Package ‘rjpdmp’

April 14, 2021

Type Package
Title Reversible Jump PDMP Samplers
Version 1.0.0
Author Matt Sutton, Augustin Chevalier, Paul Fearnhead, with PolyaGamma simulation code contributed from Jesse Windle and James G. Scott (<https://github.com/jgscott/helloPG>)
Maintainer Matt Sutton <matt.sutton.stat@gmail.com>
License GPL (>= 2)
RoxygenNote 7.1.1
Encoding UTF-8
Imports data.table, Rcpp (>= 0.12.3)
Suggests MASS
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-04-14 13:10:02 UTC

R topics documented:

 rjpdmp-package .. 2
 bps_n_logit ... 3
 bps_n_rr ... 5
 bps_s_logit ... 6
 bps_s_rr ... 8
 cond_mean ... 10
 gen_sample .. 11
 gibbs_logit .. 12
Description

The package can be used to Generates PDMP trajectories for reversible jump

- \texttt{zigzag_logit}: ZigZag on logistic likelihood problem
- \texttt{zigzag_logit_ss}: ZigZag with subsampling on Logistic likelihood problem
- \texttt{bps_s_logit}: BPS with velocities distributed uniformly on the sphere for a Logistic likelihood problem
- \texttt{bps_n_logit}: BPS with velocities distributed Normally for a Logistic likelihood problem
- \texttt{zigzag_rr}: ZigZag on a robust regression likelihood problem
- \texttt{bps_s_rr}: BPS with velocities distributed uniformly on the sphere for a robust regression likelihood problem
- \texttt{bps_n_rr}: BPS with velocities distributed Normally for a robust regression likelihood problem

Additional functions

Additional functions for plotting, generating samples, calculating posterior means or probabilities of inclusion

- \texttt{plot_pdmp}: Plot marginal densities and joint pairs plots for trajectories and samples of PDMP samplers and optionally MCMC samples for comparison.
- \texttt{plot_pdmp_multiple}: Plots to compare PDMP samplers and optionally MCMC samples.
- \texttt{gen_sample}: Get samples from PDMP trajectories taking a fixed time discretisation.
- \texttt{model_probabilities}: Calculate either marginal probabilities of inclusions or posterior probabilities of specific models.
- \texttt{models_visited}: Count the number of times a model is visited
- \texttt{marginal_mean}: Calculate the marginal mean using PDMP trajectories
bps_n_logit

- **cond_mean**: Calculate the mean conditioned on being in a specific model

Extensions to the package are planned.

Description

Applies the Reversible Jump BPS Sampler with Velocities distributed from the Normal distribution to a Logistic regression with dirac spike and slab distribution, as detailed in Reversible Jump PDMP Samplers for Variable Selection, 2020. For included variables an independent Gaussian prior is assumed with variance \(\text{prior_sigma2} \) and mean zero, variables are given prior probabilities of inclusion \(\text{ppi} \).

Usage

```r
bps_n_logit(
  maxTime,
  dataX,
  datay,
  prior_sigma2,
  x0,
  theta0,
  ref = 0.1,
  rj_val = 0.6,
  ppi = 0.5,
  nmax = 1000000L,
  burn = -1L
)
```

Arguments

- **maxTime**: Maximum runtime (in Seconds) of the algorithm; will terminate the code after a given computation time or \(\text{nmax} \) iterations of the algorithm is reached.
- **dataX**: Matrix of all covariates where the \(i \)-th row corresponds to all \(p \) covariates \(x_{i,1}, ..., x_{i,p} \) of the \(i \)-th observation.
- **datay**: Vector of \(n \) observations of a 0, 1-valued variable \(y \).
- **prior_sigma2**: Double for the prior variance for included variables.
- **x0**: Initial position of the regression parameter
- **theta0**: Initial velocity for the sampler (Default has 1s on all components). This should be chosen with unit velocities on each component (regardless of sign).
- **ref**: Double for the refreshment rate of the BPS.
- **rj_val**: Reversible jump parameter for the PDMP method. This value is fixed over all models and is interpreted as the probability to jump to a reduced model when a parameter hits zero.
Double for the prior probability of inclusion (ppi) for each parameter.

Maximum number of iterations (simulated events) of the algorithm; will stop the algorithm when this number of iterations of the method have occured. Default value is 1e6, lower values should be chosen for memory constraints if less iterations are desired.

Optional number of iterations to use for burnin. These are not stored so can be useful in memory intensive problems.

Value

Returns a list with the following objects:

times: Vector of event times where ZigZag process switches velocity or jumps models.

positions: Matrix of positions at which event times occur, these are not samples from the PDMP.

theta: Matrix of new velocities at event times.

Examples

generate.logistic.data <- function(beta, n.obs, Sig) {
 p <- length(beta)
 dataX <- MASS::mvrnorm(n=n.obs, mu=rep(0, p), Sigma=Sig)
 vals <- dataX %*% as.vector(beta)
 generateY <- function(p) { rbinom(1, 1, p)}
 dataY <- sapply(1/(1 + exp(-vals)), generateY)
 return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1, p, p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p

bps_fit <- bps_n_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
 prior_sigma2 = 10, theta0 = rep(0, p),
 x0 = rep(0, p), ref = 0.1, rj_val = 0.6,
 ppi = ppi, nmax = 1e6, burn = -1)

gibbs_fit <- gibbs_logit(maxTime = 1, dataX = data$dataX, dataY =data$dataY,
 prior_sigma2 = 10,beta = rep(0,p), gamma =rep(0,p),
 ppi = ppi)

Not run:
plot_pdmp(bps_fit, coords = 1:2, inds = 1:1e3,burn = .1, nsamples = 1e4,
 mcmc_samples = t(gibbs_fit$beta*gibbs_fit$gamma))

End(Not run)
Description

Applies the Reversible Jump BPS Sampler with Velocities drawn from the Normal distribution to a Robust Regression problem with dirac spike and slab prior. Included variables are given an independent Gaussian prior with variance \(\text{prior}_\text{sigma2} \) and mean zero, variables are given prior probabilities of inclusion \(\text{ppi} \).

Usage

```r
bps_n_rr(
  maxTime,
  dataX,
  datay,
  prior\_sigma2,
  x0,
  theta0,
  ref = 0.1,
  rj\_val = 0.5,
  ppi = 0.5,
  nmax = 1000000L,
  burn = -1L
)
```

Arguments

- **maxTime**: Maximum runtime (in Seconds) of the algorithm; will terminate the code after a given computation time or \(nmax \) iterations of the algorithm is reached.
- **dataX**: Matrix of all covariates where the i-th row corresponds to all p covariates \(x_i,1, \ldots, x_i,p \) of the i-th observation.
- **datay**: Vector of n observations of a continuous response variable \(y \).
- **prior_sigma2**: Double for the prior variance for included variables.
- **x0**: Initial position of the regression parameter
- **theta0**: Initial velocity for the sampler.
- **ref**: Refreshment rate for BPS.
- **rj_val**: Reversible jump parameter for the PDMP method. This value is fixed over all models and is interpreted as the probability to jump to a reduced model when a parameter hits zero.
- **ppi**: Double for the prior probability of inclusion (ppi) for each parameter.
- **nmax**: Maximum number of iterations (simulated events) of the algorithm; will stop the algorithm when this number of iterations of the method have occurred. Default value is 1e6, lower values should be chosen for memory constraints if less iterations are desired.
burn Optional number of iterations to use for burnin. These are not stored so can be
useful in memory intensive problems.

Value

Returns a list with the following objects:
times: Vector of event times where ZigZag process switches velocity or jumps models.
positions: Matrix of positions at which event times occur, these are not samples from the PDMP.
theta: Matrix of new velocities at event times.

Examples

generate.rr.data <- function(beta, n, Sig, noise, interc = TRUE) {
p <- length(beta)-(interc == TRUE)
dataX <- MASS::mvrnorm(n=n,mu=rep(0,p),Sigma=Sig)
 if(interc) {dataX <- cbind(1, dataX)}
dataY <- rep(0, n)
dataY <- dataX %*% as.vector(beta)+rnorm(n, sd = sqrt(noise))
return(list(dataX = dataX, dataY = dataY))
}
p <- 3;
n<- 120
beta <- c(0.5,0.5, rep(0,p-1))
set.seed(1)
data <- generate.rr.data(beta,n,diag(1,p+1), noise = 2, interc = FALSE)
dataX <- data$dataX; dataY <- data$dataY

set.seed(1)
ppi_val <- 1/4
res <- bps_n_rr(maxTime = 1, dataX = dataX, datay = dataY,
prior_sigma2 = 1e2, x0 = rep(0,p+1), theta0 = rep(0,p+1),
rj_val = 0.6, ppi = ppi_val, nmax = 1e5, ref = 0.1, burn = -1)
Not run:
plot_pdmp(res, coords = 1:3, inds = 1:1e3)
End(Not run)

Description

Applies the Reversible Jump BPS Sampler with Velocities drawn Uniformly on the p-Sphere to a
Logistic regression with dirac spike and slab distribution, as detailed in Reversible Jump PDMP
Samplers for Variable Selection, 2020. For included variables an independent Gaussian prior is
assumed with variance prior_sigma2 and mean zero, variables are given prior probabilities of
inclusion ppi.
Usage

bps_s_logit(
 maxTime,
 dataX,
 datay,
 prior_sigma2,
 x0,
 theta0,
 ref = 0.01,
 rj_val = 0.6,
 ppi = 0.5,
 nmax = 1000000L,
 burn = -1L
)

Arguments

maxTime Maximum runtime (in Seconds) of the algorithm; will terminate the code after a
given computation time or nmax iterations of the algorithm is reached.
dataX Matrix of all covariates where the i-th row corresponds to all p covariates x_i,1,
 ..., x_i,p of the i-th observation.
datay Vector of n observations of a 0, 1-valued variable y.
prior_sigma2 Double for the prior variance for included variables.
x0 Initial position of the regression parameter
theta0 Initial velocity for the sampler. This should be chosen with unit velocities on
 each component (regardless of sign).
ref Double for the refreshment rate of the BPS.
rj_val Reversible jump parameter for the PDMP method. This value is fixed over all
 models and is interpreted as the probability to jump to a reduced model when a
 parameter hits zero.
ppi Double for the prior probability of inclusion (ppi) for each parameter.
nmax Maximum number of iterations (simulated events) of the algorithm; will stop
 the algorithm when this number of iterations of the method have occured. De-
 fault value is 1e6, lower values should be chosen for memory constraints if less
 iterations are desired.
burn Optional number of iterations to use for burnin. These are not stored so can be
 useful in memory intensive problems.

Value

Returns a list with the following objects:
times: Vector of event times where ZigZag process switches velocity or jumps models.
positions: Matrix of positions at which event times occur, these are not samples from the PDMP.
theta: Matrix of new velocities at event times.
Examples

generate.logistic.data <- function(beta, n.obs, Sig) {
p <- length(beta)
dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig)
vals <- dataX %*% as.vector(beta)
generateY <- function(p) { rbinom(1, 1, p)}
dataY <- sapply(1/(1 + exp(-vals)), generateY)
return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p

bps_fit <- bps_s_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
prior_sigma2 = 10, theta0 = rep(0, p),
x0 = rep(0, p), ref = 0.1, rj_val = 0.6,
ppi = ppi)
gibbs_fit <- gibbs_logit(maxTime = 1, dataX = data$dataX, datay =data$dataY,
prior_sigma2 = 10,beta = rep(0,p), gamma =rep(0,p),
ppi = ppi)
Not run:
plot_pdmp(bps_fit, coords = 1:2, inds = 1:1e4,burn = .1, nsamples = 1e4,
mcmc_samples = t(gibbs_fit$beta*gibbs_fit$gamma))
End(Not run)

bps_s_rr

Description

Applies the Reversible Jump BPS Sampler with Velocities drawn Uniformly on the p-Sphere to a Robust Regression problem with dirac spike and slab prior. Included variables are given an independent Gaussian prior with variance prior_sigma2 and mean zero, variables are given prior probabilities of inclusion ppi.

Usage

bps_s_rr(maxTime,
dataX,
datay,
prior_sigma2,
x0,
theta0,
ref = 0.1,
rj_val = 0.5,
ppi = 0.5,
nmax = 1000000L,
burn = -1L
)

Arguments

maxTime Maximum runtime (in Seconds) of the algorithm; will terminate the code after a
given computation time or nmax iterations of the algorithm is reached.
dataX Matrix of all covariates where the i-th row corresponds to all p covariates x_i,1,
...., x_i,p of the i-th observation.
datay Vector of n observations of a continuous response variable y.
prior_sigma2 Double for the prior variance for included variables.
x0 Initial position of the regression parameter
theta0 Initial velocity for the sampler.
ref Refreshment rate for BPS.
rj_val Reversible jump parameter for the PDMP method. This value is fixed over all
models and is interpreted as the probability to jump to a reduced model when a
parameter hits zero.
ppi Double for the prior probability of inclusion (ppi) for each parameter.
nmax Maximum number of iterations (simulated events) of the algorithm; will stop
the algorithm when this number of iterations of the method have occured. De-
fault value is 1e6, lower values should be chosen for memory constraints if less
iterations are desired.
burn Optional number of iterations to use for burn-in. These are not stored so can be
useful in memory intensive problems.

Value

Returns a list with the following objects:
times: Vector of event times where ZigZag process switches velocity or jumps models.
positions: Matrix of positions at which event times occur, these are not samples from the PDMP.
theta: Matrix of new velocities at event times.

Examples
generate.rr.data <- function(beta, n, Sig, noise, interc = TRUE) {
 p <- length(beta)-(interc == TRUE)
 dataX <- MASS::mvrnorm(n=n,mu=rep(0,p),Sigma=Sig)
 if(interc) {dataX <- cbind(1, dataX)}
 dataY <- rep(0, n)
 dataY <- dataX %*% as.vector(beta)+rnorm(n, sd = sqrt(noise))
 return(list(dataX = dataX, dataY = dataY))
}

p <- 3;
n<- 120
beta <- c(0.5,0.5, rep(0,p-1))
set.seed(1)
data <- generate.rr.data(beta,n,diag(1,p+1), noise = 2, interc = FALSE)
dataX <- data$dataX; dataY <- data$dataY

set.seed(1)
ppi_val <- 1/4
res <- bps_s_rr(maxTime = 1, dataX = dataX, datay = dataY,
 prior_sigma2 = 1e2, x0 = rep(0,p+1), theta0 = rep(0,p+1),
 rj_val = 0.6, ppi = ppi_val, nmax = 1e5)

Not run:
plot_pdmp(res, coords = 1:3, inds = 1:1e3)
End(Not run)

cond_mean

Calculate the mean conditioned on being in a specific model

Description

Calculate the mean conditioned on being in a specific model

Usage

```r
cond_mean(times, positions, thetas, theta_c, burnin = 1)
```

Arguments

- `times` Vector of event times from the PDMP trajectory
- `positions` Matrix of positions from the PDMP trajectory, each column should correspond to a position
- `thetas` Matrix of PDMP velocities
- `theta_c` Vector indicating the model to condition on, 1s for active variables and zeros for inactive variables
- `burnin` Number of events to use as burnin

Value

Returns the mean conditioned on being in model theta_c estimated using the PDMP trajectories.
Examples

generate.logistic.data <- function(beta, n.obs, Sig) {
 p <- length(beta)
 dataX <- MASS::mvrnorm(n=n.obs, mu=rep(0,p), Sigma=Sig)
 vals <- dataX %*% as.vector(beta)
 generateY <- function(p) { rbinom(1, 1, p)}
 dataY <- sapply(1/(1 + exp(-vals)), generateY)
 return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p

zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
 prior_sigma2 = 10,theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
 ppi = ppi)

Not run:
b <- cond_mean(zigzag_fit$times, zigzag_fit$positions, zigzag_fit$theta, theta_c = c(1,rep(0,p-1)))
End(Not run)

Description

Get samples from PDMP trajectories taking a fixed time discretisation.

Usage

gen_sample(positions, times, nsample, theta = NULL, burn = 1)

Arguments

positions Matrix of positions from the PDMP trajectory, each column should correspond
to a position

times Vector of event times from the PDMP trajectory

nsample Number of desired samples from the PDMP trajectory

theta Optional Matrix of velocities from the PDMP trajectory, each column should
correspond to a velocity

burn Index to start the discretisation from. Default is 1.
Value

Returns a list with the following objects:

\(x\): Matrix of extracted samples of the position (x) taken using a fixed time discretisation of the PDMP

\(\theta\): Matrix of extracted samples of the velocity (\(\theta\)) taken using a fixed time discretisation of the PDMP

Examples

```r
generate.logistic.data <- function(beta, n.obs, Sig) {
  p <- length(beta)
  dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig)
  vals <- dataX %*% as.vector(beta)
  generateY <- function(p) { rbinom(1, 1, p)}
  dataY <- sapply(1/(1 + exp(-vals)), generateY)
  return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p

zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, dataY = data$dataY,
prior_sigma2 = 10,theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
ppi = ppi)

## Not run:
samples <- gen_sample(zigzag_fit$positions, zigzag_fit$times, 10^4)

plot(zigzag_fit$positions[1,],zigzag_fit$positions[2,], type = 'l', xlab = 'x1', ylab = 'x2')
points(samples$xx[1,], samples$xx[2,], col='red', pch=20)

## End(Not run)
```

Description

Applies the Collapsed Gibbs Sampler to a Logistic regression with dirac spike and slab distribution, as detailed in Reversible Jump PDMP Samplers for Variable Selection, 2020. For included variables an independent Gaussian prior is assumed with variance \(\text{prior}_\sigma^2\) and mean zero, variables are given prior probabilities of inclusion \(\text{ppi}\). Code makes use of the package set-up for Polya-Gamma simulation available at https://github.com/jgscott/helloPG.
Usage

gibbs_logit(
 dataX,
 datay,
 beta,
 gamma,
 ppi = 0.5,
 nsamples = 100000L,
 maxTime = 1e+08,
 prior_sigma2 = 10
)

Arguments

dataX Matrix of all covariates where the i-th row corresponds to all p covariates x_{i,1},
 ..., x_{i,p} of the i-th observation.
datay Vector of n observations of a 0, 1-valued variable y.
beta Initial position of the regression parameter
gamma Initial model for the sampler. Entries should either be 1s or 0s.
ppi Double for the prior probability of inclusion (ppi) for each parameter.
nsamples Maximum number of samples. Default value is 10^5, lower values should be
 chosen for memory constraints if less samples are desired.
maxTime Maximum runtime (in Seconds) of the algorithm; will terminate the code after a
 given computation time or nmax iterations of the algorithm is reached.
prior_sigma2 Double for the prior variance for included variables. Default 10.

Value

Returns a list with the following objects:

 beta: Matrix of regression parameter samples, columns are samples.
 gamma: Matrix of model parameter samples columns are samples.
 times: computation times at sampled events - Useful for plotting computational efficiency.

Examples

generate.logistic.data <- function(beta, n.obs, Sig) {
 p <- length(beta)
 dataX <- MASS::mvrnorm(n=n.obs, mu=rep(0,p), Sigma=Sig)
 vals <- dataX %*% as.vector(beta)
 generateY <- function(p) { rbinom(1, 1, p)}
 dataY <- sapply(1/(1 + exp(-vals)), generateY)
 return(list(dataX = dataX, dataY = dataY))
}

n <- 15
```r
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p

zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX,
                           datay = data$dataY, prior_sigma2 = 10,
                           theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
                           ppi = ppi)

gibbs_fit <- gibbs_logit(maxTime = 1, dataX = data$dataX, datay =data$dataY,
                         prior_sigma2 = 10,beta = rep(0,p), gamma =rep(0,p),
                         ppi = ppi)

## Not run:
plot_pdmp(zigzag_fit, coords = 1:2, inds = 1:1e3,burn = .1,
       nsamples = 1e4, mcmc_samples =t(gibbs_fit$beta*gibbs_fit$gamma))
## End(Not run)
```

marginal_mean

Description

Calculate the marginal mean

Usage

```
marginal_mean(times, positions, thetas, marginals = NULL, burnin = 1)
```

Arguments

- **times**: Vector of event times from the PDMP trajectory
- **positions**: Matrix of positions from the PDMP trajectory, each column should correspond to a position
- **thetas**: Matrix of PDMP velocities
- **marginals**: Vector of indices to calculate the marginal means.
- **burnin**: Number of events to use as burnin

Value

Returns the posterior mean of the parameter estimated using the PDMP trajectories.
Examples

```r
generate.logistic.data <- function(beta, n.obs, Sig) {
  p <- length(beta)
  dataX <- MASS::mvrnorm(n=n.obs, mu=rep(0, p), Sigma=Sig)
  vals <- dataX %*% as.vector(beta)
  generateY <- function(p) { rbinom(1, 1, p)}
  dataY <- sapply(1/(1 + exp(-vals)), generateY)
  return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1, p, p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p
zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
prior_sigma2 = 10, theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
ppi = ppi)
## Not run:
b <- marginal_mean(zigzag_fit$times, zigzag_fit$positions, zigzag_fit$theta, marginals=1:p)
## End(Not run)
```

models_visited

Count the number of times a model is visited

Description

Count the number of times a model is visited

Usage

```r
models_visited(thetas)
```

Arguments

- **thetas**: Vector of model indices from the PDMP trajectory or samples from an MCMC sampler

Value

Returns a Matrix with rows corresponding to models and a final column corresponding to the number of times the model is visited
Examples

generate.logistic.data <- function(beta, n.obs, Sig) {
 p <- length(beta)
 dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig)
 vals <- dataX %*% as.vector(beta)
 generateY <- function(p) { rbinom(1, 1, p)}
 dataY <- sapply(1/(1 + exp(-vals)), generateY)
 return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p
zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
 prior_sigma2 = 10, theta0 = rep(0, p), x0 = rep(0, p),
 rj_val = 0.6, ppi = ppi)
Not run:
models_visited(zigzag_fit$theta)
End(Not run)

model_probabilities

Calculate posterior probabilities of inclusion based on PDMP trajectories

Description

Calculate either marginal probabilities of inclusions or posterior probabilities of specific models.

Usage

model_probabilities(times, thetas, models = NULL, marginals = NULL, burnin = 1)

Arguments

times Vector of event times from the PDMP trajectory
thetas Matrix of velocities from the PDMP trajectory, each column should correspond to a velocities
models Optional Matrix of indicies where rows correspond to models. Will return probabilities of each model prob_mod.
marginals Optional Vector of indices to calculate the marginal probabilities of inclusion. Will return probabilities of inclusion for variable index marginal_prob.
burnin Number of events to use as burnin
Value

Returns a list with the following objects:

prob_mod: Vector of posterior model probabilities based on the PDMP trajectories
marginal_prob: Vector of marginal probabilities for inclusion

Examples

generate.logistic.data <- function(beta, n.obs, Sig) {
 p <- length(beta)
 dataX <- MASS::mvrnorm(n=n.obs, mu=rep(0, p), Sigma=Sig)
 vals <- dataX %*% as.vector(beta)
 generateY <- function(p) { rbinom(1, 1, p)}
 dataY <- sapply(1/(1 + exp(-vals)), generateY)
 return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p

zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
 prior_sigma2 = 10, theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
 ppi = ppi)
Not run:
a <- models_visited(zigzag_fit$theta)
Work out probability of top 10 most visited models and all marginal inclusion probabilities
specific model probabilities become trivially small for large dimensions
b <- model_probabilities(zigzag_fit$times, zigzag_fit$theta,
 models = a[1:10,1:p], marginals=1:p)
End(Not run)
Usage

```r
plot_pdmp(
  pdmp_res,
  coords = 1:2,
  inds = 1:10^3,
  nsamples = 10^3,
  burn = 0.1,
  mcmc_samples = NULL,
  pch = 20,
  cols = NULL
)
```

Arguments

- `pdmp_res`: List of positions, times and velocities returned from a PDMP sampler
- `coords`: Vector of coordinates to plot the marginal and joint distributions
- `inds`: Vector of indices of the PDMP trajectories to plot.
- `nsamples`: Number of samples to generate and use for marginal density estimates of the PDMP methods
- `burn`: Percentage of events to use as burn-in. Should be between 0 and 1.
- `mcmc_samples`: Optional Matrix of samples from an MCMC method. Each row should be a sample.
- `pch`: The graphics parameter for off diagonal plots. Default is 20.
- `cols`: Colours to be used for plotting the PDMPs and MCMC samples (in order).

Value

Generates a plot of the marginal density on the diagonal and pairs plots of the trajectories

Examples

```r
generate.logistic.data <- function(beta, n.obs, Sig) {
  p <- length(beta)
  dataX <- MASS::mvrnorm(n=n.obs, mu=rep(0, p), Sigma=Sig)
  vals <- dataX %*% as.vector(beta)
  generateY <- function(p) { rbinom(1, 1, p)}
  dataY <- sapply(1/(1 + exp(-vals)), generateY)
  return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1, p, p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p
```
zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
 prior_sigma2 = 10, theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
 ppi = ppi)
gibbs_fit <- gibbs_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
 prior_sigma2 = 10, beta = rep(0, p), gamma = rep(0, p),
 ppi = ppi)
Not run:
plot_pdmp(zigzag_fit, coords = 1:2, inds = 1:10^3, burn = .1,
 nsamples = 1e4, mcmc_samples = t(gibbs_fit$beta*gibbs_fit$gamma))
End(Not run)

plot_pdmp_multiple
Plot multiple PDMP dynamics and MCMC samples for posterior distributions

Description

Plots to compare PDMP samplers and optionally MCMC samples.

Usage

plot_pdmp_multiple(
 list_pdmp,
 coords = 1:2,
 inds = 1:10^3,
 nsamples = 10^3,
 burn = 0.1,
 mcmc_samples = NULL,
 pch = 20,
 cols = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_pdmp</td>
<td>List of PDMP sampler trajectories to plot</td>
</tr>
<tr>
<td>coords</td>
<td>Vector of coordinates to plot the marginal and joint distributions</td>
</tr>
<tr>
<td>inds</td>
<td>Vector of indices of the PDMP trajectories to plot</td>
</tr>
<tr>
<td>nsamples</td>
<td>Number of samples to generate and use for marginal density estimates of the PDMP methods</td>
</tr>
<tr>
<td>burn</td>
<td>Percentage of events to use as burn-in. Should be between 0 and 1, default 0.1.</td>
</tr>
<tr>
<td>mcmc_samples</td>
<td>Optional Matrix of samples from an MCMC method. Each row should be a sample.</td>
</tr>
<tr>
<td>pch</td>
<td>The graphics parameter for off diagonal plots. Default is 20.</td>
</tr>
<tr>
<td>cols</td>
<td>Colours to be used for plotting the PDMPs and MCMC samples (in order).</td>
</tr>
</tbody>
</table>
Value

Generates a plot of the marginal density on the diagonal and pairs plots of the trajectories

Examples

```r
generate.logistic.data <- function(beta, n.obs, Sig) {
  p <- length(beta)
  dataX <- MASS::mvrnorm(n=n.obs, mu=rep(0, p), Sigma=Sig)
  vals <- dataX %*% as.vector(beta)
  generateY <- function(p) { rbinom(1, 1, p)}
  dataY <- sapply(1/(1 + exp(-vals)), generateY)
  return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1, p, p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
pri <- 2/p

zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY, prior_sigma2 = 10, theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6, ppi = ppi)

## Not run:
bps_fit <- bps_n_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY, prior_sigma2 = 10, theta0 = rep(0, p), x0 = rep(0, p), ref = 0.1, rj_val = 0.6, ppi = ppi)

plot_pdmp_multiple(list(zz=zigzag_fit, bps=bps_fit), coords = 1:2, inds = 1:10^3, nsamples = 1e4, burn = .1)

## End(Not run)
```

Description

Applies the Reversible Jump ZigZag Sampler to a Logistic regression with dirac spike and slab distribution, as detailed in Reversible Jump PDMP Samplers for Variable Selection, 2020. For included variables an independent Gaussian prior is assumed with variance prior_sigma2 and mean zero, variables are given prior probabilities of inclusion ppi.
Usage

```r
zigzag_logit(  
  maxTime,  
  dataX,  
  datay,  
  prior_sigma2,  
  x0,  
  theta0,  
  rj_val = 0.6,  
  ppi = 0.5,  
  nmax = 1000000L,  
  burn = -1L
)
```

Arguments

- **maxTime**: Maximum runtime (in Seconds) of the algorithm; will terminate the code after a given computation time or nmax iterations of the algorithm is reached.
- **dataX**: Matrix of all covariates where the i-th row corresponds to all p covariates x_i,1, ..., x_i,p of the i-th observation.
- **datay**: Vector of n observations of a 0, 1-valued variable y.
- **prior_sigma2**: Double for the prior variance for included variables.
- **x0**: Initial position of the regression parameter.
- **theta0**: Initial velocity for the sampler (Default has 1s on all components). This should be chosen with unit velocities on each component (regardless of sign).
- **rj_val**: Reversible jump parameter for the PDMP method. This value is fixed over all models and is interpreted as the probability to jump to a reduced model when a parameter hits zero.
- **ppi**: Double for the prior probability of inclusion (ppi) for each parameter.
- **nmax**: Maximum number of iterations (simulated events) of the algorithm; will stop the algorithm when this number of iterations of the method have occured. Default value is 1e6, lower values should be chosen for memory constraints if less iterations are desired.
- **burn**: Optional number of iterations to use for burnin. These are not stored so can be useful in memory intensive problems.

Value

Returns a list with the following objects:

- **times**: Vector of event times where ZigZag process switches velocity or jumps models.
- **positions**: Matrix of positions at which event times occur, these are not samples from the PDMP.
- **theta**: Matrix of new velocities at event times.
Examples

generate.logistic.data <- function(beta, n.obs, Sig) {
 p <- length(beta)
 dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig)
 vals <- dataX %*% as.vector(beta)
 generateY <- function(p) { rbinom(1, 1, p)}
 dataY <- sapply(1/(1 + exp(-vals)), generateY)
 return(list(dataX = dataX, dataY = dataY))
}

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p

zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
prior_sigma2 = 10,theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
ppi = ppi)
gibbs_fit <- gibbs_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
prior_sigma2 = 10,beta = rep(0,p), gamma = rep(0,p),
ppi = ppi)

Not run:
plot_pdmp(zigzag_fit, coords = 1:2, inds = 1:1e3,burn = .1, nsamples = 1e4,
mcmc_samples = t(gibbs_fit$beta*gibbs_fit$gamma))
End(Not run)

Description

Applies the Reversible Jump ZigZag Sampler with subsampling to a Logistic regression with dirac spike and slab distribution, as detailed in Reversible Jump PDMP Samplers for Variable Selection, 2020. For included variables an independent Gaussian prior is assumed with variance prior_sigma2 and mean zero, variables are given prior probabilities of inclusion ppi.
prior_sigma2,
x0,
theta0,
cvref,
rj_val = 0.6,
ppi = 0.5,
nmax = 1000000L,
burn = -1L
)

Arguments

maxTime Maximum runtime (in Seconds) of the algorithm; will terminate the code after a given computation time or nmax iterations of the algorithm is reached.
dataX Matrix of all covariates where the i-th row corresponds to all p covariates x_i,1, ..., x_i,p of the i-th observation.
datay Vector of n observations of a 0, 1-valued variable y.
prior_sigma2 Double for the prior variance for included variables.
x0 Initial position of the regression parameter
theta0 Initial velocity for the sampler (Default has 1s on all components). This should be chosen with unit velocities on each component (regardless of sign).
cvref Control variate vector of dimension p for subsampling. If no control variate set to a vector of zeros.
rj_val Reversible jump parameter for the PDMP method. This value is fixed over all models and is interpreted as the probability to jump to a reduced model when a parameter hits zero.
ppi Double for the prior probability of inclusion (ppi) for each parameter.
nmax Maximum number of iterations (simulated events) of the algorithm; will stop the algorithm when this number of iterations of the method have occured. Default value is 1e6, lower values should be chosen for memory constraints if less iterations are desired.
burn Optional number of iterations to use for burnin. These are not stored so can be useful in memory intensive problems.

Value

Returns a list with the following objects:
times: Vector of event times where ZigZag process switches velocity or jumps models.
positions: Matrix of positions at which event times occur, these are not samples from the PDMP.
theta: Matrix of new velocities at event times.

Examples

generate.logistic.data <- function(beta, n.obs, Sig) {

p <- length(beta)
dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig)
vals <- dataX %*% as.vector(beta)
generateY <- function(p) { rbinom(1, 1, p)}
dataY <- sapply(1/(1 + exp(-vals)), generateY)
return(list(dataX = dataX, dataY = dataY))

n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p

zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX,
datay = data$dataY, prior_sigma2 = 10,
theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
ppi = ppi)

zigzag_fit_s <- zigzag_logit_ss(maxTime = 1, dataX = data$dataX,
datay = data$dataY, prior_sigma2 = 10,
theta0 = rep(0, p), x0 = rep(0, p),
rj_val = 0.6, cvref = c(1,rep(0,p-1)),
ppi = ppi)

gibbs_fit <- gibbs_logit(maxTime = 1, dataX = data$dataX, datay =data$dataY,
prior_sigma2 = 10,beta = rep(0,p), gamma =rep(0,p),
ppi = ppi)

Not run:
plot_pdmp_multiple(list(zigzag_fit,zigzag_fit_s), coords = 1:2, burn = .1,
inds = 1:1e2, nsamples = 1e4,
mcmc_samples = t(gibbs_fit$beta*gibbs_fit$gamma))

End(Not run)

Description

Applies the Reversible Jump ZigZag Sampler to a Robust Regression problem with dirac spike and slab prior. Included variables are given an independent Gaussian prior with variance prior_sigma2 and mean zero, variables are given prior probabilities of inclusion ppi.
Usage

\[
\text{zigzag_rr}(\\
\text{maxTime,} \\
\text{dataX,} \\
\text{datay,} \\
\text{prior_sigma2,} \\
\text{x0,} \\
\text{theta0,} \\
\text{rj_val = 0.5,} \\
\text{ppi = 0.5,} \\
\text{nmax = 1000000L,} \\
\text{burn = -1L} \\
)
\]

Arguments

- **maxTime**: Maximum runtime (in Seconds) of the algorithm; will terminate the code after a given computation time or nmax iterations of the algorithm is reached.
- **dataX**: Matrix of all covariates where the i-th row corresponds to all p covariates x_i,1, ..., x_i,p of the i-th observation.
- **datay**: Vector of n observations of a continuous response variable y.
- **prior_sigma2**: Double for the prior variance for included variables.
- **x0**: Initial position of the regression parameter
- **theta0**: Initial velocity for the sampler (Default has 1s on all components). This should be chosen with unit velocities on each component (regardless of sign).
- **rj_val**: Reversible jump parameter for the PDMP method. This value is fixed over all models and is interpreted as the probability to jump to a reduced model when a parameter hits zero.
- **ppi**: Double for the prior probability of inclusion (ppi) for each parameter.
- **nmax**: Maximum number of iterations (simulated events) of the algorithm; will stop the algorithm when this number of iterations of the method have occured. Default value is 1e6, lower values should be chosen for memory constraints if less iterations are desired.
- **burn**: Optional number of iterations to use for burnin. These are not stored so can be useful in memory intensive problems.

Value

Returns a list with the following objects:

- **times**: Vector of event times where ZigZag process switches velocity or jumps models.
- **positions**: Matrix of positions at which event times occur, these are not samples from the PDMP.
- **theta**: Matrix of new velocities at event times.
Examples

generate.rr.data <- function(beta, n, Sig, noise, interc = TRUE) {
 p <- length(beta) -(interc == TRUE)
 dataX <- MASS::mvrnorm(n=n,mu=rep(0,p),Sigma=Sig)
 if(interc) {dataX <- cbind(1, dataX)}
 dataY <- rep(0, n)
 dataY <- dataX %*% as.vector(beta)+rnorm(n, sd = sqrt(noise))
 return(list(dataX = dataX, dataY = dataY))
}
 p <- 3;
 n<- 120
 beta <- c(0.5,0.5, rep(0,p-1))
 set.seed(1)
 data <- generate.rr.data(beta,n,diag(1,p+1), noise = 2, interc = FALSE)
 dataX <- data$dataX; dataY <- data$dataY

set.seed(1)
ppi_val <- 1/4
res <- zigzag_rr(maxTime = 1, dataX = dataX, datay = dataY,
 prior_sigma2 = 1e2, x0 = rep(0,p+1), theta0 = rep(0,p+1),
 rj_val = 0.6, ppi = ppi_val, nmax = 1e5)

Not run:
plot_pdmp(res, coords = 1:3, inds = 1:1e3)

End(Not run)
Index

bps_n_logit, 2, 3
bps_n_rr, 2, 5
bps_s_logit, 2, 6
bps_s_rr, 2, 8

cond_mean, 3, 10

gen_sample, 2, 11
gibbs_logit, 12

marginal_mean, 2, 14
model_probabilities, 2, 16
models_visited, 2, 15

plot_pdmp, 2, 17
plot_pdmp_multiple, 2, 19

rjpdmp (rjpdmp-package), 2
rjpdmp-package, 2

zigzag_logit, 2, 20
zigzag_logit_ss, 2, 22
zigzag_rr, 2, 24