Package ‘rsample’

November 8, 2021

Title General Resampling Infrastructure
Version 0.1.1
Maintainer Julia Silge <julia.silge@rstudio.com>
Description Classes and functions to create and summarize different types
 of resampling objects (e.g. bootstrap, cross-validation).
License MIT + file LICENSE
URL https://rsample.tidymodels.org,
 https://github.com/tidymodels/rsample
BugReports https://github.com/tidymodels/rsample/issues
Depends R (>= 3.2)
Imports dplyr (>= 1.0.0), ellipsis, furrr, generics, lifecycle,
 methods, purrr, rlang (>= 0.4.10), slider (>= 0.1.5), tibble,
 tidyselect, vctrs (>= 0.3.0)
Suggests broom, covr, ggplot2, knitr, modeldata, recipes (>= 0.1.4),
 markdown, stats, testthat, utils, xml2
VignetteBuilder knitr
Config/Needs/website GGally, nlstools, survival, tidymodels,
 tidybayes, tidyverse/tidytemplate
Encoding UTF-8
RoxygenNote 7.1.2
NeedsCompilation no
Author Julia Silge [aut, cre] (<https://orcid.org/0000-0002-3671-836X>),
 Fanny Chow [aut],
 Max Kuhn [aut],
 Hadley Wickham [aut],
 RStudio [cph]
Repository CRAN
Date/Publication 2021-11-08 21:00:02 UTC
.get_fingerprint

Obtain an identifier for the resamples

Description

This function returns a hash (or NA) for an attribute that is created when the rset was initially constructed. This can be used to compare with other resampling objects to see if they are the same.
add_resample_id

Usage

.add_fingerprint(x, ...)

Default S3 method:
.add_fingerprint(x, ...)

S3 method for class 'rset'
.add_fingerprint(x, ...)

Arguments

x An rset or tune_results object.
...
Not currently used.

Value

A character value or NA_character_ if the object was created prior to rsample version 0.1.0.

Examples

set.seed(1)
.add_fingerprint(vfold_cv(mtcars))

set.seed(1)
.add_fingerprint(vfold_cv(mtcars))

set.seed(2)
.add_fingerprint(vfold_cv(mtcars))

set.seed(1)
.add_fingerprint(vfold_cv(mtcars, repeats = 2))

add_resample_id Augment a data set with resampling identifiers

Description

For a data set, add_resample_id() will add at least one new column that identifies which resample that the data came from. In most cases, a single column is added but for some resampling methods, two or more are added.

Usage

add_resample_id(.data, split, dots = FALSE)
Arguments

- `.data` A data frame
- `split` A single `rset` object.
- `dots` A single logical: should the id columns be prefixed with a "." to avoid name conflicts with `.data`?

Value

An updated data frame.

See Also

- `labels.rsplit`

Examples

```r
library(dplyr)

set.seed(363)
car_folds <- vfold_cv(mtcars, repeats = 3)

analysis(car_folds$splits[[1]]) %>%
  add_resample_id(car_folds$splits[[1]]) %>%
  head()

car_bt <- bootstraps(mtcars)

analysis(car_bt$splits[[1]]) %>%
  add_resample_id(car_bt$splits[[1]]) %>%
  head()
```

apparent

Sampling for the Apparent Error Rate

Description

When building a model on a data set and re-predicting the same data, the performance estimate from those predictions is often called the "apparent" performance of the model. This estimate can be wildly optimistic. "Apparent sampling" here means that the analysis and assessment samples are the same. These resamples are sometimes used in the analysis of bootstrap samples and should otherwise be avoided like old sushi.

Usage

```r
apparent(data, ...)```
as.data.frame.rsplit

Arguments

data
A data frame.
...
Not currently used.

Value

A tibble with a single row and classes apparent, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and one column called id that has a character string with the resample identifier.

Examples

apparent(mtcars)

as.data.frame.rsplit  Convert an rsplit object to a data frame

Description

The analysis or assessment code can be returned as a data frame (as dictated by the data argument) using as.data.frame.rsplit. analysis and assessment are shortcuts.

Usage

## S3 method for class 'rsplit'
as.data.frame(x, row.names = NULL, optional = FALSE, data = "analysis", ...)

analysis(x, ...)

assessment(x, ...)

Arguments

x
An rsplit object.
row.names
NULL or a character vector giving the row names for the data frame. Missing values are not allowed.
optional
A logical: should the column names of the data be checked for legality?
data
Either "analysis" or "assessment" to specify which data are returned.
...
Additional arguments to be passed to or from methods. Not currently used.

Examples

library(dplyr)
set.seed(104)
folds <- vfold_cv(mtcars)

model_data_1 <- folds$splits[[1]] %>% analysis()
holdout_data_1 <- folds$splits[[1]] %>% assessment()
**bootstraps**

| attrition | Job Attrition |

**Description**
Job Attrition

**Details**
These data are from the IBM Watson Analytics Lab. The website describes the data with “Uncover the factors that lead to employee attrition and explore important questions such as 'show me a breakdown of distance from home by job role and attrition' or 'compare average monthly income by education and attrition’. This is a fictional data set created by IBM data scientists.”. There are 1470 rows.

These data are now in the `modeldata` package.

| bootstraps | Bootstrap Sampling |

**Description**
A bootstrap sample is a sample that is the same size as the original data set that is made using replacement. This results in analysis samples that have multiple replicates of some of the original rows of the data. The assessment set is defined as the rows of the original data that were not included in the bootstrap sample. This is often referred to as the “out-of-bag” (OOB) sample.

**Usage**
```r
bootstraps(
 data,
 times = 25,
 strata = NULL,
 breaks = 4,
 pool = 0.1,
 apparent = FALSE,
 ...
)
```

**Arguments**
- `data`: A data frame.
- `times`: The number of bootstrap samples.
- `strata`: A variable in `data` (single character or name) used to conduct stratified sampling. When not `NULL`, each resample is created within the stratification variable. Numeric `strata` are binned into quartiles.
breaks  A single number giving the number of bins desired to stratify a numeric stratification variable.

pool  A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.

apparent  A logical. Should an extra resample be added where the analysis and holdout subset are the entire data set. This is required for some estimators used by the summary function that require the apparent error rate.

Details

The argument apparent enables the option of an additional "resample" where the analysis and assessment data sets are the same as the original data set. This can be required for some types of analysis of the bootstrap results.

With a strata argument, the random sampling is conducted within the stratification variable. This can help ensure that the resamples have equivalent proportions as the original data set. For a categorical variable, sampling is conducted separately within each class. For a numeric stratification variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the total are pooled together; see make_strata() for more details.

Value

An tibble with classes bootstraps, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and a column called id that has a character string with the resample identifier.

Examples

```r
bootstraps(mtcars, times = 2)
bootstraps(mtcars, times = 2, apparent = TRUE)

library(purrr)
library(modeldata)
data(wa_churn)

set.seed(13)
resample1 <- bootstraps(wa_churn, times = 3)
map_dbl(resample1$splits,
 function(x) {
 dat <- as.data.frame(x)$churn
 mean(dat == "Yes")
 })

set.seed(13)
resample2 <- bootstraps(wa_churn, strata = churn, times = 3)
map_dbl(resample2$splits,
 function(x) {
 dat <- as.data.frame(x)$churn
 })
```
complement

Determine the Assessment Samples

Description

This method and function help find which data belong in the analysis and assessment sets.

Usage

complement(x, ...)

## S3 method for class 'rsplit'
complement(x, ...)

## S3 method for class 'rof_split'
complement(x, ...)

## S3 method for class 'sliding_window_split'
complement(x, ...)

## S3 method for class 'sliding_index_split'
complement(x, ...)

## S3 method for class 'sliding_period_split'
complement(x, ...)

## S3 method for class 'apparent_split'
complement(x, ...)

Arguments

x
An rsplit object

... Not currently used
Details

Given an rsplit object, complement() will determine which of the data rows are contained in the assessment set. To save space, many of the rsplit objects will not contain indices for the assessment split.

Value

A integer vector.

See Also

populate()

Examples

set.seed(28432)
fold_rs <- vfold_cv(mtcars)
head(fold_rs$splits[[1]]$in_id)
fold_rs$splits[[1]]$out_id
complement(fold_rs$splits[[1]])

---

drinks  

Sample Time Series Data

Description

Sample Time Series Data

Details

Drink sales. The exact name of the series from FRED is: "Merchant Wholesalers, Except Manufacturers' Sales Branches and Offices Sales: Nondurable Goods: Beer, Wine, and Distilled Alcoholic Beverages Sales"

These data are now in the modeldata package.

---

form_pred  

Extract Predictor Names from Formula or Terms

Description

all.vars returns all variables used in a formula. This function only returns the variables explicitly used on the right-hand side (i.e., it will not resolve dots unless the object is terms with a data set specified).
Usage

form_pred(object, ...)

Arguments

object A model formula or \texttt{stats::terms()} object.
...
Arguments to pass to \texttt{all.vars()}

Value
A character vector of names

Examples

\begin{verbatim}
form_pred(y ~ x + z)
form_pred(terms(y ~ x + z))
form_pred(y ~ x + log(z))
form_pred(log(y) ~ x + z)
form_pred(y1 + y2 ~ x + z)
form_pred(log(y1) + y2 ~ x + z)
# will fail:
# form_pred(y ~ .)
form_pred(terms(mpg ~ (.)^2, data = mtcars))
form_pred(terms(~ (.)^2, data = mtcars))
\end{verbatim}

\hspace{1cm} \hline
\texttt{group_vfold_cv} \hspace{1cm} \textit{Group V-Fold Cross-Validation}

Description

Group V-fold cross-validation creates splits of the data based on some grouping variable (which may have more than a single row associated with it). The function can create as many splits as there are unique values of the grouping variable or it can create a smaller set of splits where more than one value is left out at a time. A common use of this kind of resampling is when you have repeated measures of the same subject.

Usage

\texttt{group_vfold_cv(data, group = NULL, v = NULL, ...)}
Arguments

- **data** A data frame.
- **group** A variable in data (single character or name) used for grouping observations with the same value to either the analysis or assessment set within a fold.
- **v** The number of partitions of the data set. If let NULL, v will be set to the number of unique values in the group.
- **...** Not currently used.

Value

A tibble with classes group_vfold_cv, rset.tbl_df, tbl, and data.frame. The results include a column for the data split objects and an identification variable.

Examples

```r
set.seed(3527)
test_data <- data.frame(id = sort(sample(1:20, size = 80, replace = TRUE)))
test_data$dat <- runif(nrow(test_data))

set.seed(5144)
split_by_id <- group_vfold_cv(test_data, group = "id")

get_id_left_out <- function(x)
 unique(assessment(x)$id)

library(purrr)
table(map_int(split_by_id$splits, get_id_left_out))

set.seed(5144)
split_by_some_id <- group_vfold_cv(test_data, group = "id", v = 7)
held_out <- map(split_by_some_id$splits, get_id_left_out)

unlist(held_out)
map_int(held_out, length)
```

---

**initial_split**  
*Simple Training/Test Set Splitting*

Description

*initial_split* creates a single binary split of the data into a training set and testing set. *initial_time_split* does the same, but takes the first prop samples for training, instead of a random selection. *training* and *testing* are used to extract the resulting data.
Usage

initial_split(data, prop = 3/4, strata = NULL, breaks = 4, pool = 0.1, ...)

initial_time_split(data, prop = 3/4, lag = 0, ...)

training(x)

testing(x)

Arguments

data A data frame.
prop The proportion of data to be retained for modeling/analysis.
strata A variable in data (single character or name) used to conduct stratified sampling. When not NULL, each resample is created within the stratification variable. Numeric strata are binned into quartiles.
breaks A single number giving the number of bins desired to stratify a numeric stratification variable.
pool A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
... Not currently used.
lag A value to include a lag between the assessment and analysis set. This is useful if lagged predictors will be used during training and testing.
x An rsplit object produced by initial_split

Details

With a strata argument, the random sampling is conducted within the stratification variable. This can help ensure that the resamples have equivalent proportions as the original data set. For a categorical variable, sampling is conducted separately within each class. For a numeric stratification variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the total are pooled together; see make_strata() for more details.

Value

An rsplit object that can be used with the training and testing functions to extract the data in each split.

Examples

set.seed(1353)
car_split <- initial_split(mtcars)
train_data <- training(car_split)
test_data <- testing(car_split)
```r
No lag
data(drinks, package = "modeldata")
drinks_split <- initial_time_split(drinks)
train_data <- training(drinks_split)
test_data <- testing(drinks_split)
c(max(train_data$date), min(test_data$date)) # no lag

With 12 period lag
drinks_lag_split <- initial_time_split(drinks, lag = 12)
train_data <- training(drinks_lag_split)
test_data <- testing(drinks_lag_split)
c(max(train_data$date), min(test_data$date)) # 12 period lag
```

---

### int_pctl

**Bootstrap confidence intervals**

#### Description

Calculate bootstrap confidence intervals using various methods.

#### Usage

```r
int_pctl(.data, statistics, alpha = 0.05)
int_t(.data, statistics, alpha = 0.05)
int_bca(.data, statistics, alpha = 0.05, .fn, ...)
```

#### Arguments

- **.data**: A data frame containing the bootstrap resamples created using `bootstraps()`. For t- and BCa-intervals, the `apparent` argument should be set to `TRUE`. Even if the `apparent` argument is set to `TRUE` for the percentile method, the apparent data is never used in calculating the percentile confidence interval.

- **statistics**: An unquoted column name or `dplyr` selector that identifies a single column in the data set that contains the individual bootstrap estimates. This can be a list column of tidy tibbles (that contains columns `term` and `estimate`) or a simple numeric column. For t-intervals, a standard tidy column (usually called `std.err`) is required. See the examples below.

- **alpha**: Level of significance.

- **.fn**: A function to calculate statistic of interest. The function should take an `rsplit` as the first argument and the `...` are required.

- **...**: Arguments to pass to `.fn`.

Details

Percentile intervals are the standard method of obtaining confidence intervals but require thousands of resamples to be accurate. T-intervals may need fewer resamples but require a corresponding variance estimate. Bias-corrected and accelerated intervals require the original function that was used to create the statistics of interest and are computationally taxing.

Value

Each function returns a tibble with columns .lower, .estimate, .upper, .alpha, .method, and term. .method is the type of interval (eg. "percentile", "student-t", or "BCa"). term is the name of the estimate. Note the .estimate returned from int_pctl() is the mean of the estimates from the bootstrap resamples and not the estimate from the apparent model.

References

https://rsample.tidymodels.org/articles/Applications/Intervals.html

See Also

reg_intervals()

Examples

library(broom)
library(dplyr)
library(purrr)
library(tibble)

lm_est <- function(split, ...) {
  lm(mpg ~ disp + hp, data = analysis(split)) %>%
  tidy()
}

set.seed(52156)
car_rs <-
  bootstraps(mtcars, 500, apparent = TRUE) %>%
  mutate(results = map(splits, lm_est))

int_pctl(car_rs, results)
int_t(car_rs, results)
int_bca(car_rs, results, .fn = lm_est)

# putting results into a tidy format
rank_corr <- function(split) {
  dat <- analysis(split)
  tibble(
    term = "corr",
    estimate = cor(dat$sqft, dat$price, method = "spearman"),
  )
}
# don't know the analytical std.err so no t-intervals
std.err = NA_real_
)
}

set.seed(69325)
data(Sacramento, package = "modeldata")
bootstraps(Sacramento, 1000, apparent = TRUE) %>%
  mutate(correlations = map(splits, rank_corr)) %>%
  int_pctl(correlations)

---

**labels.rset**

Find Labels from rset Object

**Description**

Produce a vector of resampling labels (e.g. "Fold1") from an rset object. Currently, nested_cv is not supported.

**Usage**

```r
S3 method for class 'rset'
labels(object, make_factor = FALSE, ...)

S3 method for class 'vfold_cv'
labels(object, make_factor = FALSE, ...)
```

**Arguments**

- `object` An rset object
- `make_factor` A logical for whether the results should be a character or a factor.
- `...` Not currently used.

**Value**

A single character or factor vector.

**Examples**

```r
labels(vfold_cv(mtcars))
```
labels.rsplit

Find Labels from rsplit Object

Description

Produce a tibble of identification variables so that single splits can be linked to a particular resample.

Usage

```r
S3 method for class 'rsplit'
labels(object, ...)
```

Arguments

- `object` An rsplit object
- `...` Not currently used.

Value

A tibble.

See Also

- `add_resample_id`

Examples

```r
cv_splits <- vfold_cv(mtcars)
labels(cv_splits$splits[[1]])
```

---

**loob.cv**

Leave-One-Out Cross-Validation

Description

Leave-one-out (LOO) cross-validation uses one data point in the original set as the assessment data and all other data points as the analysis set. A LOO resampling set has as many resamples as rows in the original data set.

Usage

```r
loob.cv(data, ...)
```

Arguments

- `data` A data frame.
- `...` Not currently used.
### Value

An tibble with classes `loo_cv`, `rset`, `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data split objects and one column called `id` that has a character string with the resample identifier.

### Examples

```r
loo_cv(mtcars)
```

### Description

Constructors for split objects

### Usage

```r
make_splits(x, ...)
Default S3 method:
make_splits(x, ...)
S3 method for class 'list'
make_splits(x, data, class = NULL, ...)
S3 method for class 'data.frame'
make_splits(x, assessment, ...)
```

### Arguments

- **x**: A list of integers with names "analysis" and "assessment", or a data frame of analysis or training data.
- **...**: Further arguments passed to or from other methods (not currently used).
- **data**: A data frame.
- **class**: An optional class to give the object.
- **assessment**: A data frame of assessment or testing data, which can be empty.
make_strata  Create or Modify Stratification Variables

Description

This function can create strata from numeric data and make non-numeric data more conducive for stratification.

Usage

make_strata(x, breaks = 4, nunique = 5, pool = 0.1, depth = 20)

Arguments

x  An input vector.
breaks  A single number giving the number of bins desired to stratify a numeric stratification variable.
nunique  An integer for the number of unique value threshold in the algorithm.
pool  A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
depth  An integer that is used to determine the best number of percentiles that should be used. The number of bins are based on min(5, floor(n / depth)) where n = length(x). If x is numeric, there must be at least 40 rows in the data set (when depth = 20) to conduct stratified sampling.

Details

For numeric data, if the number of unique levels is less than nunique, the data are treated as categorical data.

For categorical inputs, the function will find levels of x than occur in the data with percentage less than pool. The values from these groups will be randomly assigned to the remaining strata (as will data points that have missing values in x).

For numeric data with more unique values than nunique, the data will be converted to being categorical based on percentiles of the data. The percentile groups will have no more than 20 percent of the data in each group. Again, missing values in x are randomly assigned to groups.

Value

A factor vector.
Examples

```r
set.seed(61)
x1 <- rpois(100, lambda = 5)
table(x1)
table(make_strata(x1))

set.seed(554)
x2 <- rpois(100, lambda = 1)
table(x2)
table(make_strata(x2))

small groups are randomly assigned
x3 <- factor(x2)
table(x3)
table(make_strata(x3))

'oilType' data from 'caret'
x4 <- rep(LETTERS[1:7], c(37, 26, 3, 7, 11, 10, 2))
table(x4)
table(make_strata(x4))
table(make_strata(x4, pool = 0.1))
table(make_strata(x4, pool = 0.0))

not enough data to stratify
x5 <- rnorm(20)
table(make_strata(x5))

set.seed(483)
x6 <- rnorm(200)
quantile(x6, probs = (0:10)/10)
table(make_strata(x6, breaks = 10))
```

---

**manual_rset**  
*Manual resampling*

**Description**

`manual_rset()` is used for constructing the most minimal rset possible. It can be useful when you have custom rsplit objects built from `make_splits()`, or when you want to create a new rset from splits contained within an existing rset.

**Usage**

```r
manual_rset(splits, ids)
```

**Arguments**

- **splits**: A list of "rsplit" objects. It is easiest to create these using `make_splits()`.
- **ids**: A character vector of ids. The length of ids must be the same as the length of splits.
Examples

df <- data.frame(x = c(1, 2, 3, 4, 5, 6))

# Create an rset from custom indices
indices <- list(
  list(analysis = c(1L, 2L), assessment = 3L),
  list(analysis = c(4L, 5L), assessment = 6L)
)
splits <- lapply(indices, make_splits, data = df)

manual_rset(splits, c("Split 1", "Split 2"))

# You can also use this to create an rset from a subset of an
# existing rset
resamples <- vfold_cv(mtcars)
best_split <- resamples[5,]
manual_rset(best_split$splits, best_split$id)

---

**mc_cv**

*Monte Carlo Cross-Validation*

**Description**

One resample of Monte Carlo cross-validation takes a random sample (without replacement) of the original data set to be used for analysis. All other data points are added to the assessment set.

**Usage**

`mc_cv(data, prop = 3/4, times = 25, strata = NULL, breaks = 4, pool = 0.1, ...)`

**Arguments**

data A data frame.
prop The proportion of data to be retained for modeling/analysis.
times The number of times to repeat the sampling.
strata A variable in `data` (single character or name) used to conduct stratified sampling. When not `NULL`, each resample is created within the stratification variable. Numeric strata are binned into quartiles.
breaks A single number giving the number of bins desired to stratify a numeric stratification variable.
pool A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
... Not currently used.
**Details**

With a `strata` argument, the random sampling is conducted *within the stratification variable*. This can help ensure that the resamples have equivalent proportions as the original data set. For a categorical variable, sampling is conducted separately within each class. For a numeric stratification variable, `strata` is binned into quartiles, which are then used to stratify. Strata below 10% of the total are pooled together; see `make_strata()` for more details.

**Value**

An tibble with classes `mc_cv`, `rset`, `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data split objects and a column called `id` that has a character string with the resample identifier.

**Examples**

```r
mc_cv(mtcars, times = 2)
mc_cv(mtcars, prop = .5, times = 2)

library(purrr)
data(wa_churn, package = "modeldata")

set.seed(13)
resample1 <- mc_cv(wa_churn, times = 3, prop = .5)
map_dbl(resample1$splits,
 function(x) {
 dat <- as.data.frame(x)$churn
 mean(dat == "Yes")
 })

set.seed(13)
resample2 <- mc_cv(wa_churn, strata = churn, times = 3, prop = .5)
map_dbl(resample2$splits,
 function(x) {
 dat <- as.data.frame(x)$churn
 mean(dat == "Yes")
 })

set.seed(13)
resample3 <- mc_cv(wa_churn, strata = tenure, breaks = 6, times = 3, prop = .5)
map_dbl(resample3$splits,
 function(x) {
 dat <- as.data.frame(x)$churn
 mean(dat == "Yes")
 })
```

---

**nested_cv**

*Nested or Double Resampling*
Description

`nested_cv` can be used to take the results of one resampling procedure and conduct further resamples within each split. Any type of resampling used in `rsample` can be used.

Usage

```r
nested_cv(data, outside, inside)
```

Arguments

- `data`: A data frame.
- `outside`: The initial resampling specification. This can be an already created object or an expression of a new object (see the examples below). If the latter is used, the `data` argument does not need to be specified and, if it is given, will be ignored.
- `inside`: An expression for the type of resampling to be conducted within the initial procedure.

Details

It is a bad idea to use bootstrapping as the outer resampling procedure (see the example below).

Value

An tibble with `nested_cv` class and any other classes that outer resampling process normally contains. The results include a column for the outer data split objects, one or more id columns, and a column of nested tibbles called `inner_resamples` with the additional resamples.

Examples

```r
Using expressions for the resampling procedures:
nested_cv(mtcars, outside = vfold_cv(v = 3), inside = bootstraps(times = 5))

Using an existing object:
folds <- vfold_cv(mtcars)
nested_cv(mtcars, folds, inside = bootstraps(times = 5))

The dangers of outer bootstraps:
set.seed(2222)
bad_idea <- nested_cv(mtcars,
 outside = bootstraps(times = 5),
 inside = vfold_cv(v = 3))

first_outer_split <- bad_idea$splits[[1]]
outer_analysis <- as.data.frame(first_outer_split)
sum(grepl("Volvo 142E", rownames(outer_analysis)))

For the 3-fold CV used inside of each bootstrap, how are the replicated `Volvo 142E` data partitioned?
first_inner_split <- bad_idea$inner_resamples[[1]]$splits[[1]]
inner_analysis <- as.data.frame(first_inner_split)
```
permutations <- as.data.frame(first_inner_split, data = "assessment")

sum(grepl("Volvo 142E", rownames(inner_analysis)))
sum(grepl("Volvo 142E", rownames(inner_assess)))

---

permutations  Permutation sampling

Description

A permutation sample is the same size as the original data set and is made by permuting/shuffling one or more columns. This results in analysis samples where some columns are in their original order and some columns are permuted to a random order. Unlike other sampling functions in rsample, there is no assessment set and calling assessment() on a permutation split will throw an error.

Usage

permutations(data, permute = NULL, times = 25, apparent = FALSE, ...)

Arguments

data  A data frame.
permute  One or more columns to shuffle. This argument supports tidyselect selectors. Multiple expressions can be combined with c(). Variable names can be used as if they were positions in the data frame, so expressions like x:y can be used to select a range of variables. See language for more details.
times  The number of permutation samples.
apparent  A logical. Should an extra resample be added where the analysis is the standard data set.
...  Not currently used.

Details

The argument apparent enables the option of an additional "resample" where the analysis data set is the same as the original data set. Permutation-based resampling can be especially helpful for computing a statistic under the null hypothesis (e.g. t-statistic). This forms the basis of a permutation test, which computes a test statistic under all possible permutations of the data.

Value

A tibble with classes permutations, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and a column called id that has a character string with the resample identifier.
Examples

```r
permutations(mtcars, mpg, times = 2)
permutations(mtcars, mpg, times = 2, apparent = TRUE)
```

```r
library(purrr)
resample1 <- permutations(mtcars, starts_with("c"), times = 1)
resample1$splits[[1]] %>% analysis()
```

```r
resample2 <- permutations(mtcars, hp, times = 10, apparent = TRUE)
map_dbl(resample2$splits, function(x) {
 t.test(hp ~ vs, data = analysis(x))$statistic
})
```

---

**Description**

Many `rsplit` and `rset` objects do not contain indicators for the assessment samples. `populate()` can be used to fill the slot for the appropriate indices.

**Usage**

```r
populate(x, ...)
```

**Arguments**

- `x` A `rsplit` and `rset` object.
- `...` Not currently used

**Value**

An object of the same kind with the integer indices.

**Examples**

```r
set.seed(28432)
fold_rs <- vfold_cv(mtcars)
fold_rs$splits[[1]]$out_id
complement(fold_rs$splits[[1]])

populate(fold_rs$splits[[1]])$out_id
fold_rs_all <- populate(fold_rs)
fold_rs_all$splits[[1]]$out_id
```
A convenience function for confidence intervals with linear-ish parametric models

Usage

```r
reg_intervals(
 formula,
 data,
 model_fn = "lm",
 type = "student-t",
 times = NULL,
 alpha = 0.05,
 filter = term != "(Intercept)",
 keep_reps = FALSE,
 ...
)
```

Arguments

- `formula`: An R model formula with one outcome and at least one predictor.
- `data`: A data frame.
- `model_fn`: The model to fit. Allowable values are "lm", "glm", "survreg", and "coxph". The latter two require that the `survival` package be installed.
- `type`: The type of bootstrap confidence interval. Values of "student-t" and "percentile" are allowed.
- `times`: A single integer for the number of bootstrap samples. If left NULL, 1,001 are used for t-intervals and 2,001 for percentile intervals.
- `alpha`: Level of significance.
- `filter`: A logical expression used to remove rows from the final result, or NULL to keep all rows.
- `keep_reps`: Should the individual parameter estimates for each bootstrap sample be retained?
- `...`: Options to pass to the model function (such as `family` for `glm()`).

Value

A tibble with columns "term", ".lower", ".estimate", ".upper", ".alpha", and ".method". If `keep_reps = TRUE`, an additional list column called ".replicates" is also returned.
References


*Bootstrap Confidence Intervals*, https://rsample.tidymodels.org/articles/Applications/Intervals.html

See Also

`int_pctl()`, `int_t()`

Examples

```r
set.seed(1)
reg_intervals(mpg ~ I(1/sqrt(disp)), data = mtcars)

set.seed(1)
reg_intervals(mpg ~ I(1/sqrt(disp)), data = mtcars, keep_reps = TRUE)
```

---

**rolling_origin**  
*Rolling Origin Forecast Resampling*

Description

This resampling method is useful when the data set has a strong time component. The resamples are not random and contain data points that are consecutive values. The function assumes that the original data set are sorted in time order.

Usage

```r
rolling_origin(
 data,
 initial = 5,
 assess = 1,
 cumulative = TRUE,
 skip = 0,
 lag = 0,
 ...
)
```

Arguments

- `data` A data frame.
- `initial` The number of samples used for analysis/modeling in the initial resample.
- `assess` The number of samples used for each assessment resample.
cumulative  A logical. Should the analysis resample grow beyond the size specified by initial at each resample?.

skip  A integer indicating how many (if any) additional resamples to skip to thin the total amount of data points in the analysis resample. See the example below.

lag  A value to include a lag between the assessment and analysis set. This is useful if lagged predictors will be used during training and testing.

...  Not currently used.

Details

The main options, initial and assess, control the number of data points from the original data that are in the analysis and assessment set, respectively. When cumulative = TRUE, the analysis set will grow as resampling continues while the assessment set size will always remain static. skip enables the function to not use every data point in the resamples. When skip = 0, the resampling data sets will increment by one position. Suppose that the rows of a data set are consecutive days. Using skip = 6 will make the analysis data set to operate on weeks instead of days. The assessment set size is not affected by this option.

Value

A tibble with classes rolling_origin, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and a column called id that has a character string with the resample identifier.

See Also

sliding_window(), sliding_index(), and sliding_period() for additional time based resampling functions.

Examples

```r
set.seed(1131)
ex_data <- data.frame(row = 1:20, some_var = rnorm(20))
dim(rolling_origin(ex_data))
dim(rolling_origin(ex_data, skip = 2))
dim(rolling_origin(ex_data, skip = 2, cumulative = FALSE))

You can also roll over calendar periods by first nesting by that period, # which is especially useful for irregular series where a fixed window # is not useful. This example slides over 5 years at a time.
library(dplyr)
library(tidyr)
data(drinks, package = "modeldata")

drinks_annual <- drinks %>%
 mutate(year = as.POSIXlt(date)$year + 1900) %>%
 nest(-year)

multi_year_roll <- rolling_origin(drinks_annual, cumulative = FALSE)
```
rsample-dplyr

```
analysis(multi_year_roll$splits[[1]])
assessment(multi_year_roll$splits[[1]])
```

---

**rsample**

**rsample: General Resampling Infrastructure for R**

---

**Description**

rsample has functions to create variations of a data set that can be used to evaluate models or to estimate the sampling distribution of some statistic.

**Terminology**

- A **resample** is the result of a two-way split of a data set. For example, when bootstrapping, one part of the resample is a sample with replacement of the original data. The other part of the split contains the instances that were not contained in the bootstrap sample. The data structure `rsplit` is used to store a single resample.

- When the data are split in two, the portion that is used to estimate the model or calculate the statistic is called the **analysis** set here. In machine learning this is sometimes called the "training set" but this would be poorly named since it might conflict with any initial split of the original data.

- Conversely, the other data in the split are called the **assessment** data. In bootstrapping, these data are often called the "out-of-bag" samples.

- A collection of resamples is contained in an `rset` object.

**Basic Functions**

The main resampling functions are: `vfold_cv()`, `bootstraps()`, `mc_cv()`, `rolling_origin()`, and `nested_cv()`.

---

**Compatibility with dplyr**

**Description**

rsample should be fully compatible with dplyr 1.0.0.

With older versions of dplyr, there is partial support for the following verbs: `mutate()`, `arrange()`, `filter()`, `rename()`, `select()`, and `slice()`. We strongly recommend updating to dplyr 1.0.0 if possible to get more complete integration with dplyr.
**Version Specific Behavior**

rsample performs somewhat differently depending on whether you have dplyr >= 1.0.0 (new) or dplyr < 1.0.0 (old). Additionally, version 0.0.7 of rsample (new) introduced some changes to how rsample objects work with dplyr, even on old dplyr. Most of these changes influence the return value of a dplyr verb and determine whether it will be a tibble or an rsample rset subclass.

The table below attempts to capture most of these changes. These examples are not exhaustive and may not capture some edge-cases.

**Joins:**

The following affect all of the dplyr joins, such as `left_join()`, `right_join()`, `full_join()`, and `inner_join()`.

Joins that alter the rows of the original rset object:

<table>
<thead>
<tr>
<th>operation</th>
<th>old rsample + old dplyr</th>
<th>new rsample + old dplyr</th>
<th>new rsample + new dplyr</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>join(rset, tbl)</code></td>
<td>error</td>
<td>error</td>
<td>tibble</td>
</tr>
</tbody>
</table>

The idea here is that, if there are less rows in the result, the result should not be an rset object. For example, you can’t have a 10-fold CV object without 10 rows.

Joins that keep the rows of the original rset object:

<table>
<thead>
<tr>
<th>operation</th>
<th>old rsample + old dplyr</th>
<th>new rsample + old dplyr</th>
<th>new rsample + new dplyr</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>join(rset, tbl)</code></td>
<td>error</td>
<td>error</td>
<td>rset</td>
</tr>
</tbody>
</table>

As with the logic above, if the original rset object (defined by the split column and the id column(s)) is left intact, the results should be an rset.

**Row Subsetting:**

As mentioned above, this should result in a tibble if any rows are removed or added. Simply reordering rows still results in a valid rset with new rsample.

Cases where rows are removed or added:

<table>
<thead>
<tr>
<th>operation</th>
<th>old rsample + old dplyr</th>
<th>new rsample + old dplyr</th>
<th>new rsample + new dplyr</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rset[ind,]</code></td>
<td>tibble</td>
<td>tibble</td>
<td>tibble</td>
</tr>
<tr>
<td><code>slice(rset)</code></td>
<td>rset</td>
<td>tibble</td>
<td>tibble</td>
</tr>
<tr>
<td><code>filter(rset)</code></td>
<td>rset</td>
<td>tibble</td>
<td>tibble</td>
</tr>
</tbody>
</table>

Cases where all rows are kept, but are possibly reordered:

<table>
<thead>
<tr>
<th>operation</th>
<th>old rsample + old dplyr</th>
<th>new rsample + old dplyr</th>
<th>new rsample + new dplyr</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rset[ind,]</code></td>
<td>tibble</td>
<td>rset</td>
<td>rset</td>
</tr>
<tr>
<td><code>slice(rset)</code></td>
<td>rset</td>
<td>rset</td>
<td>rset</td>
</tr>
<tr>
<td><code>filter(rset)</code></td>
<td>rset</td>
<td>rset</td>
<td>rset</td>
</tr>
<tr>
<td><code>arrange(rset)</code></td>
<td>rset</td>
<td>rset</td>
<td>rset</td>
</tr>
</tbody>
</table>
**Column Subsetting:**
When the splits column or any id columns are dropped or renamed, the result should no longer be considered a valid rset.

Cases when the required columns are removed or renamed:

<table>
<thead>
<tr>
<th>operation</th>
<th>old rsample + old dplyr</th>
<th>new rsample + old dplyr</th>
<th>new rsample + new dplyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>rset[,] .ind</td>
<td>tibble</td>
<td>tibble</td>
<td>tibble</td>
</tr>
<tr>
<td>select(rset)</td>
<td>rset</td>
<td>tibble</td>
<td>tibble</td>
</tr>
<tr>
<td>rename(rset)</td>
<td>tibble</td>
<td>tibble</td>
<td>tibble</td>
</tr>
</tbody>
</table>

Cases when no required columns are affected:

<table>
<thead>
<tr>
<th>operation</th>
<th>old rsample + old dplyr</th>
<th>new rsample + old dplyr</th>
<th>new rsample + new dplyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>rset[,] .ind</td>
<td>tibble</td>
<td>rset</td>
<td>rset</td>
</tr>
<tr>
<td>select(rset)</td>
<td>rset</td>
<td>rset</td>
<td>rset</td>
</tr>
<tr>
<td>rename(rset)</td>
<td>rset</td>
<td>rset</td>
<td>rset</td>
</tr>
</tbody>
</table>

**Other Column Operations:**
Cases when the required columns are altered:

<table>
<thead>
<tr>
<th>operation</th>
<th>old rsample + old dplyr</th>
<th>new rsample + old dplyr</th>
<th>new rsample + new dplyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutate(rset)</td>
<td>rset</td>
<td>tibble</td>
<td>tibble</td>
</tr>
</tbody>
</table>

Cases when no required columns are affected:

<table>
<thead>
<tr>
<th>operation</th>
<th>old rsample + old dplyr</th>
<th>new rsample + old dplyr</th>
<th>new rsample + new dplyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutate(rset)</td>
<td>rset</td>
<td>rset</td>
<td>rset</td>
</tr>
</tbody>
</table>

---

**rsample2caret**  
*Convert Resampling Objects to Other Formats*

**Description**
These functions can convert resampling objects between **rsample** and **caret**.

**Usage**

```r
two <- rsample2caret(object, data = c("analysis", "assessment"))
caret2rsample(ctrl, data = NULL)
```
Arguments

- **object**: An rset object. Currently, nested_cv is not supported.
- **data**: The data that was originally used to produce the ctrl object.
- **ctrl**: An object produced by trainControl that has had the index and indexOut elements populated by integers. One method of getting this is to extract the control objects from an object produced by train.

Value

rsample2caret returns a list that mimics the index and indexOut elements of a trainControl object. caret2rsample returns an rset object of the appropriate class.

---

rset_reconstruct  
 Extending rsample with new rset subclasses

Description

rset_reconstruct() encapsulates the logic for allowing new rset subclasses to work properly with vctrs (through vctrs::vec_restore()) and dplyr (through dplyr::dplyr_reconstruct()). It is intended to be a developer tool, and is not required for normal usage of rsample.

Usage

rset_reconstruct(x, to)

Arguments

- **x**: A data frame to restore to an rset subclass.
- **to**: An rset subclass to restore to.

Details

rset objects are considered "reconstructable" after a vctrs/dplyr operation if:

- x and to both have an identical column named "splits" (column and row order do not matter).
- x and to both have identical columns prefixed with "id" (column and row order do not matter).

Value

x restored to the rset subclass of to.
Examples

```r
to <- bootstraps(mtcars, times = 25)

Imitate a vctrs/dplyr operation,
where the class might be lost along the way
x <- tibble::as_tibble(to)

Say we added a new column to `x`. Here we mock a `mutate()`.
x$foo <- "bar"

This is still reconstructable to `to`
rset_reconstruct(x, to)

Say we lose the first row
x <- x[-1,]

This is no longer reconstructable to `to`, as `x` is no longer an rset
bootstraps object with 25 bootstraps if one is lost!
rset_reconstruct(x, to)
```

slide-resampling

Time-based Resampling

Description

These resampling functions are focused on various forms of time series resampling.

- **sliding_window()** uses the row number when computing the resampling indices. It is independent of any time index, but is useful with completely regular series.

- **sliding_index()** computes resampling indices relative to the index column. This is often a Date or POSIXct column, but doesn’t have to be. This is useful when resampling irregular series, or for using irregular lookback periods such as `lookback = lubridate::years(1)` with daily data (where the number of days in a year may vary).

- **sliding_period()** first breaks up the index into less granular groups based on period, and then uses that to construct the resampling indices. This is extremely useful for constructing rolling monthly or yearly windows from daily data.

Usage

```r
sliding_window(
data,
...,
lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L
```
\( \text{slide-resampling} \)

\begin{verbatim}

\begin{verbatim}
sliding_index(
data,
index,

lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L
)

sliding_period(
data,
index,
period,

lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L,
every = 1L,
origin = NULL
)

Arguments

data A data frame.

... These dots are for future extensions and must be empty.

lookback The number of elements to look back from the current element when computing the resampling indices of the analysis set. The current row is always included in the analysis set.

- For \text{sliding_window()}, a single integer defining the number of rows to look back from the current row.
- For \text{sliding_index()}, a single object that will be subtracted from the index as \text{index - lookback} to define the boundary of where to start searching for rows to include in the current resample. This is often an integer value corresponding to the number of days to look back, or a lubridate \text{Period} object.
- For \text{sliding_period()}, a single integer defining the number of groups to look back from the current group, where the groups were defined from breaking up the index according to the \text{period}.

In all cases, \text{Inf} is also allowed to force an expanding window.

\end{verbatim}
\end{verbatim}

}
**assess_start, assess_stop**

This combination of arguments determines how far into the future to look when constructing the assessment set. Together they construct a range of [index + assess_start, index + assess_stop] to search for rows to include in the assessment set.

Generally, assess_start will always be 1 to indicate that the first value to potentially include in the assessment set should start one element after the current row, but it can be increased to a larger value to create "gaps" between the analysis and assessment set if you are worried about high levels of correlation in short term forecasting.

- For `sliding_window()`, these are both single integers defining the number of rows to look forward from the current row.
- For `sliding_index()`, these are single objects that will be added to the index to compute the range to search for rows to include in the assessment set. This is often an integer value corresponding to the number of days to look forward, or a lubridate Period object.
- For `sliding_period()`, these are both single integers defining the number of groups to look forward from the current group, where the groups were defined from breaking up the index according to the period.

**complete**

A single logical. When using `lookback` to compute the analysis sets, should only complete windows be considered? If set to `FALSE`, partial windows will be used until it is possible to create a complete window (based on `lookback`). This is a way to use an expanding window up to a certain point, and then switch to a sliding window.

**step**

A single positive integer. After computing the resampling indices, step is used to thin out the results by selecting every step-th result by subsetting the indices with `seq(1L, n_indices, by = step)`. step is applied after `skip`. Note that step is independent of any time index used.

**skip**

A single positive integer, or zero. After computing the resampling indices, the first `skip` results will be dropped by subsetting the indices with `seq(skip + 1L, n_indices)`. This can be especially useful when combined with `lookback = Inf`, which creates an expanding window starting from the first row. By skipping forward, you can drop the first few windows that have very few data points. `skip` is applied before `step`. Note that `skip` is independent of any time index used.

**index**

The index to compute resampling indices relative to, specified as a bare column name. This must be an existing column in `data`.

- For `sliding_index()`, this is commonly a date vector, but is not required.
- For `sliding_period()`, it is required that this is a Date or POSIXct vector.

The `index` must be an increasing vector, but duplicate values are allowed. Additionally, the index cannot contain any missing values.

**period**

The period to group the `index` by. This is specified as a single string, such as "year" or "month". See the `.period` argument of `slider::slide_index()` for the full list of options and further explanation.

**every**

A single positive integer. The number of periods to group together.

For example, if the `period` was set to "year" with an every value of 2, then the years 1970 and 1971 would be placed in the same group.
The reference date time value. The default when left as NULL is the epoch time of 1970-01-01 00:00:00, *in the time zone of the index.*

This is generally used to define the anchor time to count from, which is relevant when the `every` value is > 1.

**See Also**

- `rolling_origin()`
- `slider::slide()`, `slider::slide_index()`, and `slider::slide_period()`, which power these resamplers.

**Examples**

```r
library(vctrs)
library(tibble)
library(modeldata)
data("Chicago")

index <- new_date(c(1, 3, 4, 7, 8, 9, 13, 15, 16, 17))
df <- tibble(x = 1:10, index = index)
df

Look back two rows beyond the current row, for a total of three rows
in each analysis set. Each assessment set is composed of the two rows after
the current row.
sliding_window(df, lookback = 2, assess_stop = 2)

Same as before, but step forward by 3 rows between each resampling slice,
rather than just by 1.
set <- sliding_window(df, lookback = 2, assess_stop = 2, step = 3)

analysis(set$splits[[1]])
analysis(set$splits[[2]])

Now slide relative to the `index` column in `df`. This time we look back
2 days from the current row's `index` value, and 2 days forward from
it to construct the assessment set. Note that this series is irregular,
so it produces different results than `sliding_window()`. Additionally,
note that it is entirely possible for the assessment set to contain no
data if you have a highly irregular series and "look forward" into a
date range where no data points actually exist!
sliding_index(df, index, lookback = 2, assess_stop = 2)

With `sliding_period()`, we can break up our date index into less granular
chunks, and slide over them instead of the index directly. Here we'll use
the Chicago data, which contains daily data spanning 16 years, and we'll
break it up into rolling yearly chunks. Three years worth of data will
be used for the analysis set, and one years worth of data will be held out
for performance assessment.
sliding_period(Chicago,

```

slide-resampling
tidy.rsplit

Tidy Resampling Object

date,
"year",
lookback = 2,
assess_stop = 1
)

# Because `lookback = 2`, three years are required to form a "complete"
# window of data. To allow partial windows, set `complete = FALSE`.
# Here that first constructs two expanding windows until a complete three
# year window can be formed, at which point we switch to a sliding window.
sliding_period(
  Chicago,
  date,
  "year",
  lookback = 2,
  assess_stop = 1,
  complete = FALSE
)

# Alternatively, you could break the resamples up by month. Here we'll
# use an expanding monthly window by setting `lookback = Inf`, and each
# assessment set will contain two months of data. To ensure that we have
# enough data to fit our models, we'll `skip` the first 4 expanding windows.
# Finally, to thin out the results, we'll `step` forward by 2 between
# each resample.
sliding_period(
  Chicago,
  date,
  "month",
  lookback = Inf,
  assess_stop = 2,
  skip = 4,
  step = 2
)

---

tidy.rsplit

Tidy Resampling Object

Description

The tidy function from the broom package can be used on rset and rsplit objects to generate
tibbles with which rows are in the analysis and assessment sets.

Usage

## S3 method for class 'rsplit'
tidy(x, unique_ind = TRUE, ...)

## S3 method for class 'rset'
tidy(x, ...)
tidy.rsplit

## S3 method for class 'vfold_cv'
tidy(x, ...)

## S3 method for class 'nested_cv'
tidy(x, ...)

### Arguments

- **x**: A rset or rsplit object
- **unique_ind**: Should unique row identifiers be returned? For example, if FALSE then bootstrapping results will include multiple rows in the sample for the same row in the original data.
- **...**: Not currently used.

### Details

Note that for nested resampling, the rows of the inner resample, named inner_Row, are relative row indices and do not correspond to the rows in the original data set.

### Value

A tibble with columns Row and Data. The latter has possible values "Analysis" or "Assessment". For rset inputs, identification columns are also returned but their names and values depend on the type of resampling. vfold_cv contains a column "Fold" and, if repeats are used, another called "Repeats". bootstraps and mc_cv use the column "Resample".

### Examples

```r
library(ggplot2)
theme_set(theme_bw())

set.seed(4121)
cv <- tidy(vfold_cv(mtcars, v = 5))
ggplot(cv, aes(x = Fold, y = Row, fill = Data)) +
 geom_tile() + scale_fill_brewer()

set.seed(4121)
rcv <- tidy(vfold_cv(mtcars, v = 5, repeats = 2))
ggplot(rcv, aes(x = Fold, y = Row, fill = Data)) +
 geom_tile() + facet_wrap(~Repeat) + scale_fill_brewer()

set.seed(4121)
mccv <- tidy(mc_cv(mtcars, times = 5))
ggplot(mccv, aes(x = Resample, y = Row, fill = Data)) +
 geom_tile() + scale_fill_brewer()

set.seed(4121)
btt <- tidy(bootstraps(mtcars, time = 5))
ggplot(btt, aes(x = Resample, y = Row, fill = Data)) +
 geom_tile() + scale_fill_brewer()
```
dat <- data.frame(day = 1:30)
# Resample by week instead of day
ts_cv <- rolling_origin(dat, initial = 7, assess = 7,
                      skip = 6, cumulative = FALSE)
ts_cv <- tidy(ts_cv)
ggplot(ts_cv, aes(x = Resample, y = factor(Row), fill = Data)) +
       geom_tile() + scale_fill_brewer()

# Two Class Data

**Description**

Two Class Data

**Details**

There are artificial data with two predictors (A and B) and a factor outcome variable (Class). These data are now in the modeldata package.

# Create a Validation Set

**Description**

validation_split() takes a single random sample (without replacement) of the original data set to be used for analysis. All other data points are added to the assessment set (to be used as the validation set). validation_time_split() does the same, but takes the first prop samples for training, instead of a random selection.

**Usage**

validation_split(data, prop = 3/4, strata = NULL, breaks = 4, pool = 0.1, ...)

validation_time_split(data, prop = 3/4, lag = 0, ...)

**Arguments**

- **data**: A data frame.
- **prop**: The proportion of data to be retained for modeling/analysis.
- **strata**: A variable in data (single character or name) used to conduct stratified sampling. When not NULL, each resample is created within the stratification variable. Numeric strata are binned into quartiles.
vfold_cv

Description

V-fold cross-validation (also known as k-fold cross-validation) randomly splits the data into V groups of roughly equal size (called "folds"). A resample of the analysis data consisted of V-1 of the folds while the assessment set contains the final fold. In basic V-fold cross-validation (i.e. no repeats), the number of resamples is equal to V.

Usage

vfold_cv(data, v = 10, repeats = 1, strata = NULL, breaks = 4, pool = 0.1, ...)
Arguments

- **data**: A data frame.
- **v**: The number of partitions of the data set.
- **repeats**: The number of times to repeat the V-fold partitioning.
- **strata**: A variable in data (single character or name) used to conduct stratified sampling. When not NULL, each resample is created within the stratification variable. Numeric strata are binned into quartiles.
- **breaks**: A single number giving the number of bins desired to stratify a numeric stratification variable.
- **pool**: A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
- **...**: Not currently used.

Details

With more than one repeat, the basic V-fold cross-validation is conducted each time. For example, if three repeats are used with \( v = 10 \), there are a total of 30 splits: three groups of 10 that are generated separately.

With a strata argument, the random sampling is conducted *within the stratification variable*. This can help ensure that the resamples have equivalent proportions as the original data set. For a categorical variable, sampling is conducted separately within each class. For a numeric stratification variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the total are pooled together; see `make_strata()` for more details.

Value

A tibble with classes `vfold_cv`, `rset`, `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data split objects and one or more identification variables. For a single repeat, there will be one column called `id` that has a character string with the fold identifier. For repeats, `id` is the repeat number and an additional column called `id2` that contains the fold information (within repeat).

Examples

```
vfold_cv(mtcars, v = 10)
vfold_cv(mtcars, v = 10, repeats = 2)

library(purrr)
data(wa_churn, package = "modeldata")

set.seed(13)
folds1 <- vfold_cv(wa_churn, v = 5)
map_dbl(folds1$splits,
 function(x) {
 dat <- as.data.frame(x)$churn
 mean(dat == "Yes")
 })
```
set.seed(13)
folds2 <- vfold_cv(wa_churn, strata = churn, v = 5)
map_dbl(folds2$splits,
    function(x) {
        dat <- as.data.frame(x)$churn
        mean(dat == "Yes")
    })

set.seed(13)
folds3 <- vfold_cv(wa_churn, strata = tenure, breaks = 6, v = 5)
map_dbl(folds3$splits,
    function(x) {
        dat <- as.data.frame(x)$churn
        mean(dat == "Yes")
    })
Index

.get_fingerprint, 2
add_resample_id, 3
all.vars(), 10
analysis(as.data.frame.rsplit), 5
apparent, 4
as.data.frame.rsplit, 5
assessment(as.data.frame.rsplit), 5
attrition, 6

bootsraps, 6
bootsraps(), 28
caret2rsample(rsample2caret), 30
complement, 8
drinks, 9
form_pred, 9
group_vfold_cv, 10

initial_split, 11
initial_time_split(initial_split), 11
int_bca(int.pctl), 13
int.pctl, 13
int.pctl(), 26
int_t(int.pctl), 13
int_t(), 26

labels.rset, 15
labels.rsplit, 16
labels.vfold_cv(labels.rset), 15
language, 23
loo_cv, 16

make_splits, 17
make_splits(), 19
make_strata, 18
make_strata(), 7, 12, 21, 39, 40
manual_rset, 19

mc_cv, 20
mc_cv(), 28

nested_cv, 21
nested_cv(), 28

permutations, 23
populate, 24
populate(), 9

reg_intervals, 25
reg_intervals(), 14
rolling_origin, 26
rolling_origin(), 28, 35
rsample, 28
rsample-dplyr, 28
rsample2caret, 30
rset_reconstruct, 31

slide-resampling, 32
slider::slide, 35
slider::slide_index(), 34, 35
slider::slide_period(), 35
sliding_index(slide-resampling), 32
sliding_index(), 27
sliding_period(slide-resampling), 32
sliding_period(), 27
sliding_window(slide-resampling), 32
sliding_window(), 27
stats::terms(), 10

testing(initial_split), 11
tidy.nested_cv(tidy.rsplit), 36
tidy.rset(tidy.rsplit), 36
tidy.rsplit, 36
tidy.vfold_cv(tidy.rsplit), 36
training(initial_split), 11
two_class_dat, 38

validation_split, 38
validation_time_split
(validation_split), 38
vfold_cv, 39
vfold_cv(). 28