Package ‘sanic’

September 22, 2020

Type Package

Title Solving Ax = b Nimbly in C++

Version 0.0.1

Date 2020-09-04

Author Nikolas Kuschnig [aut, cre] (<https://orcid.org/0000-0002-6642-2543>)

Maintainer Nikolas Kuschnig <nikolas.kuschnig@wu.ac.at>

Description Routines for solving large systems of linear equations in R. Direct and iterative solvers from the Eigen C++ library are made available. Solvers include Cholesky, LU, QR, and Krylov subspace methods (Conjugate Gradient, BiCGSTAB). Both dense and sparse problems are supported.

URL https://github.com/nk027/sanic

BugReports https://github.com/nk027/sanic/issues

Depends R (>= 3.3.0)

Imports Rcpp (>= 1.0.5), Matrix, methods

License GPL-3

Encoding UTF-8

LinkingTo Rcpp, RcppEigen

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-09-22 08:40:03 UTC

R topics documented:

 sanic ... 2
 solve_cg .. 2
 solve_chol .. 3
 sparsify .. 4

Index 5
sanic

Solving Ax = b Nimbly in C++

Description

Routines for solving large systems of linear equations in R. Direct and iterative solvers from the Eigen C++ library are made available. Solvers include Cholesky, LU, QR, and Krylov subspace methods (Conjugate Gradient, BiCGSTAB). Both dense and sparse problems are supported.

solve_cg

Solve a System of Equations using Iterative Methods

Description

Function to use Conjugate Gradient (CG) methods to solve systems of equations.

Usage

```r
solve_cg(
  a, 
  b, 
  x0, 
  type = c("BiCGSTAB", "LSCG", "CG"), 
  tol, 
  iter, 
  verbose = FALSE
)
```

Arguments

- `a`
 Square numeric matrix with the coefficients of the linear system. Both dense and sparse matrices are supported (see `sparsify`).
- `b`
 Numeric vector or matrix at the right-hand side of the linear system. If missing, ‘b’ is set to an identity matrix and ‘a’ is inverted.
- `x0`
 Numeric vector or matrix with an initial guess. Must be of the same dimension as ‘b’.
- `type`
 Character scalar. Whether to use the BiCGSTAB, least squares CG or classic CG method.
- `tol`
 Numeric scalar with the desired tolerance. Defaults to the machine precision.
- `iter`
 Integer scalar with the maximum number of iterations. Defaults to the theoretical maximum, i.e. the number of columns in ‘a’.
- `verbose`
 Logical scalar. Whether to print iterations and tolerance.
solve_chol

Value

Solves for \(x \) and returns a numeric matrix with the results.

Examples

Solve via least squares or bi-conjugate gradient methods
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
The matrix A should be of class 'dgCMatr\(i\)x' (otherwise it is converted)
A <- sparsify(A)
\(x \) <- rnorm(3)
\(b \) <- A %*% \(x \)

\(x_{\text{bi}} \) <- solve_cg(A, b)
\(x_{\text{ls}} \) <- solve_cg(A, b, type = "LS")

Solve via conjugate gradient for symmetric matrices
\(AA \) <- A %*% A
\(b \) <- AA %*% \(x \)
\(x_{\text{cg}} \) <- solve_cg(AA, b, type = "CG")

solve_chol

Solve a System of Equations Using Direct Methods

Description

Functions to access specific direct solvers for systems of equations.

Usage

solve_chol(a, b)
solve_lu(a, b)
solve_qr(a, b)

Arguments

\(a \) Square numeric matrix with the coefficients of the linear system. Both dense and sparse matrices are supported (see `sparsify`).

\(b \) Numeric vector or matrix at the right-hand side of the linear system. If missing, \('b' \) is set to an identity matrix and \('a' \) is inverted.

Value

Solves for \(x \) and returns a numeric matrix with the results.
Examples

Solve via LU and QR for general matrices
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
x <- rnorm(3)
b <- A %*% x

x_lu <- solve_lu(A, b)
x_qr <- solve_qr(A, b)

Solve via Cholesky for symmetric matrices
AA <- crossprod(A)
b <- AA %*% x

x_chol <- solve_chol(AA, b)

Sparse methods are available for the 'dgCMatrix' class from Matrix
x_slu <- solve_lu(sparsify(A), b)

sparsify

Description

Concise function to transform dense to sparse matrices of class dgCMatrix (see sparseMatrix).

Usage

sparsify(x)

Arguments

x Numeric matrix to transform to a sparse 'dgCMatrix'.

Value

Returns 'x' as dgCMatrix.

Examples

sparsify(matrix(rnorm(9L), 3L))
Index

sanic, 2
solve_cg, 2
solve_chol, 3
solve_lu (solve_chol), 3
solveqr (solve_chol), 3
sparseMatrix, 4
sparsify, 2, 3, 4