Package ‘sazedR’

September 29, 2020

Type Package

Title Parameter-Free Domain-Agnostic Season Length Detection in Time Series

Version 2.0.2

Description Spectral and Average Autocorrelation Zero Distance Density (‘sazed’) is a method for estimating the season length of a seasonal time series. ‘sazed’ is aimed at practitioners, as it employs only domain-agnostic preprocessing and does not depend on parameter tuning or empirical constants. The computation of ‘sazed’ relies on the efficient autocorrelation computation methods suggested by Thibauld Nion (2012, URL: <https://etudes.tibonihoo.net/literate_musing/autocorrelations.html>) and by Bob Carpenter (2012, URL: <https://lingpipe-blog.com/2012/06/08/autocorrelation-fft-kiss-eigen/>).

License GPL-2

URL https://github.com/mtoller/autocorr_season_length_detection/

Encoding UTF-8

LazyData true

Imports bspec (>= 1.5), dplyr (>= 0.8.0.1), fftwtools (>= 0.9.8), pracma (>= 2.1.4), zoo (>= 1.8-3)

RoxygenNote 6.1.1

NeedsCompilation no

Author Maximilian Toller [aut], Tiago Santos [aut, cre], Roman Kern [aut]

Maintainer Tiago Santos <teixeiradossantos@tugraz.at>

Repository CRAN

Date/Publication 2020-09-29 18:30:02 UTC

R topics documented:

aze
Compute the AZE component of the SAZED ensemble

Description
aze estimates the season length of its argument from the mean autocorrelation zero distance

Usage
aze(y, preprocess = T)

Arguments
y The input time series.
preprocess If true, y is detrended and z-normalized before computation.

Value
The AZE season length estimate of y.

Examples
season_length <- 26
y <- sin(1:400*2*pi/season_length)
aze(y)
aze(y, preprocess = FALSE)
azed

Compute the AZED component of the SAZED ensemble

Description

azed computes the autocorrelation of its argument, and then derives the season length from its the autocorrelations zero density.

Usage

azed(y, preprocess = T)

Arguments

- **y** The input time series.
- **preprocess** If true, y is detrended and z-normalized before computation.

Value

The AZED season length estimate of y.

Examples

```r
season_length <- 26
y <- sin(1:400*2*pi/season_length)
azed(y)
azed(y, preprocess = FALSE)
```

computeAcf

Compute and shorten autocorrelation

Description

computeAcf computes the autocorrelation function of its argument and discards the zero lag and all lags greater than 2/3 of the argument’s length.

Usage

computeAcf(y)

Arguments

- **y** The input time series.

Value

The shortened autocorrelation

Examples

```r
season_length <- 26
y <- sin(1:400*2*pi/season_length)
computeAcf(y)
```

downsample

Downsample Time Series

Description

downsample samples down a time series with a rolling mean.

Usage

downsample(data, window_size = 2)

Arguments

data

The input time series.

window_size

The size of the rolling mean window used.

Value

The downsampled time series.

preprocessTs

Preprocess Time Series for SAZED ensemble

Description

preprocessTs detrends and z-normalizes its argument.

Usage

preprocessTs(y)

Arguments

y

The input time series.

Value

The detrended and z-normalized time series.

Examples

```r
season_length <- 26
y <- sin(1:400*2*pi/season_length)
preprocessTs(y)
```
Compute the S component of the SAZED ensemble

Description

S computes the spectral density of its argument, and then derives the season length from it.

Usage

$$S(y, \text{preprocess} = T)$$

Arguments

- y: The input time series.
- preprocess: If true, y is detrended and z-normalized before computation.

Value

The S season length estimate of y.

Examples

```r
season_length <- 26
y <- sin(1:400*2*pi/season_length)
S(y)
S(y, preprocess = FALSE)
```

Compute the S component of the SAZED ensemble

Description

S computes the spectral density of its argument, and then derives the season length from it.

Usage

$$S(y, \text{preprocess} = T)$$

Arguments

- y: The input time series.
- preprocess: If true, y is detrended and z-normalized before computation.

Value

The S season length estimate of y.

Examples

```r
season_length <- 26
y <- sin(1:400*2*pi/season_length)
S(y)
S(y, preprocess = FALSE)
```
Examples

```r
season_length <- 26
y <- sin(1:400*2*pi/season_length)
Sa(y)
Sa(y, preprocess = FALSE)
```

sazed
SAZED Ensemble (Optimum)

Description

`sazed` estimates a time series’ season length by combining 3 different estimates computed on an input time series and its 10-fold self-composed autocorrelation.

Usage

`sazed(y)`

Arguments

- `y`: The input time series.

Value

The season length of the input time series.

Examples

```r
season_length <- 26
y <- sin(1:400*2*pi/season_length)
sazed(y)
```

sazed.maj
SAZED Ensemble (Majority)

Description

`sazed.maj` estimates a time series’ season length by computing 6 different estimates and taking a majority vote.

Usage

`sazed.maj(y, iter = 0, method = "down", preprocess = T)"`
Arguments

- **y** The input time series.
- **iter** The recursion depth.
- **method** The method used for breaking ties. One of c("alt","diff","down").
- **preprocess** If true, y is detrended and z-normalized before computation.

Value

The season length of the input time series.

Examples

```r
season_length <- 26
y <- sin(1:400*2*pi/season_length)
sazed.maj(y)
```

Description

The sazedR package provides the main function to compute season length, sazed, which is an ensemble of many season length estimation methods, also included in this package.

ze

Description

ze estimates the season length of its argument from the mean zero distance

Usage

```r
ze(y, preprocess = T)
```

Arguments

- **y** The input time series.
- **preprocess** If true, y is detrended and z-normalized before computation.

Value

The ZE season length estimate of y.
Examples

 season_length <- 26
 y <- sin(1:400*2*pi/season_length)
 ze(y)
 ze(y, preprocess = FALSE)

zed
Compute the ZED component of the SAZED ensemble

Description

 zed computes the zero density of its argument, and then derives the season length from it.

Usage

 zed(y, preprocess = T)

Arguments

 y The input time series.
 preprocess If true, y is detrended and z-normalized before computation.

Value

 The ZED season length estimate of y.

Examples

 season_length <- 26
 y <- sin(1:400*2*pi/season_length)
 zed(y)
 zed(y, preprocess = FALSE)
Index

aze, 2
azed, 3
computeAcf, 3
downsampling, 4
preprocessTs, 4
S, 5
Sa, 5
sazed, 6
sazed.maj, 6
sazedR, 7
sazedR-package (sazedR), 7
ze, 7
zed, 8