Package ‘scModels’

September 3, 2019

Title Fitting Discrete Distribution Models to Count Data
Version 1.0.1
DateNote Previous CRAN version 1.0.0 on 2019-06-13
Maintainer Lisa Amrhein <amrheinlisa@gmail.com>
License GPL-3

Description Provides functions for fitting discrete distribution models to count data.
 Included are the Poisson, the negative binomial and, most importantly,
 a new implementation of the Poisson-beta distribution (density, distribution and quantile
 functions, and random number generator) together with a needed new implementation of
 Kummer's function (also: confluent hypergeometric function of the first kind). Three
 different implementations of the Gillespie algorithm allow data simulation based on the
 basic, switching or bursting mRNA generating processes. Moreover, likelihood functions for
 four variants of each of the three aforementioned distributions are also available.
 The variants include one population and two population mixtures, both with and without
 zero-inflation. The package depends on the 'MPFR' li-
 braries (<https://www.mpfr.org/>) which need to be installed separately
 (see description at <https://github.com/fuchslab/scModels>).
 This package is supplement to the paper ``A mechanistic model for the negative binomial distri-
 bution of single-cell mRNA counts”
 by Lisa Amrhein, Kumar Harsha and Christiane Fuchs (2019) <doi:10.1101/657619> avail-
 able on bioRxiv.

Depends R (>= 3.1.0)
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, testthat
LinkingTo Rcpp
Imports Rcpp
Encoding UTF-8
SystemRequirements gmp (>= 4.2.3), mpfr (>= 3.0.0)
SystemRequirementsNote 'MPFR' (MP Floating-Point Reliable Library,
 <http://mpfr.org/>) and 'GMP' (GNU Multiple Precision
 library,<http://gmplib.org/>)

1
chf_1F1

Description

Kummer's function (also: confluent hypergeometric function of the first kind) for numeric (non-complex) values and input parameters.

Usage

chf_1F1(x, a, b)

Arguments

x numeric value or vector

a, b numeric parameters of the Kummer function

Examples

x <- chf_1F1(-100:100, 5, 7)
plot(-100:100, x, type='l')
fit_params

Functions to estimate parameters of probability distributions by fitting the distributions using optim()

Description

Functions to estimate parameters of probability distributions by fitting the distributions using optim()

Usage

fit_params(x, type, optim_control = list(maxit = 1000))

Arguments

x
Vector containing the discrete observations

type
Keyword for the probability distribution the data is to be fitted against. Possible values are ("pois", "nb", "pb", "pois2", "nb2", "pb2", "zipois", "zinp", "zipb", "zipois2", "zinb2", "zipb2")

optim_control
List of options to override presets in the optim function; Set to list(maxit = 1000) by default. For more details, please refer to the `control` parameter in the standard `optim` function in package `stats`.

Examples

x1 <- rbinom(100, size = 13, mu = 9)
p1 <- fit_params(x1, "nb")
s <- sample(x = c(0,1), size = 100, replace = TRUE, prob = c(0.3,0.7))
x2 <- s*x1 + (1-s)*rbinom(100, size = 15, mu = 53)
p2 <- fit_params(x2, "nb2")

gmRNA

Gillespie algorithm for mRNA generating processes

Description

Gillespie algorithms allow synthetic data simulation via three different underlying mRNA generating processes: the basic process consists of a simple death-birth model of mRNA transcription and degradation; the switching process considers additionally gene activation and deactivation, with mRNA transcription only happening in active gene states; the bursting process, transcribes mRNA in bursts with geometrically distributed burst sizes.
Usage

gmRNA_basic(n, r.on, r.degr)

gmRNA_switch(n, r.act, r.deact, r.on, r.degr)

gmRNA_burst(n, r.burst, s.burst, r.degr)

Arguments

n Number of observations
r.on Transcription rate during gene activation (Switching model)
r.degr mRNA degradation rate (all models)
r.act DNA activation rate (Switching Model)
r.deact DNA deactivation rate (Switching Model)
r.burst Bursty transcription rate (Bursting model)
s.burst Mean burst size (Bursting Model)

Examples

x <- gmRNA_basic(100, 0.75, 0.001)
plot(density(x))

x <- gmRNA_switch(100, 0.23, 0.15, 0.75, 0.001)
plot(density(x))

x <- gmRNA_burst(10, 0.15, 0.75, 0.001)
plot(density(x))

nlogL

Negative log Likelihood functions for Poisson, negative binomial and Poisson-beta distributions

Description

The negative log Likelihood functions for Poisson, negative binomial and Poisson-beta distributions. Mixing two distributions of the same kind and/or adding zero-inflation allows to take characteristics of real data into account. Additionally, one population and two population mixtures - with and without zero-inflations - allow distribution fittings of the Poisson, negative binomial and the Poisson-beta distribution.

Usage

nlogL_pois(data, par.pois)

nlogL_nb(data, par.nb)

nlogL_pb(data, par.pb)
nlogL

nlogL_pois2(data, par.pois2)
nlogL_nb2(data, par.nb2)
nlogL_pb2(data, par.pb2)
nlogL_zipois(data, par.zipois)
nlogL_zinb(data, par.zinb)
nlogL_zipb(data, par.zipb)
nlogL_zipois2(data, par.zipois2)
nlogL_zinb2(data, par.zinb2)
nlogL_zipb2(data, par.zipb2)

Arguments

- **data**: Vector containing the discrete observations
- **par.pois**: Scalar containing the lambda parameter of the Poisson distribution
- **par.nb**: Vector of length 2, containing the size and the mu parameter of the negative binomial distribution
- **par.pb**: Vector of length 3, containing the alpha, beta and c parameter of the Poisson-beta distribution
- **par.pois2, par.nb2, par.pb2**: Vector containing the parameters of the two mixing distributions. First entry represents the fraction of the first distribution, followed by all parameters of the first, then all of the second distribution.
- **par.zipois, par.zinb, par.zipb**: Vector containing the respective zero-inflated distribution parameters. The additional first entry is the inflation parameter for all cases.
- **par.zipois2, par.zinb2, par.zipb2**: Parameters for the zero-inflated two population model.

Details

Functions nlogL_pois, nlogL_nb, nlogL_pb compute the negative log-likelihood of Poisson, negative binomial and the Poisson-beta distributions given the data. Functions nlogL_pois2, nlogL_nb2 and nlogL_pb2 compute the negative log-likelihood values for a two population mixture of distributions whereas nlogL_zipois, nlogL_zinb, nlogL_zipb compute the same for the zero-inflated distributions. Furthermore, nlogL_zipois2, nlogL_zinb2 and nlogL_zipb2 are for two population mixtures with zero-inflation.

Examples

```
x <- rpois(100, 11)
```
Poisson-beta

Poisson-beta Distribution

Description

Density, distribution function, quantile function and random generation for the Poisson-beta distribution: a Poisson distribution whose parameter itself follows a beta distribution. Alpha and beta are the parameters of this specific beta distribution which is scaled on (0, c) in contrast to the usual scaling of the standard beta distribution on (0, 1).

Usage

dpb(x, alpha, beta, c = 1, log = FALSE)

ppb(q, alpha, beta, c = 1, lower.tail = TRUE, log.p = FALSE)

qpb(p, alpha, beta, c = 1, lower.tail = TRUE, log.p = FALSE)
Poisson-beta

```
rpb(n, alpha, beta, c = 1)
```

Arguments

- `x, q`: Vector of (non-negative integer) quantiles
- `alpha, beta`: Non-negative parameters of the beta distribution (shape1 and shape2)
- `c`: Numeric scaling parameter of the beta distribution. The standard beta is scaled on (0,1) (default) and can be transformed to (0,c).
- `log, log.p`: Logical; if TRUE, probabilities p are given as log(p)
- `lower.tail`: Logical; if TRUE (default), probabilities are \(P[X \leq x] \) otherwise, \(P[X > x] \).
- `p`: Vector of probabilities
- `n`: Number of observations

Examples

```r
X <- dpb(x=0:200, alpha=5, beta=3, c=20)
plot(0:200, X, type='l')
Y <- dpb(0:10, seq(10.0,11.0,by=0.1), seq(30.0,31.0,by=0.1), seq(10.2,11.2,by=0.1))
Y <- ppb(q= 0 :200, alpha=5, beta= 3, c=20)
plot(0:200, Y, type="l")
Z <- qpb(p= seq(0,1, by= 0.01), alpha=5, beta= 3, c=20)
plot(seq(0,1, by= 0.01),Z, type="l")
RV <- rpb(n = 1000, alpha=5, beta= 3, c=20)
plot(0 : 200, X, type="l")
lines(density(RV), col="red")
R2 <- rpb(11, seq(10.0,11.0,by=0.1), seq(30.0,31.0,by=0.1), seq(10.2,11.2,by=0.1))
```
Index

* Topic **Poisson-beta**
 nlogL, 4
 Poisson-beta, 6
 ppb (Poisson-beta), 6
* Topic **binomial**
 nlogL, 4
* Topic **distribution**
 Poisson-beta, 6
 qpb (Poisson-beta), 6
* Topic **estimation**
 fit_params, 3
* Topic **likelihood**
 nlogL, 4
* Topic **negative**
 nlogL, 4
* Topic **parameter**
 fit_params, 3
 rpb (Poisson-beta), 6

chf_1F1, 2

dpb (Poisson-beta), 6

fit_params, 3

gmRNA, 3
 gmRNA_basic (gmRNA), 3
 gmRNA_burst (gmRNA), 3
 gmRNA_switch (gmRNA), 3
 nlogL, 4
 nlogL_nb (nlogL), 4
 nlogL_nb2 (nlogL), 4
 nlogL_pb (nlogL), 4
 nlogL_pb2 (nlogL), 4
 nlogL_pois (nlogL), 4
 nlogL_pois2 (nlogL), 4
 nlogL_zinb (nlogL), 4
 nlogL_zinb2 (nlogL), 4
 nlogL_zipb (nlogL), 4
 nlogL_zipb2 (nlogL), 4
 nlogL_zipois (nlogL), 4
 nlogL_zipois2 (nlogL), 4