Package ‘scCAN’
July 19, 2021

Type Package
Title Single-Cell Clustering using Autoencoder and Network Fusion
Version 1.0.1
Maintainer Bang Tran <bang.t.s@nevada.unr.edu>
Description A single-cell Clustering method using 'Autoencoder' and Network fusion ('sc-CAN') for segregating the cells from the high-dimensional 'scRNA-Seq' data. The software automatically determines the optimal number of clusters and then partitions the cells in a way such that the results are robust to noise and dropouts. 'sc-CAN' is fast and it supports Windows, Linux, and Mac OS.
License LGPL
Encoding UTF-8
LazyData true
LazyDataCompression xz
Depends R (>= 3.4), scDHA, FNN
Imports purrr, stats, markdown
RoxygenNote 7.1.1
Suggests knitr
VignetteBuilder knitr
NeedsCompilation no
Author Bang Tran [aut, cre],
 Duc Tran [aut],
 Hung Nguyen [aut],
 Tin Nguyen [fnd]
Repository CRAN
Date/Publication 2021-07-19 08:00:05 UTC

R topics documented:

adjustedRandIndex .. 2
scCAN ... 2
SCE ... 4
adjustedRandIndex

Description

The function to calculate adjusted Rand index value with the inputs of true clusters and predicted clusters.

Usage

```r
adjustedRandIndex(x, y)
```

Arguments

- `x`: A vector that contain predicted cluster assignment.
- `y`: A vector that contain true cluster assignment.

scCAN

Description

This is the main function to perform sc-RNA seq data clustering. **scCAN** is a fully unsupervised scRNA-seq clustering framework that uses deep neural network and network fusion-based clustering algorithm. First, **scCAN** applies a non-negative autoencoder to filter scRNA-seq data. Second, the filtered data is passed to stacked Bayesian autoencoder to get multiple low-dimensional representations of input data. Subsequently, **scCAN** converts these compressed data into networks and unify those networks to a single graph. Then, **scCAN** uses a spectral clustering algorithm to obtain final clusters assignment.

Usage

```r
scCAN(
  data, 
  sparse = FALSE, 
  n.neighbors = 30, 
  alpha = 0.5, 
  n.iters = 10, 
  ncores = 10, 
  r.seed = 1
)
```
Arguments

data Gene expression matrix, with rows represent samples and columns represent genes.
sparse Boolean variable indicating whether data is a sparse matrix. The input must be a non negative sparse matrix.
n.neighbors Number of neighboring cells that are used to calculate the edge’s weight. The number of neighbors are set \(n_{neighbors} = 30 \) by default.
alpha A hyper-parameter that is used to calculate the network kernel. The value is set to \(\alpha = 0.5 \) by default.
n.iters A hyper-parameter to set the number of network fusion iterations. It is set to \(n_{iters} = 10 \) by default.
ncores Number of processor cores to use.
r.seed A parameter to set a seed for reproducibility. This value is set to \(r seed = 1 \) by default.

Value

List with the following keys:

- cluster - A numeric vector containing cluster assignment for each sample.
- k - The optimal number of cluster.

References

Examples

```R
# Load the package and the example data (SCE dataset)
library(scCAN)
# Load example data
data("SCE")

# Get data matrix and label
data <- t(SCE$data); label <- as.character(SCE$cell_type)

# Generate clustering result, the input matrix has rows as samples and columns as genes
result <- scCAN(data, r.seed = 1)

# Get the clustering result
cluster <- result$cluster

# Calculate adjusted Rand Index
ari <- round(scCAN::adjustedRandIndex(cluster,label), 2)
print(paste0("ARI = ", ari))
```
Description

SCE dataset includes scRNA-seq data and cell type information.

Usage

SCE

Format

An object of class list of length 2.
Index

* datasets
 SCE, 4

adjustedRandIndex, 2

scCAN, 2
SCE, 4