<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Estimate Hidden Inputs using the Dynamic Elastic Net</td>
</tr>
<tr>
<td>Version</td>
<td>0.9.0</td>
</tr>
<tr>
<td>Description</td>
<td>Algorithms to calculate the hidden inputs of systems of differential equations. These hidden inputs can be interpreted as a control that tries to minimize the discrepancies between a given model and taken measurements. The idea is also called the Dynamic Elastic Net, as proposed in the paper ``Learning (from) the errors of a systems biology model'' (Engelhardt, Froelich, Kschischo 2016) doi:10.1038/srep20772. To use the experimental SBML import function, the 'rsbml' package is required. For installation I refer to the official 'rsbml' page: https://bioconductor.org/packages/release/bioc/html/rsbml.html.</td>
</tr>
<tr>
<td>License</td>
<td>MIT + file LICENSE</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Tobias Newmiwaka tobias.newmiwaka@gmail.com</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.5.0)</td>
</tr>
<tr>
<td>Encoding</td>
<td>UTF-8</td>
</tr>
<tr>
<td>URL</td>
<td>https://github.com/Newmi1988/seeds</td>
</tr>
<tr>
<td>BugReports</td>
<td>https://github.com/Newmi1988/seeds/issues</td>
</tr>
<tr>
<td>LazyData</td>
<td>true</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>7.0.2</td>
</tr>
<tr>
<td>Imports</td>
<td>deSolve (>= 1.20), pracma (>= 2.1.4), Deriv (>= 3.8.4), Ryacas, stats, graphics, methods, mvtnorm, matrixStats, statmod, coda, MASS, ggplot2, tidyr, dplyr, Hmisc, R.utils, callr</td>
</tr>
<tr>
<td>Suggests</td>
<td>rsbml, knitr, rmarkdown,</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>knitr</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
<tr>
<td>Author</td>
<td>Tobias Newmiwaka [aut, cre], Benjamin Engelhardt [aut]</td>
</tr>
<tr>
<td>Repository</td>
<td>CRAN</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2020-03-20 14:20:02 UTC</td>
</tr>
</tbody>
</table>

\textbf{R topics documented:}

seeds-package \hfill 2
BDEN \hfill 4
confidenceBands \hfill 6
createCompModel \hfill 7
dynElasticNet \hfill 7
estiStates \hfill 9
GIBBS_update \hfill 10
hiddenInputs \hfill 11
importSBML \hfill 12
LOGLIENTHOOD_func \hfill 12
MCMC_component \hfill 14
Model \hfill 15
nominalSol \hfill 16
odeEquations-class \hfill 17
odeModel-class \hfill 17
outputEstimates \hfill 18
plot_resultsSeeds_missing_method \hfill 19
plotAnno \hfill 20
print_resultsSeeds_method \hfill 21
res \hfill 21
resultsSeeds-class \hfill 22
setInitState \hfill 22
setInput \hfill 23
setMeas \hfill 24
setMeasFunc \hfill 25
setModelEquation \hfill 26
setParms \hfill 27
setSd \hfill 28
SETTINGS \hfill 29
sgdn \hfill 30
uvbData \hfill 32
uvbModel \hfill 33

Index \hfill 34

seeds-package \hfill seeds: \textit{Estimate Hidden Inputs using the Dynamic Elastic Net}

\textbf{Description}

Algorithms to calculate the hidden inputs of systems of differential equations. These hidden inputs can be interpreted as a control that tries to minimize the discrepancies between a given model and taken measurements. The idea is also called the Dynamic Elastic Net, as proposed in the paper "Learning (from) the errors of a systems biology model" (Engelhardt, Froelich, Kschischo 2016) \textless doi:10.1038/srep20772\textgreater. To use the experimental SBML import function, the RSBML package is required. For installation I refer to the official rsbml page: https://bioconductor.org/packages/release/bioc/html/rsbml.html.
Details

The first algorithm (SGDN) calculates the needed equations using the Deriv function of the Deriv package. The process is implemented through the use of the S4 class odeEquations-class.

The conjugate gradient based algorithm uses a greedy algorithm to estimate a sparse control that tries to minimize the discrepancies between a given `nominal model given the measurements (e.g from an experiment). The algorithm the ode uses deSolve to calculate the hidden inputs w based on the adjoint equations of the ODE-System.

The adjoint equations are calculated using the ode function of the deSolve package. For the usage of the algorithm please look into the examples and documentation given for the functions.

The second algorithm is called Bayesian Dynamic Elastic Net (BDEN). The BDEN as a new and fully probabilistic approach, supports the modeller in an algorithmic manner to identify possible sources of errors in ODE based models on the basis of experimental data. THE BDEN does not require pre-specified hyper-parameters. BDEN thus provides a systematic Bayesian computational method to identify target nodes and reconstruct the corresponding error signal including detection of missing and wrong molecular interactions within the assumed model. The method works for ODE based systems even with uncertain knowledge and noisy data.

sgdn a greedy algorithm to calculate a sparse control
BDEN a basian mcmc approach

Author(s)

Maintainer: Tobias Newmiwaka <tobias.newmiwaka@gmail.com>

Authors:

• Benjamin Engelhardt <engelhar@bit.uni-bonn.de>

References

Benjamin Engelhardt, Holger Froehlich, Maik Kschischo Learning (from) the errors of a systems biology model, Nature Scientific Reports, 6, 20772, 2016 https://www.nature.com/articles/srep20772

See Also

Useful links:

• https://github.com/Newmi1988/seeds
• Report bugs at https://github.com/Newmi1988/seeds/issues
Description

Full Bayesian algorithm to detect hidden inputs in ODE based models. The algorithm is an extension of the Dynamic Elastic Net algorithm (Engelhardt et al. 2016) inspired by the Elastic-Net Regression.

Usage

```r
BDEN(
  odeModel,
  settings,
  mcmc_component,
  loglikelihood_func,
  gibbs_update,
  ode_sol,
  NegativeStates = FALSE,
  numbertrialsstep = 15,
  numbertrialseps = NA,
  numbertrialinner = 25,
  lambda = 0.001,
  Grad_correct = 0,
  alpha = c(1, 1, 1, 1),
  beta_init = c(1, 1, 1, 1),
  printstatesignore = FALSE
)
```

Arguments

- **odeModel** a object of class odeModel from the package seeds. The class saves the details of an experiment for easier manipulation and analysis.
- **settings** initial model specific settings (automatically calculated based on the nominal model and data)
- **mcmc_component** sampling algorithm
- **loglikelihood_func** likelihood function
- **gibbs_update** gibbs algorithm
- **ode_sol** ode solver
- **NegativeStates** Negative states are allowed
- **numbertrialsstep** number of gibbs updates per timepoint. This should be at least 10. Values have direct influence on the runtime.
numbertrialseps

number of samples per mcmc step. This should be greater than numberStates*500. Values have direct influence on the runtime.

numbertrialinner

number of inner samples. This should be greater 15 to guarantee a reasonable exploration of the sample space. Values have direct influence on the runtime.

lambda

initial shrinkage parameter.

Grad_correct

correction factor for initial sigma estimate

alpha

mcmc tuning parameter (weighting of observed states)

beta_init

mcmc tuning parameter (weighting of observed states)

printstatesignore

states ignored in final output (default = FALSE)

Details

Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model likely manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue we suggest a Bayesian approach to estimate hidden influences in ODE based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. The BDEN as a new and fully probabilistic approach, supports the modeller in an algorithmic manner to identify possible sources of errors in ODE based models on the basis of experimental data. THE BDEN does not require pre-specified hyper-parameters. BDEN thus provides a systematic Bayesian computational method to identify target nodes and reconstruct the corresponding error signal including detection of missing and wrong molecular interactions within the assumed model. The method works for ODE based systems even with uncertain knowledge and noisy data. In contrast to approaches based on point estimates the Bayesian framework incorporates the given uncertainty and circumvents numerical pitfalls which frequently arise from optimization methods (Engelhardt et al. 2017).

For a complete example of the usage take a look into the vignette of the package.

Value

returns a results-object with default plot function

Examples

data(bden_uvb)

results <- BDEN(odeModel = Model,
 lambda = .001,
 beta_init = c(1,1,1,1,1),
 numbertrialsstep = 15,
 numbertrialseps = 2000,
confidenceBands

Get the estimated confidence bands for the bayesian method

Description

Get the estimated confidence bands for the bayesian method

Usage

confidenceBands(resultsSeeds, slot, ind)

S4 method for signature 'list,character,numeric'
confidenceBands(resultsSeeds, slot, ind)

S4 method for signature 'list,character,missing'
confidenceBands(resultsSeeds, slot, ind)

S4 method for signature 'resultsSeeds,character,missing'
confidenceBands(resultsSeeds, slot, ind)

Arguments

resultsSeeds A object of the class resultsSeeds, which is returned from the algorithms.
slot Specifies the slot. Options are "states", "hiddenInputs", "outputs"
ind A numeric indicating the index of a resultsSeeds-Object in a list. If not set the last listed object will be used.

Value

A dataframe containing the confidence bands of the estimated states, hidden inputs and outputs

Examples

data(uvb_res)

confidenceBands(res, slot = "states", ind = 2)
createCompModel

Description

Writes a c file that can be compiled for faster solution with the ode solver. The file created is formatted to be used with the dynamic elastic net. A hidden input is added to every component of the state vector.

Usage

createCompModel(modelFunc, parameters, bden, nnStates)

Arguments

- **modelFunc**
 - a R-function that can be solved with deSolve. External input of the system should be declared with ’u’. To ensure that the function is working use the most general state-space representation.
- **parameters**
 - a vector describing the parameters of the system. If names are missing the function tries to extract the declared parameters from the model function.
- **bden**
 - a boolean that indicates if the c-file is used for the mcmc algorithm, default value is ’FALSE’
- **nnStates**
 - a bit vector indicating the states that should be non negative

Value

None

Note

On the usage of compiled code in conjunction with deSolve take a look into the vignette ’R Package deSolve, Writing Code in Compiled Languages’ of the package.

dynElasticNet

Description

estimating the optimal control using the dynamic elastic net
Usage

dynElasticNet(
 alphaStep,
 armijoBeta,
 x0,
 parameters,
 alpha1,
 alpha2,
 measData,
 constStr,
 SD,
 modelFunc,
 measFunc,
 modelInput,
 optW,
 origAUC,
 maxIteration,
 plotEsti,
 conjGrad,
 eps,
 nnStates,
 verbose
)

Arguments

alphaStep starting value of the stepsize for the gradient descent, will be calculate to min-
mimize the costfunction by backtracking algorithm
armijoBeta scaling of the alphaStep to find a approximately optimal value for the stepsize
x0 initial state of the ode system
parameters parameters of the ODE-system
alpha1 L1 cost term scalar
alpha2 L2 cost term scalar
measData measured values of the experiment
constStr a string that represents constrains, can be used to calculate a hidden input for a
 component that gradient is zero
SD standard deviation of the experiment; leave empty if unknown; matrix should
 contain the timesteps in the first column
modelFunc function that describes the ODE-system of the model
measFunc function that maps the states to the outputs
modelInput an dataset that describes the external input of the system
optW vector that indicated at which knots of the network the algorithm should estimate
 the hidden inputs
origAUC AUCs of the first optimisation; only used by the algorithm
maxIteration a upper bound for the maximal number of iterations
plotEsti boolean that controls of the current estimates should be plotted
conjGrad boolean that indicates the usage of conjugate gradient method over the normal steepest descent
eps criteria for stopping the algorithm
nnStates a bit vector indicating the states that should be non negative
verbose Boolean indicating if an output in the console should be created to display the gradient descent steps

Value
A list containing the estimated hidden inputs, the AUCs, the estimated states and resulting measurements and the costfunction

estiStates

Get the estimated states

Description
Get the estimated states

Usage

estiStates(resultsSeeds, ind)

```r
## S4 method for signature 'list,numeric'
estiStates(resultsSeeds, ind)
```

```r
## S4 method for signature 'list,missing'
estiStates(resultsSeeds, ind)
```

```r
## S4 method for signature 'resultsSeeds,missing'
estiStates(resultsSeeds, ind)
```

Arguments

resultsSeeds A object of the class resultsSeeds, which is returned from the algorithms.
ind A numeric indicating the index of a resultsSeeds-Object in a list. If not set the last listed object will be used.

Value
Dataframe containing the estimated states
Examples

data(uvb_res)
estiStates(res)

GIBBS_update

Gibbs Update

Description

Algorithm implemented according to Engelhardt et al. 2017. The BDEN defines a conditional Gaussian prior over each hidden input. The scale of the variance of the Gaussian prior is a strongly decaying and smooth distribution peaking at zero, which depends on parameters Lambda2, Tau, and Sigma. The parameter Tau is itself given by an exponential distribution (one for each component of the hidden influence vector) with parameters Lambda1. In consequence, sparsity is dependent on the parameter vector Lambda1, whereas smoothness is mainly controlled by Lambda2. These parameters are drawn from hyper-priors, which can be set in a non-informative manner or with respect to prior knowledge about the degree of shrinkage and smoothness of the hidden influences (Engelhardt et al. 2017).

Usage

GIBBS_update(D, EPS_inner, R, ROH, SIGMA_0, n, SIGMA, LAMBDA2, LAMBDA1, TAU)

Arguments

- **D**: diagonal weight matrix of the current Gibbs step
- **EPS_inner**: row-wise vector of current hidden influences [tn,tn+1]
- **R**: parameter for needed for the Gibbs update (for details see Engelhardt et al. 2017)
- **ROH**: parameter for needed for the Gibbs update (for details see Engelhardt et al. 2017)
- **SIGMA_0**: prior variance of the prior for the hidden influences
- **n**: number of system states
- **SIGMA**: current variance of the prior for the hidden influences (calculated during the Gibbs update)
- **LAMBDA2**: current parameter (smoothness) needed for the Gibbs update (for details see Engelhardt et al. 2017)
- **LAMBDA1**: current parameter (sparsity) needed for the Gibbs update (for details see Engelhardt et al. 2017)
- **TAU**: current parameter (smoothness) needed for the Gibbs update (for details see Engelhardt et al. 2017)
hiddenInputs

Details
The function can be replaced by an user defined version if necessary

Value
A list of updated Gibbs parameters; i.e. Sigma, Lambda1, Lambda2, Tau

Description
Get the estimated hidden inputs

Usage
hiddenInputs(resultsSeeds, ind)

S4 method for signature 'list,numeric'
hiddenInputs(resultsSeeds, ind)

S4 method for signature 'list,missing'
hiddenInputs(resultsSeeds, ind)

S4 method for signature 'resultsSeeds,missing'
hiddenInputs(resultsSeeds, ind)

Arguments
resultsSeeds A object of the class 'resultsSeeds', which is returned from the algorithms.
ind A numeric indicating the index of a 'resultsSeeds'-Object in a list. If not set the
last listed object will be used.

Value
Dataframe containing the estimated hidden inputs

Examples

data(uvb_res)

hiddenInputs(res[[2]])
importSBML

Import SBML Models using the Bioconductor package 'rsbml'

Description

A simple function for importing sbml models from an extensive markup language file.

Usage

```r
importSBML(filename, times, meas_input)
```

Arguments

- `filename`: name of the import file. Should be located in the working directory.
- `times`: timestep at which the function should be evaluated
- `meas_input`: measurements have to be given in order to analyse the data

Value

returns a odeModel object

Examples

```r
t <- uvbData[,1]
y <- uvbData[,1:3]
modelFile <- system.file("extdata","BIOMD0000000545_url.xml", package = "seeds")

# generate an odeModel object
uvb <- importSBML(modelFile, times = t, meas = y)
```

LOGLIKELIHOOD_func

Calculates the Log Likelihood for a new sample given the current state (i.e. log[L(G|x)P(G)])

Description

Algorithm implemented according to Engelhardt et al. 2017. The function can be replaced by an user defined version if necessary.
Usage

\texttt{LOGLIKELIHOOD_func(}
\texttt{pars,}
\texttt{Step,}
\texttt{OBSERVATIONS,}
\texttt{x___0,}
\texttt{parameters,}
\texttt{EPS_inner,}
\texttt{INPUT,}
\texttt{D,}
\texttt{GIBBS_PAR,}
\texttt{k,}
\texttt{MU_JUMP,}
\texttt{SIGMA_JUMP,}
\texttt{eps_new,}
\texttt{objectivfunc}
\texttt{)}

Arguments

\begin{itemize}
\item \texttt{pars} \hspace{1cm} sampled hidden influence for state k (w_new) at time tn+1
\item \texttt{Step} \hspace{1cm} time step of the sample algorithm corresponding to the given vector of time points
\item \texttt{OBSERVATIONS} \hspace{1cm} observed values at the given time step/point
\item \texttt{x__0} \hspace{1cm} initial values at the given time step/point
\item \texttt{parameters} \hspace{1cm} model parameters estimates
\item \texttt{EPS_inner} \hspace{1cm} current hidden inputs at time tn
\item \texttt{INPUT} \hspace{1cm} discrete input function e.g. stimuli
\item \texttt{D} \hspace{1cm} diagonal weight matrix of the current Gibbs step
\item \texttt{GIBBS_PAR} \hspace{1cm} \texttt{GIBBS_PAR["BETA"] and GIBBS_PAR["ALPHA"]}; prespecified or calculated vector of state weights
\item \texttt{k} \hspace{1cm} number state corresponding to the given hidden influence (w_new)
\item \texttt{MU_JUMP} \hspace{1cm} mean of the normal distributed proposal distribution
\item \texttt{SIGMA_JUMP} \hspace{1cm} variance of the normal distributed proposal distribution
\item \texttt{eps_new} \hspace{1cm} current sample vector of the hidden influences (including all states)
\item \texttt{objectivfunc} \hspace{1cm} link function to match observations with modeled states
\end{itemize}

Value

returns the log-likelihood for two given hidden inputs
MCMC_component

Componentwise Adapted Metropolis Hastings Sampler

Description

Algorithm implemented according to Engelhardt et al. 2017.

Usage

MCMC_component(
 LOGLIKELIHOOD_func,
 STEP_SIZE,
 STEP_SIZE_INNER,
 EPSILON,
 JUMP_SCALE,
 STEP,
 OBSERVATIONS,
 Y0,
 INPUTDATA,
 PARAMETER,
 EPSILON_ACT,
 SIGMA,
 DIAG,
 GIBBS_par,
 N,
 BURNIN,
 objective
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGLIKELIHOOD_func</td>
<td>likelihood function</td>
</tr>
<tr>
<td>STEP_SIZE</td>
<td>number of samples per mcmc step. This should be greater than numberStates*500. Values have direct influence on the runtime.</td>
</tr>
<tr>
<td>STEP_SIZE_INNER</td>
<td>number of inner samples. This should be greater 15 to guarantee a reasonable exploration of the sample space. Values have direct influence on the runtime.</td>
</tr>
<tr>
<td>EPSILON</td>
<td>vector of hidden influences (placeholder for customized version)</td>
</tr>
<tr>
<td>JUMP_SCALE</td>
<td>ODE system</td>
</tr>
<tr>
<td>STEP</td>
<td>time step of the sample algorithm corresponding to the given vector of time points</td>
</tr>
<tr>
<td>OBSERVATIONS</td>
<td>observed state dynamics e.g. protein concentrations</td>
</tr>
<tr>
<td>Y0</td>
<td>initial values of the system</td>
</tr>
<tr>
<td>INPUTDATA</td>
<td>discrete input function e.g. stimuli</td>
</tr>
</tbody>
</table>
PARAMETER model parameters estimates
EPSILON_ACT vector of current hidden influences
SIGMA current variance of the prior for the hidden influences (calculated during the Gibbs update)
DIAG diagonal weight matrix of the current Gibbs step
GIBBS_par GIBBS_PAR["BETA"] and GIBBS_PAR["ALPHA"]; prespecified or calculated vector of state weights
N number of system states
BURNIN number of dismissed samples during burn-in
objective objective function

Details

The function can be replaced by an user defined version if necessary

Value

A matrix with the sampled hidden inputs (row-wise)

Description

Dataset is identical with the example for the bden algorithm from the vignette. It contains an object of odeModel that describes the uvb network.

Usage

data(bden_uvb)

Format

An object of class odeModel of length 1.
nominalSol \hspace{1cm} Calculate the nominal solution of the model

Description

After an model is defined it can be evaluated. This returns the numerical solution for the state equation before hidden inputs are calculated.

Usage

```r
nominalSol(odeModel)
```

S4 method for signature 'odeModel'
```r
nominalSol(odeModel)
```

Arguments

- **odeModel**: a object of the class ode model describing the experiment

Value

- a matrix with the numeric solution to the nominal ode equation

Examples

```r
lotka_voltera <- function (t, x, parameters) {
  with(as.list(c(x,parameters)), {
    dx1 = x[1]*(alpha - beta*x[2])
    dx2 = -x[2]*(gamma - delta*x[1])
    return(list(c(dx1, dx2)))
  })
}

pars <- c(alpha = 2, beta = .5, gamma = .2, delta = .6)
init_state <- c(x1 = 10, x2 = 10)
time <- seq(0, 100, by = 1)
lotVolModel = odeModel(func = lotka_voltera, parms = pars, times = time, y = init_state)
nominalSol(lotVolModel)
```
odeEquations-class

A S4 class used to handle formatting ODE-Equation and calculate the needed functions for the seeds-algorithm

Description

A S4 class used to handle formatting ODE-Equation and calculate the needed functions for the seeds-algorithm.

Value

Returns a s4 class object containing the needed equations for the costate equation.

Slots

- `modelStr`: a vector of strings describing the ODE.
- `measureStr`: a vector of strings representing the equation of the measurement function.
- `origEq`: a vector of strings containing the original model function.
- `measureFunction`: a vector of strings containing the original measurement function.
- `costateEq`: a vector of strings describing the costate equation.
- `JhT`: a matrix of strings describing the jacobian matrix of the measurement function.
- `jacobian`: a matrix of strings representing the jacobian matrix model equations.
- `costFunction`: a string containing the cost function.
- `hamiltonian`: a string representing the Hamilton function of the model.
- `dynamicElasticNet`: boolean that indicates if the system equation should be calculated for the dynamic elastic net.
- `parameters`: parameters of the model.
- `cond`: a slot to save conditionals in equations, which are used for formatting the c files.
- `nnStates`: vector indicating which states should have a non-negative solution.

odeModel-class

A class to store the important information of an model.

Description

The slots are used to store the important information of an model. The class is used to create object for the two algorithms implemented in seeds. Methods are implemented to easily calculate the nominal solution of the model and change the details of the saved model. The numerical solutions are calculated using the `deSolve` package.
Value

an object of class odeModel which defines the model

Slots

 func A function containing the ode-equations of the model. For syntax look at the given examples of the deSolve package.
 times timesteps at which the model should be evaluated
 parms the parameters of the model
 input matrix containing the inputs with the time points
 measFunc function that converts the output of the ode solution
 y initial (state) values of the ODE system, has to be a vector
 meas matrix with the (experimental) measurements of the system
 sd optional standard deviations of the measurements, is used by the algorithms as weights in the costfunction
 custom customized link function
 nnStates bit vector that indicates if states should be observed by the root function
 nnTollerance tolerance at which a function is seen as zero
 resetValue value a state should be set to by an event

outputEstimates Get the estimated outputs

Description

Get the estimated outputs

Usage

outputEstimates(resultsSeeds, ind)

S4 method for signature 'list,numeric'
outputEstimates(resultsSeeds, ind)

S4 method for signature 'list,missing'
outputEstimates(resultsSeeds, ind)

S4 method for signature 'resultsSeeds,missing'
outputEstimates(resultsSeeds, ind)

Arguments

 resultsSeeds A object of the class 'resultsSeeds', which is returned from the algorithms.
 ind A numeric indicating the index of a 'resultsSeeds'-Object in a list. If not set the last listed object will be used.
Value

Dataframe with estimated measurements.

Examples

```r
data(uvb_res)
outputEstimates(res[[2]])
```

Description

A standardized plot function to display the results of the algorithms. Both algorithms should result in objects of the class resultsSeeds. The results can be plotted using the `plot`-function.

Usage

```r
## S4 method for signature 'resultsSeeds,missing'
plot(x, y)
```

Arguments

- `x`: an object of type resultsSeeds or a list of these objects. If a list is given the last entry will be plotted.
- `y`: ...

Value

A list of plots showing the results of the algorithm

Examples

```r
data(uvb_res)
plot(res[[2]])
```
plotAnno

Create annotated plot

Description

Create a annotated plot with given state and measurement names. The plots are equal to the output of the normal plot function.

Usage

plotAnno(x, stateAnno, measAnno)

S4 method for signature 'resultsSeeds'
plotAnno(x, stateAnno, measAnno)

S4 method for signature 'list'
plotAnno(x, stateAnno, measAnno)

Arguments

x an object of type resultsSeeds which contains the results of the algorithms

stateAnno a character vector describing the names of the states

measAnno a character vector describing the names of the measurements

Value

Plots of the results with the provided annotation

Examples

data(uvb_res)

statesAnno <- c("x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13")

measAnno <- c("y1", "y2", "y3", "y4", "y5")

plotAnno(res[[2]], stateAnno = statesAnno, measAnno = measAnno)
Description

This function overwrites the default print function and is used for objects of the class resultsSeeds. The print function gives the basic information about the results seeds object. The default printout is the estimated states and the calculated hidden inputs.

Usage

```r
## S4 method for signature 'resultsSeeds'
print(x)
```

Arguments

- `x` an object of the class resultsSeeds

Value

Returns a short summary of the important results

Examples

```r
data(ubv_res)
plot(res[[2]])
```

Data from running the estimation of hidden inputs from the UVB-G Protein demo. This data is used for demonstration the different functions of the package.

Usage

```r
data(ubv_res)
```

Format

An object of class list of length 2.
resultsSeeds-class

Results Class for the Algorithms

Description

A S4 class that collects the results of the two algorithms. The class also is equipped with functions for easily plotting and extracting the different results.

Value

A object of class resultsSeeds collecting all the results of the algorithm

Slots

- stateNominal data.frame containing the states of the nominal model
- stateEstimates data.frame containing the state estimates
- stateUncertainLower lower bound of the estimated states as calculated by the bayesian method
- stateUncertainUpper upper bound of the estimated states as calculated by the bayesian method
- hiddenInputEstimates estimated hidden input
- hiddenInputUncertainLower lower bounds of the estimated hidden inputs
- hiddenInputUncertainUpper upper bounds of the estimated hidden inputs
- outputEstimates estimated measurements resulting from the control of the hidden inputs
- outputEstimatesUncLower lower bound of the confidence bands of the estimated output
- outputEstimatesUncUpper upper bound of the confidence bands of the estimated output
- Data the given measurements
- DataError standard deviation of the given measurements

setInitState

Set the vector with the initial (state) values

Description

Set the vector with the initial (state) values

Usage

setInitState(odeModel, y)

S4 method for signature 'odeModel'
setInitState(odeModel, y)
setInput

Arguments

odeModel an object of the class odeModel

y vector with the initial values

Value

an object of odeModel

Examples

data("uvbModel")

x0 = c(0.2,10,2,0,20,0,0,0,4.2,0.25,20,0)

newModel <- setInitState(uvbModel, y = x0)
Examples

```r
data("uvbModel")
model_times <- uvbModel@times
input <- rep(0,length(model_times))
input_Dataframe <- data.frame(t = model_times, u = input)
newModel <- setInput(odeModel = uvbModel,input = input_Dataframe)
```

Description

The `odeModel` object stores all important information. Measurements of the objects can be set directly by addressing the slot, or with this function.

Usage

```r
setMeas(odeModel, meas)
```

Arguments

- `odeModel`: an object of the class `odeModel`
- `meas`: measurements of the model, a matrix with measurements of the model and the corresponding time values

Value

an object of `odeModel`

Examples

```r
data(uvbData)
data(uvbModel)
measurements <- uvbData[,1:6]
newModel <- setMeas(odeModel = uvbModel, meas = measurements)
```
setMeasFunc

Set the measurement equation for the model

Description
For a given model a measurement equation can be set. If no measurement function is set the states become the output of the system. The function should be defined as in the example below.

Usage

```
setMeasFunc(odeModel, measFunc, custom)
```

S4 method for signature 'odeModel,function,missing'

```
setMeasFunc(odeModel, measFunc, custom)
```

S4 method for signature 'odeModel,function,logical'

```
setMeasFunc(odeModel, measFunc, custom)
```

Arguments

odeModel an object of the class odeModel
measFunc measurement function of the model. Has to be a R functions.
custom custom indexing for the measurement function (used by the baysian method)

Value

an object of odeModel

Examples

```
data("uvbModel")

uvbMeasure <- function(x) {
  
y1 = 2*x[,5] + x[,4] + x[,8]
y2 = 2*x[,5] + 2* x[,3] + x[,1]
y3 = x[,6]
y4 = x[,11]
y5 = x[,4]

  return(cbind(y1,y2,y3,y4,y5))
}

newModel <- setMeasFunc(odeModel = uvbModel, measFunc = uvbMeasure)
```
setModelEquation

Set the model equation

Description

Set the model equation of the system in an odeModel object. Has to be a function that can be used with the deSolve package.

Usage

```r
setModelEquation(odeModel, func)
```

S4 method for signature 'odeModel'

```r
setModelEquation(odeModel, func)
```

Arguments

- `odeModel`: an object of the class odeModel
- `func`: function describing the ode equation of the model

Value

an object of odeModel

Examples

```r
data("uvbModel")

uvbModelEq <- function(t,x,parameters) {
  with (as.list(parameters),{
    dx1 = ((-2) * ((ka1 * (x[1]^2) * (x[4]^2)) - (kd1 * x[5])) +
    (-2) * ((ka2 * (x[1]^2) * x[2]) - (kd2 * x[3]) +
    ((ks1 * (1) + (uv * n3 * (x[11] + fhy3_s))) -
    (kdr1 + (1) * (n1 * uv)) * x[13])))
    dx2 = ((-1) * ((ka2 * (x[1]^2) * x[2]) - (kd2 * x[3])) +
    (-1) * ((ka4 * x[2] * x[12]) - (kd4 * x[13])))
    dx3 = (((ka2 * (x[1]^2) * x[2]) - (kd2 * x[3])))
    dx4 = ((-2) * (k1 * (x[4]^2)) + (2) * (k2 * x[6]) +
    (-2) * ((ka1 * (x[1]^2) * (x[4]^2)) - (kd1 * x[5]) +
    (-1) * (ka3 * x[4] * x[7])))
    dx5 = (((ka1 * (x[1]^2) * (x[4]^2)) - (kd1 * x[5])))
    dx6 = ((-1) * (k2 * x[6]) + (k1 * (x[4]^2)) + (kd3 * (x[8]^2)))
    dx7 = (((-1) * (ka3 * x[4] * x[7]) + ((ks2 * (1) + (uv * x[5]))) -
    (kdr2 * x[7])) + (2) * (kd3 * (x[8]^2)))
    dx8 = ((-2) * (kd3 * x[8]^2) + (ka3 * x[4] * x[7]))
    dx9 = 0
    dx10 = 0
    dx11 = (((ks3 * (1) + (n2 * uv))) - (kdr3 * (((x[3] / (kdr3a + x[3])) +
```
S4 method for signature 'odeModel,numeric'

```r
setParms(odeModel, parms)
```

Arguments

- **odeModel**: an object of the class `odeModel`
- **parms**: a vector containing the parameters of the model

Value

an object of `odeModel`

Examples

```r
data("uvbModel")
newParas <- c(
  ks1=0.23,
  ks2=4.0526,
  kdr1=0.1,
  kdr2=0.2118,
  k1=0.0043,
  k2=161.62,
  ka1=0.0372,
  ka2=0.0611,
  ka3=4.7207,
  kd1=94.3524,
  kd2=50.6973,
)
```

Description

A method to set the model parameters of an `odeModel` object.

Usage

```r
setParms(odeModel, parms)
```
kd3=0.5508,
ks3=0.4397,
kdr3=1.246,
uv=1,
ka4=10.1285,
kd4=1.1999,
n1=3,
n2=2,
n3=3.5,
kdr3a=0.9735,
kdr3b=0.406,
ksr=0.7537,
fhy3_s=5)

newModel <- setParms(odeModel = uvbModel, parms = newParas)

setSd

Set the standard deviation of the measurements

Description

With multiple measurements a standard deviation can be calculated for every point of measurement. The standard deviation is used to weigh the estimated data points in the cost function.

Usage

```r
setSd(odeModel, sd)
```

S4 method for signature 'odeModel'

```r
setSd(odeModel, sd)
```

Arguments

- `odeModel` an object of the class `odeModel`
- `sd` a matrix with the standard deviations of the measurements

Value

an object of `odeModel`

Examples

```r
data(uvbData)
data(uvbModel)

sd_uvb <- uvbData[,7:11]
```
newModel <- setSd(odeModel = uvbModel, sd = sd_uvb)

Automatic Calculation of optimal Initial Parameters

Description

Implemented according to Engelhardt et al. 2017.

Usage

```
SETTINGS(
  VARIANCE, 
  N, 
  BETA_LAMDBA, 
  alphainit, 
  betainit, 
  R = c(1000, 1000), 
  ROH = c(10, 10)
)
```

Arguments

- **VARIANCE**: standard error of the observed stat dynamics (per time point)
- **N**: number of system states
- **BETA_LAMDBA**: mcmc tuning parameter (weighting of observed states)
- **alphainit**: mcmc tuning parameter (weighting of observed states)
- **betainit**: mcmc tuning parameter (weighting of observed states)
- **R**: mcmc tuning parameter
- **ROH**: mcmc tuning parameter

Details

The function can be replaced by an user defined version if necessary.

Value

A list of optimal initial parameters; i.e. R, Roh, Alpha, Beta, Tau, Lambda1, Lambda2
Description

The sparse gradient dynamic elastic net calculates controls based on a first optimisation with gradient descent. It should result in a sparse vector of hidden inputs. These hidden inputs try to minimize the discrepancy between a given model and the taken measurements.

Usage

```r
sgdn(odeModel, alphaStep, Beta, alpha1, alpha2, x0, optW, measFunc, measData, sd, epsilon, parameters, systemInput, modelFunc, greedyLogical, plotEstimates, conjGrad, cString, nnStates, verbose)
```

Arguments

- **odeModel**: a object of class `odeModel` from the package seeds. The class saves the details of an experiment for easier manipulation and analysis.

- **alphaStep**: the starting stepsize for the gradient descent a fitting stepsize will be calculated based on a backtracking line search if the algorithm converges to slow use a bigger stepsize.

- **Beta**: scaling parameter for the backtracking to approximate the stepsize of the gradient descent. Is set to 0.8 if no value is given to the function.

- **alpha1**: L1-norm parameter of the dynamic elastic net approach, is set to zero for this algorithm.
alpha2 L2-norm parameter of the dynamic elastic net approach used for regulation purposes
x0 initial state of the ODE system. Can be supplied with the odeModel class.
optW a vector that indicates for which knots of the network a input should be calculated. The default is all nodes.
measFunc a R-Function that is used for measurement of the states if the system is not completely measurable; an empty argument will result in the assumption that all states of the system are measurable. Can be supplied by the odeModel parameter.
measData a table that contains the measurements of the experiment. Used to calculate the needed inputs. Can be supplied with the odeModel class.
sd Standard deviation of the measurement. Is used to weight the errors of the estimates in the cost function. Optional parameter. Can be supplied with the odeModel class. Should contain the time in the first column
epsilon parameter that defines the stopping criteria for the algorithm, in this case percent change in cost function J[w]
parameters vector or named vector that contains the parameters of the ODE equation. Can be supplied with the odeModel class.
systemInput A dataset that describes the external input of the system. The time steps should be given in the first column for the interpolation.
modelFunc a R-Function that states the ODE system for which the hidden inputs should be calculated. Can be supplied with the odeModel class.
greedyLogical a boolean that states if the greedy approach should be used; if set to FALSE the algorithm will only use perform a calculation of the inputs for all knots without a sparse solution
plotEstimates boolean that indicated if the current estimate should be plotted.
conjGrad Boolean that indicates the usage of conjugate gradient method over the normal steepest descent. Defaults to true if not specified.
cString Optional parameter: A string that represents constants, can be used to calculate a hidden input for a component that gradient is zero.
nnStates A bit vector indicating the states that should be non negative. Default behaviour will calculate positive and negative states. Can be supplied with the odeModel class.
verbose Boolean indicating if an output in the console should be created to display the gradient descent steps

Details
This algorithm uses a greedy approach to calculate the hidden inputs. Starting with a first estimation of the hidden inputs the algorithm tries to optimize set of hidden inputs based on the area under the curve from the first run. The algorithm stops if a set of hidden gives a lower cost than a set with additional hidden inputs.
For a complete example of the usage take a look into the vignette of the package.
Value

returns a list of results objects. The default plot function can be used to plot the results.

Examples

data(uvbModel)
results <- sgdn(odeModel = uvbModel, alphaStep = 500, alpha2 = 0.0001,
epsilon = 0.2, plotEstimates = TRUE)

uvbData

| uvbData | UVB signal pathway |

Description

A data frame containing simulated values of the UVB Signaling pathway. The error of the system is synthetic and is added to the states x3 and x11. The model is taken from the works of Ouyang et al. https://doi.org/10.1073/pnas.1412050111

Usage

uvbData

Format

An object of class data.frame with 8 rows and 11 columns.

Details

A data frame with 8 rows and 11 columns

- `t` time in fractions of an hour
- `y1` total amounts of UVR8 monomers
- `y2` total amounts of COP1 monomers
- `y3` total amounts of UVR8 dimers
- `y4` concentration of elongated hypocotyl 5 (HY5) protein
- `y5` concentration measured of UVR8 monomers
- `y1std` standard deviation of the first measurement
- `y2std` standard deviation of the second measurement
- `y3std` standard deviation of the third measurement
- `y4std` standard deviation of the fourth measurement
- `y5std` standard deviation of the fifth measurement
uvbModel

Source

https://doi.org/10.1073/pnas.1412050111

uvbModel An object of the odeModel Class

Description

Object is used for demonstrating the functions of the odeModel Class. It is used in the demos for the uvb signaling pathway.

Usage

data(uvbModel)

Format

An object of class odeModel of length 1.
Index

*Topic datasets
 Model, 15
 res, 21
 uvbData, 32
 uvbModel, 33

BDEN, 3, 4

confidenceBands, 6
confidenceBands, list, character, missing-method
 (confidenceBands), 6
confidenceBands, list, character, numeric-method
 (confidenceBands), 6
confidenceBands, resultsSeeds, character, missing-method
 (confidenceBands), 6
createCompModel, 7

Deriv, 3
dynElasticNet, 7

estiStates, 9
estiStates, list, missing-method
 (estiStates), 9
estiStates, list, numeric-method
 (estiStates), 9
estiStates, resultsSeeds, character, missing-method
 (estiStates), 9

GIBBS_update, 10

hiddenInputs, 11
hiddenInputs, list, missing-method
 (hiddenInputs), 11
hiddenInputs, list, numeric-method
 (hiddenInputs), 11
hiddenInputs, resultsSeeds, missing-method
 (hiddenInputs), 11

importSBML, 12

LOGLIKEIHOOD_func, 12

MCMC_component, 14
Model, 15

nominalSol, 16
nominalSol, odeModel-method
 (nominalSol), 16

ode, 3, 7
odeEquations (odeEquations-class), 17
odeEquations-class, 17
odeModel, 30
odeModel (odeModel-class), 17
odeModel-class, 17
outputEstimates, 18
outputEstimates, list, missing-method
 (outputEstimates), 18
outputEstimates, list, numeric-method
 (outputEstimates), 18
outputEstimates, resultsSeeds, missing-method
 (outputEstimates), 18

plot, 19
plot, resultsSeeds, missing-method, 19
plotAnno, 20
plotAnno, list-method (plotAnno), 20
plotAnno, resultsSeeds-method
 (plotAnno), 20
print, resultsSeeds
 (print, resultsSeeds-method), 21
print, resultsSeeds-method, 21

res, 21
resultsSeeds (resultsSeeds-class), 22
resultsSeeds-class, 22

seeds (seeds-package), 2
seeds-package, 2
setInitState, 22
setInitState, odeModel-method
 (setInitState), 22
setInput, 23
setInput, odeModel-method (setInput), 23
setMeas, 24
setMeas, odeModel-method (setMeas), 24
setMeasFunc, 25
setMeasFunc, odeModel, function, logical-method (setMeasFunc), 25
setMeasFunc, odeModel, function, missing-method (setMeasFunc), 25
setModelEquation, 26
setModelEquation, odeModel-method (setModelEquation), 26
setParms, 27
setParms, odeModel, numeric-method (setParms), 27
setSd, 28
setSd, odeModel-method (setSd), 28
SETTINGS, 29
sgdn, 3, 30
uvbData, 32
uvbModel, 33