Package ‘seededlda’

January 7, 2022

Type Package
Title Seeded-LDA for Topic Modeling
Version 0.8.0
License GPL-3
URL https://github.com/koheiw/seededlda
BugReports https://github.com/koheiw/seededlda/issues
Encoding UTF-8
Depends R (>= 3.5.0), quanteda (> 2.0), methods
Imports Matrix
LinkingTo Rcpp, RcppParallel, RcppArmadillo (>= 0.7.600.1.0), quanteda
Suggests testthat, quanteda.textmodels, topicmodels
RoxygenNote 7.1.2
NeedsCompilation yes
Author Kohei Watanabe [aut, cre, cph], Phan Xuan-Hieu [aut, cph] (GibbsLDA++)
Maintainer Kohei Watanabe <watanabe.kohei@gmail.com>
Repository CRAN
Date/Publication 2022-01-07 11:50:01 UTC

R topics documented:

 terms ... 2
textmodel_lda .. 2
topics ... 4

Index

| terms | Extract most likely terms |

Description

`terms()` returns the most likely terms, or words, for topics based on the \(\phi \) parameter.

Usage

```r
terms(x, n = 10)
```

Arguments

- `x`: a LDA model fitted by `textmodel_seededlda()` or `textmodel_lda()`
- `n`: number of terms to be extracted

Details

Users can access the original matrix \(x \$ \phi \) for likelihood scores.

textmodel_lda

Semisupervised Latent Dirichlet allocation

Description

`textmodel_seededlda()` implements semisupervised Latent Dirichlet allocation (seeded-LDA). The estimator’s code adopted from the GibbsLDA++ library (Xuan-Hieu Phan, 2007). `textmodel_seededlda()` allows identification of pre-defined topics by semisupervised learning with a seed word dictionary.

Usage

```r
textmodel_lda(
  x,
  k = 10,
  max_iter = 2000,
  alpha = NULL,
  beta = NULL,
  model = NULL,
  verbose = quanteda_options("verbose")
)
```

```r
textmodel_seededlda(
  x,
  dictionary,
)```
Arguments

x the dfm on which the model will be fit

k the number of topics; determined automatically by the number of keys in dictionary in textmodel_seededlda().

max_iter the maximum number of iteration in Gibbs sampling.

alpha the value to smooth topic-document distribution; defaults to $\alpha = 50 / k$.

beta the value to smooth topic-word distribution; defaults to $\beta = 0.1$.

model a fitted LDA model; if provided, textmodel_lda() inherits parameters from an existing model. See details.

verbose logical; if TRUE print diagnostic information during fitting.

dictionary a quanteda::dictionary() with seed words that define topics.

valuetype see quanteda::valuetype

case_insensitive see quanteda::valuetype

residual if TRUE a residual topic (or "garbage topic") will be added to user-defined topics.

weight pseudo count given to seed words as a proportion of total number of words in x.

... passed to quanteda::dfm_trim to restrict seed words based on their term or document frequency. This is useful when glob patterns in the dictionary match too many words.

Details

To predict topics of new documents (i.e. out-of-sample), first, create a new LDA model from a existing LDA model passed to model in textmodel_lda(); second, apply topics() to the new model. The model argument takes objects created either by textmodel_lda() or textmodel_seededlda().

Value

textmodel_seededlda() and textmodel_lda() returns a list of model parameters. theta is the distribution of topics over documents; phi is the distribution of words over topics. alpha and beta are the small constant added to the frequency of words to estimate theta and phi, respectively, in Gibbs sampling. Other elements in the list subject to change.
References


See Also

topicmodels

Examples

```r
require(seededlda)
require(quanteda)
data("data_corpus_moviereviews", package = "quanteda.textmodels")
corp <- head(data_corpus_moviereviews, 500)
toks <- tokens(corp, remove_punct = TRUE, remove_symbols = TRUE, remove_number = TRUE)
dfmt <- dfm(toks) %>%
dfm_remove(stopwords("en"), min_nchar = 2) %>%
dfm_trim(min_termfreq = 0.90, termfreq_type = "quantile",
max_docfreq = 0.1, docfreq_type = "prop")

unsupervised LDA
lda <- textmodel_lda(head(dfmt, 450), 6)
terms(lda)
topics(lda)
lda2 <- textmodel_lda(tail(dfmt, 50), model = lda) # new documents
topics(lda2)

semisupervised LDA
dict <- dictionary(list(people = c("family", "couple", "kids"),
space = c("alien", "planet", "space"),
monster = c("monster*", "ghost*", "zombie*"),
war = c("war", "soldier*", "tanks"),
crime = c("crime*", "murder", "killer")))
slda <- textmodel_seededlda(dfmt, dict, residual = TRUE, min_termfreq = 10)
terms(slda)
topics(slda)
```

Extract most likely topics

```
topics()
```

Description

`topics()` returns the most likely topics for documents based on the theta parameter.
**topics**

**Usage**

`topics(x)`

**Arguments**

`x`  
a LDA model fitted by `textmodel_seededlda()` or `textmodel_lda()`

**Details**

Users can access the original matrix `x$theta` for likelihood scores; run `max.col(x$theta)` to obtain the same result as `topics(x)`. 
Index

* **textmodel**
  * textmodel_lda, 2

quanteda::dfm_trim, 3
quanteda::dictionary(), 3
quanteda::valuetype, 3

terms, 2
textmodel_lda, 2
textmodel_lda(), 2, 5
textmodel_seededlda(textmodel_lda), 2
textmodel_seededlda(), 2, 5
topicmodels, 4
topics, 4
topics(), 3