Package ‘sempools’

October 11, 2021

Title Customizing Structural Equation Modelling Plots

Version 0.2.9.3

Description Most function focus on specific ways to customize a graph. They use a ‘qgraph’ output as the first argument, and return a modified ‘qgraph’ object. This allows the functions to be chained by a pipe operator.

URL https://sfcheung.github.io/sempools/

BugReports https://github.com/sfcheung/sempools/issues

Depends R (>= 3.6.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports dplyr, lavaan, rlang

Suggests semPlot, testthat (>= 2.1.0), knitr, rmarkdown, magrittr

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Shu Fai Cheung [aut, cre] (<https://orcid.org/0000-0002-9871-9448>), Mark Hok Chio Lai [aut] (<https://orcid.org/0000-0002-9196-7466>)

Maintainer Shu Fai Cheung <shufai.cheung@gmail.com>

Repository CRAN

Date/Publication 2021-10-11 07:40:02 UTC

R topics documented:

cfa_example .. 2
change_node_label ... 3
is_dv_residvar .. 4
keep_drop_nodes .. 5
A sample dataset for fitting a confirmatory factor analysis model.

Usage

cfa_example

Format

An object of class data.frame with 200 rows and 14 columns.

Details

Fourteen variables (x01 to x14), 200 cases.

Sample model to fit (in lavaan::model.syntax notation)

mod <-
 'f1 =~ x01 + x02 + x03
 f2 =~ x04 + x05 + x06 + x07
 f3 =~ x08 + x09 + x10
 f4 =~ x11 + x12 + x13 + x14'
Description

Change the labels of selected nodes.

Usage

change_node_label(
 semPaths_plot,
 label_list = NULL,
 label.cex,
 label.scale,
 label.prop,
 label.norm
)

Arguments

semPaths_plot A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semtools functions.

label_list A list of named lists. Each named list should have two named values: node and to. The first part, node, is a character denoting the label to be changed. It should be as appeared in the qgraph. The second part, to, is the new label. Expression can be used in to. A named vector can also be used, with the names being the nodes to be changed, and the values the new labels.

label.cex Identical to the same argument in semPlot::semPaths(). A number that controls the size of labels in the nodes. It has no default. If not set, then this option in the semPaths_plot will not be changed.

label.scale Identical to the same argument in semPlot::semPaths. A logical value that determines whether labels will be scaled (resized) to the nodes they attach to. It has no default. If not set, then this option in the semPaths_plot will not be changed.

label.prop Identical to the same argument in semPlot::semPaths. A numeric vector of length equal to the number of nodes. If label.scale is TRUE, this number is the proportion of the width of a node that its label will be scaled (resized) to. It has no default. If not set, then this option in the semPaths_plot will not be changed.

label.norm Identical to the same argument in semPlot::semPaths. It must be a string. All labels as wide as or narrower than this string will have the same font size, while all labels wider than this string will be rescaled to have the same width as this string. It has no default. If not set, then this option in the semPaths_plot will not be changed.
is_dv_residvar

Identify dependent Variable residual variance

Description

Check which parameters in a lavaan output are the residual variance of a dependent variable.

Usage

is_dv_residvar(lavaan_out)

Arguments

lavaan_out A lavaan::lavaan object.
Details

Check which parameters in a lavaan output are the variance of a dependent variable. Indicators of a latent variable will be excluded.

Value

A boolean vector with length equal to the number of rows in the lavaan output.

Examples

```r
mod <-
'x1 ~~ x2
  x3 ~ x1 + x2
  x4 ~ x1 + x3
',
fit_pa <- lavaan::sem(mod, pa_example)
is_dv_residvar(fit_pa)

mod <-
'f1 =~ x01 + x02 + x03
  f2 =~ x04 + x05 + x06 + x07
  f3 =~ x08 + x09 + x10
  f4 =~ x11 + x12 + x13 + x14
',
fit_cfa <- lavaan::cfa(mod, cfa_example)
is_dv_residvar(fit_cfa)

mod <-
'f1 =~ x01 + x02 + x03
  f2 =~ x04 + x05 + x06 + x07
  f3 =~ x08 + x09 + x10
  f4 =~ x11 + x12 + x13 + x14
  f3 ~ f1 + f2
  f4 ~ f1 + f3
',
fit_sem <- lavaan::sem(mod, sem_example)
is_dv_residvar(fit_sem)
```

keep_drop_nodes

Keep or drop nodes from an semPlotModel object.

Description

Keep or drop nodes from an semPlotModel object.
Usage

drop_nodes(object, nodes)

keep_nodes(object, nodes)

Arguments

object An an `semPlot::semPlotModel` generated by `semPlot::semPlotModel()`.

nodes A character vector of the nodes to be kept or removed.

Details

These functions can be used to edit the nodes in an `semPlot::semPlotModel` generated by `semPlot::semPlotModel()`. The edited object can then be passed to `semPlot::semPaths()` to generate a path diagram.

Use `keep_nodes()` to specify the nodes to be kept. All other nodes will be removed.
Use `drop_nodes()` to specify the nodes to be dropped. All other nodes will be kept.

Value

An object of the class `semPlot::semPlotModel`.

Examples

```r
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3',
fit_pa <- lavaan::sem(mod_pa, pa_example)
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)

pm_pa <- semPlot::semPlotModel(fit_pa)
semPlot::semPaths(pm_pa, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)

pm_pa2 <- drop_nodes(pm_pa, c("x3"))

semPlot::semPaths(pm_pa2, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)

pm_pa3 <- keep_nodes(pm_pa, c("x1", "x3", "x4"))

semPlot::semPaths(pm_pa3, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
```
Description

Create the layout matrix from a list of coordinates for semPaths.

Usage

layout_matrix(...)

Arguments

... Each node in the matrix is specified by this form: name = c(x, y). The name is the node label, and the vector is the position of the node. The first element is the x position, and the second element is the y position, measured from the top left corner. The size of the grid is determined automatically. For a grid of n rows and m columns, the top left cell is specified by c(1,1), and the bottom right cell is specified by c(n,m).

Details

The layout argument in semPlot::semPaths() accepts a matrix with node labels as the elements, and NA for empty cells. This function allows user to create the matrix using a list of coordinates for the node labels.

Value

A layout matrix for the layout argument of semPlot::semPaths().

Examples

Suppose this is the layout to be created:
m0 <- matrix(c("x1", NA, NA, NA,
"x2", "x3", NA, NA,
NA, "x4", NA, "x5"), byrow = TRUE, 3, 4)
This call will create the same matrix.
m1 <- layout_matrix(x1 = c(1, 1),
x2 = c(2, 1),
x3 = c(2, 2),
x4 = c(3, 2),
x5 = c(3, 4))
#The two matrices should be identical.
m0 == m1
Add Standard Error Estimates to Parameter Estimates (Edge Labels)

Description

Add standard error estimates, in parentheses, to parameter estimates (edge labels) in a qgraph::qgraph object.

Usage

mark_se(semPaths_plot, object, sep = " ", digits = 2L, ests = NULL)

Arguments

- semPaths_plot: A qgraph object generated by semPaths, or a similar qgraph object modified by other semTools functions.
- object: The object used by semPaths to generate the plot. Use the same argument name used in semPaths to make the meaning of this argument obvious. Currently only object of class lavaan is supported.
- sep: A character string to separate the coefficient and the standard error (in parentheses). Default to " " (one space). Use "\n" to enforce a line break.
- digits: Integer indicating number of decimal places for the appended standard errors. Default is 2L.
- ests: A data.frame from the parameterEstimates function. Only used when object is not specified.

Details

Modify a qgraph::qgraph object generated by semPaths (currently in parentheses) to the labels. Require the original object used in the semPaths call.

Currently supports only plots based on lavaan output.

This function is a variant of, and can be combined with, the mark_sig function.

Value

If the input is a qgraph::qgraph object, the function returns a qgraph based on the original one, with standard error estimates appended. If the input is a list of qgraph objects, the function returns a list of the same length.

Examples

```r
mod_pa <-
  'x1 ~ x2
  x3 ~ x1 + x2
  x4 ~ x1 + x3
```

```r
mark_se(mod_pa)
```
```r
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs",
               "est", "pvalue", "se")]

m <- matrix(c("x1", NA, NA,
               NA, "x3", "x4",
               "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels = "est",
                          style = "ram",
                          nCharNodes = 0, nCharEdges = 0,
                          layout = m)
p_pa2 <- mark_se(p_pa, fit_pa)
plot(p_pa2)

mod_cfa <-
  'f1 =~ x01 + x02 + x03
  f2 =~ x04 + x05 + x06 + x07
  f3 =~ x08 + x09 + x10
  f4 =~ x11 + x12 + x13 + x14

fit_cfa <- lavaan::sem(mod_cfa, cfa_example)
lavaan::parameterEstimates(fit_cfa)[, c("lhs", "op", "rhs",
                           "est", "pvalue", "se")]
p_cfa <- semPlot::semPaths(fit_cfa, whatLabels = "est",
                          style = "ram",
                          nCharNodes = 0, nCharEdges = 0)
# Place standard errors on a new line
p_cfa2 <- mark_se(p_cfa, fit_cfa, sep = "\n")
plot(p_cfa2)

mod_sem <-
  'f1 =~ x01 + x02 + x03
  f2 =~ x04 + x05 + x06 + x07
  f3 =~ x08 + x09 + x10
  f4 =~ x11 + x12 + x13 + x14
  f3 ~ f1 + f2
  f4 ~ f1 + f3

fit_sem <- lavaan::sem(mod_sem, sem_example)
lavaan::parameterEstimates(fit_sem)[, c("lhs", "op", "rhs",
                           "est", "pvalue", "se")]
p_sem <- semPlot::semPaths(fit_sem, whatLabels = "est",
                          style = "ram",
                          nCharNodes = 0, nCharEdges = 0)
# Mark significance, and then add standard errors
p_sem2 <- mark_sig(p_sem, fit_sem)
p_sem3 <- mark_se(p_sem2, fit_sem, sep = "\n")
plot(p_sem3)
```

mark_sig

Mark Parameter Estimates (Edge Labels) Based on p-Value
Description

Mark parameter estimates (edge labels) based on p-value.

Usage

mark_sig(
 semPaths_plot,
 object,
 alphas = c("*" = 0.05, "**" = 0.01, "***" = 0.001)
)

Arguments

semPaths_plot A qgraph::qgraph object generated by semPaths, or a similar qgraph object modified by other semtools functions.

object The object used by semPaths to generate the plot. Use the same argument name used in semPaths to make the meaning of this argument obvious. Currently only object of class lavaan is supported.

alphas A named numeric vector. Each element is the cutoff (level of significance), and the name of it is the symbol to be used if p-value is less than this cutoff. The default is c("" = .05, "" = .01, "" = .001).

Details

Modify a qgraph::qgraph object generated by semPaths and add marks (currently asterisk, ") to the labels based on their p-values. Require the original object used in the semPaths call.

Currently supports only plots based on lavaan output.

Value

A qgraph::qgraph based on the original one, with marks appended to edge labels based on their p-values.

Examples

mod_pa <-
 'x1 ~ x2
 x3 ~ x1 + x2
 x4 ~ x1 + x3

fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
 NA, "x3", "x4",
 "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
 style = "ram",
 nCharNodes = 0, nCharEdges = 0,
 layout = m)
Sample dataset pa_example

Description
A sample dataset for fitting a path analysis model.

Usage
pa_example

Format
An object of class data.frame with 100 rows and 4 columns.
Details

Four variables (x1 to x4), 100 cases.

Sample model to fit (in lavaan::model.syntax notation)

```r
mod <-
  'x1 ~~ x2
  x3 ~ x1 + x2
  x4 ~ x1 + x3
`
```

Description

A sample dataset for fitting a path analysis model, with three control variables.

Usage

```
pa_example_3coves
```

Format

An object of class data.frame with 100 rows and 7 columns.

Details

Four variables (x1 to x4), and three control variables (cov1, cov2, cov3), 100 cases.

Sample model to fit (in lavaan::model.syntax notation)

```r
mod <-
  x3 ~ x1 + x2 + cov1 + cov2 + cov3
  x4 ~ x1 + x3 + cov1 + cov2 + cov3
`
```
rotate_resid
Rotate the residuals of selected nodes

Description

Rotate the residuals of selected nodes.

Usage

```r
toate_resid(semPaths_plot, rotate_resid_list = NULL)
```

Arguments

- `semPaths_plot`: A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semtools functions.
- `rotate_resid_list`: A named vector or a list of named list. For a named vector, the name of an element is the node for which its residual is to be rotated, and the value is the degree to rotate. The 12 o'clock position is zero degree. Positive degree denotes clockwise rotation, and negative degree denotes anticlockwise rotation. For example, `c(x3 = 45, x4 = -45)` means rotating the residual of `x3` 45 degrees clockwise, and rotating the residual of `x4` 45 degrees anticlockwise. For a list of named lists, each named list should have two named values: `node` and `rotate`. The position of the residual of `node` will be placed at `rotate`, in degree. For example, `list(list(node = "x3", rotate = 45), list(node = "x4", rotate = -45))` is equivalent to `c(x3 = 45, x4 = -45)`.

Details

Modify a qgraph::qgraph object generated by semPlot::semPaths and rotate the residuals of selected nodes. Currently only supports "ram" and similar styles of semPlot::semPaths.

Value

A qgraph::qgraph object based on the original one, with `loopRotation` attributes of selected nodes modified.

Examples

```r
mod_pa <- 
  'x1 ~~ x2
  x3 ~ x1 + x2
  x4 ~ x1 + x3
lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa), c("lhs", "op", "rhs", "est", "pvalue")
m <- matrix(c("x1", NA, NA,
               NA, "x3", "x4",
               NA, NA, NA),
              byrow = TRUE, nrow = 3, ncol = 3)
```
Sample dataset `sem_example`

Description

A sample dataset for fitting a latent variable model.

Usage

`sem_example`

Format

An object of class `data.frame` with 200 rows and 14 columns.

Details

Fourteen variables (x01 to x14), 100 cases.

Sample model to fit (in `lavaan::model.syntax` notation)

```r
mod <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3
',
```
set_cfa_layout

Configure the layout of factors of a CFA graph by semPaths.

Description
Configure the layout of factors and adjust other aspects of a CFA graph by semPaths.

Usage

```r
set_cfa_layout(
  semPaths_plot,
  indicator_order = NULL,
  indicator_factor = NULL,
  fcov_curve = 0.4,
  loading_position = 0.5,
  point_to = "down"
)
```

Arguments

- `semPaths_plot` A `qgraph::qgraph` object generated by semPaths, or a similar qgraph object modified by other semptools functions.
- `indicator_order` A string vector of the indicators. The order of the names is the order of the indicators in the graph, when they are drawn on the bottom of the graph. The indicators should be grouped by the factors on which they load on. For example, if x1, x2, x4 load on f2, and x3, x5, x6 load on f1, then vector should be either c("x1", "x2", "x4", "x3", "x5", "x6") or c("x3", "x5", "x6", "x1", "x2", "x4"). Indicators within a group can be ordered in any way.
- `indicator_factor` A string vector of the same length of the indicator order, storing the name of the factor for which each of the indicator in indicator_factor loads on. For example, if x1, x2, x4 load on f2, and x3, x5, x6 load on f1, and indicator_order is c("x3", "x5", "x6", "x1", "x2", "x4"), then indicator_factor should be c("f2", "f2", "f2", "f1", "f1", "f1").
- `fcov_curve` A number used to set the curvature of the inter-factor covariances. Default is .4.
- `loading_position` The positions of all factor loadings. Default is .5, on the middle of the arrows. Larger the number, closer the loadings to the indicators. Smaller the number, closer the loadings to the factors.
- `point_to` Can be "down", "left", "up", or "right". Specify the direction that the factors "point" to the indicators. Default is "down".

Details
Modify a `qgraph::qgraph` object generated by semPaths based on a confirmatory factor analysis model.
Value

A qgraph::qgraph based on the original one, with various aspects of the model modified.

Examples

```r
library(lavaan)
library(semPlot)
mod <-
  'f1 =~ x01 + x02 + x03
  f2 =~ x04 + x05 + x06 + x07
  f3 =~ x08 + x09 + x10
  f4 =~ x11 + x12 + x13 + x14

fit_cfa <- lavaan::sem(mod, cfa_example)
lavaan::parameterEstimates(fit_cfa)[, c("lhs", "op", "rhs", "est", "pvalue")]
p <- semPaths(fit_cfa, whatLabels="est",
  sizeMan = 2.5,
  nCharNodes = 0, nCharEdges = 0,
  edge.width = 0.8, node.width = 0.7,
  edge.label.cex = 0.6,
  style = "ram",
  mar = c(10,10,10,10))
indicator_order <- c("x04", "x05", "x06", "x07", "x01", "x02", "x03", "x11",
"x12", "x13", "x14", "x08", "x09", "x10")
indicator_factor <- c("f2", "f2", "f2", "f2", "f1", "f1", "f1", "f4",
"f4", "f4", "f4", "f3", "f3")
p2 <- set_cfa_layout(p, indicator_order,
  indicator_factor,
  fcov_curve = 1.5,
  loading_position = .8)
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,
  indicator_factor,
  fcov_curve = 1.5,
  loading_position = .8,
  point_to = "left")
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,
  indicator_factor,
  fcov_curve = 1.5,
  loading_position = .8,
  point_to = "up")
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,
  indicator_factor,
  fcov_curve = 1.5,
  loading_position = .8,
  point_to = "right")
plot(p2)
```
set_curve

Bend or Straighten Selected edges

Description
Set the curve attributes of selected edges.

Usage

```
set_curve(semPaths_plot, curve_list = NULL)
```

Arguments

- `semPaths_plot` A `qgraph::qgraph` object generated by `semPlot::semPaths`, or a similar `qgraph` object modified by other `semtools` functions.
- `curve_list` A named vector or a list of named list. For a named vector, the name of an element should be the path as specified by `lavaan::model.syntax` or as appeared in `lavaan::parameterEstimates()`. For example, to change the curve attribute of the path regressing `y` on `x`, the name should be "y ~ x". To change the curve attribute of the covariance between `x1` and `x2`, the name should be "x1 ~~ x2". For example, `c("y ~ x1" = -3,"x1 ~~ x2" = 2)` change the curve attributes of the path from `x1` to `y` and the covariance between `x1` and `x2` to -3 and 2, respectively. The order of the two nodes may matter for covariances. Therefore, if the curve of a covariance is not changed, try switching the order of the two nodes. For a list of named lists, each named list should have three named values: `from`, `to`, and `new_curve`. The curve attribute of the edge from `from` to `to` will be set to `new_curve`.

Details
Modified a `qgraph::qgraph` object generated by `semPlot::semPaths` and change the curve attributes of selected edges.

Value
A `qgraph::qgraph` based on the original one, with curve attributes for selected edges changed.

Examples
```
mod_pa <-
'x1 ~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
',

fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
               NA, "x3", "x4"),
```

set_edge_label_position

Set the positions of edge labels of selected edges

Description

Set the positions of edge labels of selected edges.

Usage

```r
set_edge_label_position(semPaths_plot, position_list = NULL)
```

Arguments

- `semPaths_plot` A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semtools functions.
- `position_list` A named vector or a list of named lists. For a named vector, the name of an element should be the path as specified by lavaan::model.syntax or as appeared in lavaan::parameterEstimates(). For example, to change position of the edge label of the path regressing y on x, the name should be "y ~ x". The value is the position. The mid-point of the edge is 0.5. The closer the value to 1, the closer the label to the left-hand-side node (y in this example). The closer the value to 0, the close the label to the right-hand-side node (x in this example). For example, `c("y ~ x1" = .2,"y ~ x2" = .7)` moves the path coefficient from x1 to y closer to x, and the path coefficient from x2 to y closer to y. For a list of named lists, each named list should have three named values: from, to, and new_position. The edge label position of the edge from from to to will be set to new_position. For example, `list(list(from = "x1",to = "y",new_position = .2),list(from = "x2",to = "y",new_position = .7))` is equivalent to the named vector above.
Details

Modify a `qgraph::qgraph` object generated by `semPlot::semPaths` and change the edge label positions of selected edges.

Value

A `qgraph::qgraph` based on the original one, with edge label positions for selected edges changed.

Examples

```r
mod_pa <-
  'x1 ~ x2
  x3 ~ x1 + x2
  x4 ~ x1 + x3

fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]

m <- matrix(c("x1", NA, NA,
               NA, "x3", "x4",
               "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
                          style = "ram",
                          nCharNodes = 0, nCharEdges = 0,
                          layout = m)

my_position_vector <- c("x3 ~ x2" = .25,
                        "x4 ~ x1" = .75)
p_pa2v <- set_edge_label_position(p_pa, my_position_vector)
plot(p_pa2v)

my_position_list <- list(list(from = "x2", to = "x3", new_position = .25),
                         list(from = "x1", to = "x4", new_position = .75))
p_pa2l <- set_edge_label_position(p_pa, my_position_list)
plot(p_pa2l)
```

Description

Configure the layout of factors of an SEM graph by `semPlot::semPaths`.

Usage

```r
set_sem_layout(
  semPaths_plot,
  indicator_order = NULL,
  indicator_factor = NULL,
```
factor_layout = NULL,
factor_point_to = NULL,
indicator_push = NULL,
indicator_spread = NULL,
loading_position = 0.5
)

Arguments

semPaths_plot A \texttt{qgraph::qgraph} object generated by \texttt{semPaths}, or a similar \texttt{qgraph} object modified by other \texttt{semtools} functions.

indicator_order A string vector of the indicators. The order of the names is the order of the indicators in the graph, when they are drawn on the bottom of the graph. The indicators should be grouped by the factors on which they load on. For example, if x1, x2, x4 load on f2, and x3, x5, x6 load on f1, then vector should be either \texttt{c("x1", "x2", "x4", "x3", "x5", "x6")} or \texttt{c("x3", "x5", "x6", "x1", "x2", "x4")}. Indicators within a group can be ordered in any way.

indicator_factor A string vector of the same length of the indicator order, storing the name of the factor for which each of the indicator in \texttt{indicator_factor} loads on. For example, if x1, x2, x4 load on f2, and x3, x5, x6 load on f1, and indicator_order is \texttt{c("x3", "x5", "x6", "x1", "x2", "x4")}, then \texttt{indicator_factor} should be \texttt{c("f2", "f2", "f2", "f1", "f1", "f1").}

factor_layout A matrix of arbitrary size. This matrix will serve as a grid for users to specify where each latent factor should be placed approximately on the graph. Each cell should contain NA or the name of a latent factor. The locations of all latent factors must be explicitly specified by this matrix.

factor_point_to A matrix of the same size as \texttt{factor_layout}. This matrix specifies where the indicators of each factor are positioned. Each cell should contain NA or one of these strings: "down", "left", "up", or "right". This is the direction that the corresponding latent factor (specified in \texttt{factor_layout}) points to its indicators.

indicator_push (Optional) This argument is used to adjust the positions of the indicators of selected latent factors. It can be named vector or a list of named lists. For a named vector, the name is the factor of which the indicators will be "pushed", and the value is how "hard" the push is: the multiplier to the distance from the factor to the indicators. If this value is 1, then there is no change. If this value is greater than 1, then the indicators are pushed away from the latent factor. If this value is less than 1, then the indicators are pulled toward the latent factor. For example, to push the indicators of f3 away from f3, and pull the indicators of f4 toward f4, the argument can be set to \texttt{c(f3 = 1.5, f4 = .5)}. For a list of named list, each named list has two named elements: node, the name of a latent factor, and push, how the positions of its indicators will be adjusted. For example, to have the same effect as the vector above, the list is \texttt{list(list(node = "f3", push = 1.5), list(node = "f4", push = .5)).}
set_sem_layout

indicator_spread
(Optional) This argument is used to adjust the distance between indicators of selected latent factors. It can be a named vector or a list of named lists. For a named vector, the name is the factor of which the indicators will be spread out. The value is the multiplier to the distance between neighboring indicators. If this value is equal to 1, there is no change. Larger than one, the indicators will be "spread" away from each other. Less than one, the indicators will be placed closer to each other. For example, to spread the indicators of f1 and f4 farther away from each other, this argument can be set to c(f1 = 2, f4 = 1.5), with the indicators of f1 being spread out more than those of f4. For a list of named list, each named list has two named elements: node, the name of a latent factor, and spread, how the distance between indicators will be adjusted. For example, to have the same effect as the vector above, the argument can be set to list(list(node = "f1", spread = 2), list(node = "f4", spread = 1.5)).

loading_position
(Optional) Default is .5. This is used adjust the position of the loadings. If this is one single number, it will be used to set the positions of all loadings. If it is .5, the loadings are placed on the center of the arrows. Larger the number, closer the loadings to the indicators. Smaller the number, closer to the latent factors. This argument also accepts a named vector or a list of named lists, allowing users to specify the positions of loadings for each factor separately. For a named vector, in each element, the name is the factor whose loadings will be moved. The value is the positions of its loadings. The default is .50. We only need to specify the positions for factors to be changed from .50 to other values. For example, move the loadings of f2 closer to the indicators and those of f4 close to the f4, this argument can be set to c(f2 = .7, f4 = .3). For a list of named list, each named list should have two named elements: node, the name of the latent factor, and position, the positions of all loadings of this factors. To have the same effect as the vector above, this list can be used: list(list(node = "f2", position = .7), list(node = "f4", position = .3)).

Details
Modify a qgraph::qgraph object generated by semPaths based on an SEM model with latent factors. Currently only support a model in which all exogenous variables are latent factors, and all observed variables are indicators. If a variable has only one indicator, it is easier to

Value
A qgraph::qgraph based on the original one, with various aspects of the model modified.

Examples
library(lavaan)
library(semPlot)
mod <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3

fit_sem <- lavaan::sem(mod, sem_example)
lavaan::parameterEstimates(fit_sem)[, c("lhs", "op", "rhs", "est", "pvalue")]
p <- semPaths(fit_sem, whatLabels="est",
 sizeMan = 5,
 nCharNodes = 0, nCharEdges = 0,
 edge.width = 0.8, node.width = 0.7,
 edge.label.cex = 0.6,
 style = "ram",
 mar = c(10,10,10,10))
indicator_order <- c("x04", "x05", "x06", "x07", "x01", "x02", "x03",
 "x11", "x12", "x13", "x14", "x08", "x09", "x10")
indicator_factor <- c("f2", "f2", "f2", "f2", "f1", "f1", "f1",
 "f4", "f4", "f4", "f4", "f3", "f3", "f3")
factor_layout <- matrix(c("f1", NA, NA,
 NA, "f3", "f4",
 "f2", NA, NA), byrow = TRUE, 3, 3)
factor_point_to <- matrix(c("left", NA, NA,
 NA, "down", "down",
 "left", NA, NA), byrow = TRUE, 3, 3)
indicator_push <- c(f3 = 2, f4 = 1.5)
indicator_spread <- c(f1 = 2, f2 = 2)
loading_position <- c(f1 = .5, f2 = .8, f3 = .8)
Pipe operator can be used if desired
p2 <- set_sem_layout(p,
 indicator_order = indicator_order,
 indicator_factor = indicator_factor,
 factor_layout = factor_layout,
 factor_point_to = factor_point_to,
 indicator_push = indicator_push,
 indicator_spread = indicator_spread,
 loading_position = loading_position)
p2 <- set_curve(p2, c("f2 ~ f1" = -1,
 "f4 ~ f1" = 1.5))
p2 <- mark_sig(p2, fit_sem)
p2 <- mark_se(p2, fit_sem, sep = "\n")
plot(p2)

Lists of named list which are equivalent to the vectors above:
indicator_push <- list(node = "f3", push = 2),
list(node = "f4", push = 1.5))
indicator_spread <- list(node = "f1", spread = 2),
list(node = "f2", spread = 2))
loading_position <- list(node = "f1", position = .5),
list(node = "f2", position = .8),
list(node = "f3", position = .8))
Convert a named vector to a list of lists

Description

Convert a named vector to a list of lists, to be used by various functions in `semptools`.

Usage

```
to_list_of_lists(input, name1 = NULL, name2 = NULL, name3 = NULL)
```

Arguments

- **input**: A named vector
- **name1**: The name for the first element in the list-in-list. Default is NULL.
- **name2**: The name for the second element in the list-in-list. Default is NULL.
- **name3**: The name for the third element in the list-in-list. Default is NULL. If this argument is not NULL, the names of the vector elements will be split using lavaan syntax (by calling `lavaan::lavParseModelString()`), and the right-hand side (rhs) and left-hand side (lhs) of each element will be assigned to `name1` and `name2`, respectively.

Details

This function is not to be used by users, but to be used internally by other functions of `semptools`.

Value

A list of lists.

Examples

```r
x <- c("x1 ~~ x2" = -1, "x4 ~ x1" = 1)
to_list_of_lists(x, name1 = "from", name2 = "to", name3 = "new_curve")
# list(list(from = "x1", to = "x2", new_curve = -1),
#      list(from = "x1", to = "x4", new_curve = 1))

y <- c(x1 = 0, x2 = 180, x3 = 140, x4 = 140)
to_list_of_lists(y, name1 = "node", name2 = "rotate")
# list(list(node = "x1", rotate = 0),
#      list(node = "x2", rotate = 180),
#      list(node = "x3", rotate = 140),
#      list(node = "x4", rotate = 140))
```
Index

* datasets
 cfa_example, 2
 pa_example, 11
 pa_example_3covs, 12
 sem_example, 14

 cfa_example, 2
 change_node_label, 3

 drop_nodes (keep_drop_nodes), 5
 drop_nodes(), 6

 is_dv_residvar, 4

 keep_drop_nodes, 5
 keep_nodes (keep_drop_nodes), 5
 keep_nodes(), 6

 lavaan, 8, 10
 lavaan::lavaan, 4
 lavaan::lavParseModelString(), 23
 lavaan::model.syntax, 2, 12, 14, 17, 18
 lavaan::parameterEstimates(), 17, 18
 layout_matrix, 7

 mark_se, 8
 mark_sig, 8, 9

 pa_example, 11
 pa_example_3covs, 12
 parameterEstimates, 8

 qgraph::qgraph, 3, 4, 8, 10, 13, 15–21

 rotate_resid, 13

 sem_example, 14
 semPaths, 8
 semPlot::semPaths, 3, 4, 13, 17–19
 semPlot::semPaths(), 3, 6, 7
 semPlot::semPlotModel, 6

 semPlot::semPlotModel(), 6
 semptools, 3, 8, 10, 13, 15, 17, 18, 20, 23
 set_cfa_layout, 15
 set_curve, 17
 set_edge_label_position, 18
 set_sem_layout, 19

 to_list_of_lists, 22

24