold(pairs, variable, score, threshold, new_name = NULL, ...)

select_threshold(pairs, variable, score, threshold, ...)

S3 method for class 'pairs'
select_threshold(pairs, variable, score, threshold, inplace = FALSE, ...)

Arguments

pairs a pairs object, such as generated by pair_blocking

30 summary.problink_em

variable the name of the new variable to create in pairs. This will be a logical variable
with a value of TRUE for the selected pairs.

score name of the score/weight variable of the pairs. When not given and attr(pairs,
"score") is defined, that is used.

threshold the threshold to apply. Pairs with a score above the threshold are selected.
new_name name of new object to assign the pairs to on the cluster nodes.
... ignored
inplace logical indicating whether pairs should be modified in place. When pairs is

large this can be more efficient.

Value

Returns the pairs with the variable given by variable added. This is a logical variable indicating
which pairs are selected a matches.

Examples

data("linkexample1", "linkexample2")
pairs <- pair_blocking(linkexample1, linkexample2, "postcode")
pairs <- compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))
model <- problink_em(~ lastname + firstname + address + sex, data = pairs)
pairs <- predict(model, pairs, type = "mpost", add = TRUE, binary = TRUE)
Select pairs with a mpost > 0.5
select_threshold(pairs, "selected", "mpost", 0.5, inplace = TRUE)

Example using cluster;
In general the syntax is exactly the same except for the first call to
to cluster_pair. Note the in general `inplace = TRUE` is implied when
working with a cluster; therefore the assignment back to pairs can be
omitted (also not a problem if it is not).
library(parallel)
data("linkexample1", "linkexample2")
cl <- makeCluster(2)
pairs <- cluster_pair(cl, linkexample1, linkexample2)
compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))
model <- problink_em(~ lastname + firstname + address + sex, data = pairs)
predict(model, pairs, type = "mpost", add = TRUE, binary = TRUE)
Select pairs with a mpost > 0.5
Unlike the regular pairs: inplace = TRUE is implied here
select_threshold(pairs, "selected", "mpost", 0.5)
stopCluster(cl)

summary.problink_em Summarise the results from problink_em

Description

Summarise the results from problink_em

tabulate_patterns.cluster_pairs 31

Usage

S3 method for class 'problink_em'
summary(object, ...)

Arguments

object the problink_em object.

... ignored;

Value

Returns the original object with a data.frame with the patterns and corresponding m-, u-probabilities
and weights added.

tabulate_patterns.cluster_pairs

Create a table of comparison patterns

Description

Create a table of comparison patterns

Usage

S3 method for class 'cluster_pairs'
tabulate_patterns(pairs, on, comparators, complete = TRUE, ...)

tabulate_patterns(pairs, on, comparators, complete = TRUE, ...)

S3 method for class 'pairs'
tabulate_patterns(pairs, on, comparators, complete = TRUE, ...)

Arguments

pairs a pairs object, such as generated by pair_blocking

on variables from pairs defining the comparison patterns. When missing names(comparators)
is used.

comparators a list with comparison functions for each of the columns. When missing or NULL,
the function looks for columns in pairs with a comparator attribute.

complete add patterns that do not occur in the dataset to the result (with n = 0).

... passed on to other methods.

32 town_names

Details

Since comparison vectors can contain continuous numbers (usually between 0 and 1), this could
result in a very large number of possible comparison vectors. Therefore, the comparison vectors
are passed on to the comparators in order to threshold them. This usually results in values 0 or 1.
Missing values are usually codes as 0. However, this all depends on the comparison functions used.
For more information see the documentation on the comparison functions.

Value

Returns a data.frame with all unique comparison patterns that exist in pairs, with a column n
added with the number of times each pattern occurs.

Examples

data("linkexample1", "linkexample2")
pairs <- pair_blocking(linkexample1, linkexample2, "postcode")
pairs <- compare_pairs(pairs, c("lastname", "firstname", "address", "sex"))
tabulate_patterns(pairs)

town_names Spelling variations of a set of town names

Description

Contains spelling variations found in various files of a set of town/village names. Names were
selected that contain ’rdam’ or ’rdm’. The correct/official names are also given. This data set can
be used as an example data set for deduplication

Format

Data frames with 584 records and two columns.

Details

• name the name of the town/village as found in the files

• official_name the official/correct name

Index

∗ datasets
linkexample1, 18
town_names, 32

add_from_x, 2
add_from_y (add_from_x), 2

cluster_call, 3
cluster_collect, 4, 7, 8, 10
cluster_modify_pairs, 5
cluster_pair, 3–5, 6, 8, 10
cluster_pair_blocking, 7, 7, 10
cluster_pair_minsim, 7, 8, 9, 10
compare_pairs, 7, 8, 10, 20, 21, 23–25
compare_pairs

(compare_pairs.cluster_pairs),
10

compare_pairs.cluster_pairs, 10
compare_vars

(compare_vars.cluster_pairs),
12

compare_vars.cluster_pairs, 12
comparison functions, 32

data.table, 3, 11, 13, 14, 21–23
deduplicate_equivalence, 13

get_inspect_pairs, 14
greedy, 15

identical, 15

jaccard (identical), 15
jaro_winkler (identical), 15

lcs (identical), 15
link, 17
linkexample1, 18
linkexample2 (linkexample1), 18

makeCluster, 6, 8, 9

match_n_to_m, 18
merge_pairs

(merge_pairs.cluster_pairs), 19
merge_pairs.cluster_pairs, 19

pair, 7, 8, 10, 20, 22, 23
pair_blocking, 8, 14, 17, 21, 21, 23, 28, 29,

31
pair_minsim, 21, 22, 22
predict.problink_em, 23
problink_em, 16, 24, 25, 30, 31

rbind.cluster_pairs
(merge_pairs.cluster_pairs), 19

rbind.pairs
(merge_pairs.cluster_pairs), 19

select_greedy
(select_greedy.cluster_pairs),
26

select_greedy.cluster_pairs, 26
select_n_to_m

(select_greedy.cluster_pairs),
26

select_threshold
(select_threshold.cluster_pairs),
29

select_threshold.cluster_pairs, 29
stringdist, 16
summary.problink_em, 30

tabulate_patterns, 7, 8, 10, 25
tabulate_patterns

(tabulate_patterns.cluster_pairs),
31

tabulate_patterns.cluster_pairs, 31
town_names, 32

33

	add_from_x
	cluster_call
	cluster_collect
	cluster_modify_pairs
	cluster_pair
	cluster_pair_blocking
	cluster_pair_minsim
	compare_pairs.cluster_pairs
	compare_vars.cluster_pairs
	deduplicate_equivalence
	get_inspect_pairs
	greedy
	identical
	link
	linkexample1
	match_n_to_m
	merge_pairs.cluster_pairs
	pair
	pair_blocking
	pair_minsim
	predict.problink_em
	problink_em
	select_greedy.cluster_pairs
	select_threshold.cluster_pairs
	summary.problink_em
	tabulate_patterns.cluster_pairs
	town_names
	Index

