Package ‘serp’

October 14, 2022

Type Package

Title Smooth Effects on Response Penalty for CLM

Version 0.2.4

Description A regularization method for the cumulative link models. The smooth-effect-on-response penalty (SERP) provides flexible modelling of the ordinal model by enabling the smooth transition from the general cumulative link model to a coarser form of the same model. In other words, as the tuning parameter goes from zero to infinity, the subject-specific effects associated with each variable in the model tend to a unique global effect. The parameter estimates of the general cumulative model are mostly unidentifiable or at least only identifiable within a range of the entire parameter space. Thus, by maximizing a penalized rather than the usual non-penalized log-likelihood, this and other numerical problems common with the general model are to a large extent eliminated. Fitting is via a modified Newton's method. Several standard model performance and descriptive methods are also available. For more details on the penalty implemented here, see, Ugba (2021) <doi:10.21105/joss.03705> and Ugba et al. (2021) <doi:10.3390/stats4030037>.

License GPL-2

URL https://github.com/ejikeugba/serp

BugReports https://github.com/ejikeugba/serp/issues

Depends R (>= 3.2.0)

Imports ordinal (>= 2016-12-12), crayon, stats

Suggests covr, testthat, VGAM (>= 1.1-4)

Encoding UTF-8

LazyData True

RoxygenNote 7.1.2

NeedsCompilation no

Author Ejike R. Ugba [aut, cre, cph] (<https://orcid.org/0000-0003-2572-0023>)

Maintainer Ejike R. Ugba <ejike.ugba@outlook.com>
R topics documented:

- AIC.serp
- anova.serp
- BIC.serp
- coef.serp
- confint.serp
- logLik.serp
- predict.serp
- print.serp
- print.summary.serp
- serp
- serp.control
- summary.serp
- vcov.serp
- wine

Index

<table>
<thead>
<tr>
<th>AIC.serp</th>
<th>AIC for a fitted serp object</th>
</tr>
</thead>
</table>

Description

Returns the akaike information criterion of a fitted object of class `serp`. For the penalized slope, the effective degrees of freedom (edf) is obtained from the trace of the generalized hat matrix which depends on the tuning parameter.

Usage

```r
## S3 method for class 'serp'
AIC(object, ..., k = 2)
```

Arguments

- **object**: An object of class `serp`.
- **...**: Additional arguments.
- **k**: Fixed value equal to 2.

Value

A single numeric value of the model AIC.
See Also

serp, BIC.serp, coef.serp, logLik.serp.

Examples

library(serp)
m <- serp(rating ~ temp + contact, slope = "parallel", link = "probit",
data = wine)
AIC(m)

anova.serp

ANOVA method for a fitted serp object

Description

Provides a likelihood ratio test for comparing two or more serp objects. This does not currently support model(s) with penalized slope.

Usage

S3 method for class 'serp'
anova(object, ..., test = c("Chisq", "none"))

Arguments

object An object of class serp.
... additional arguments.
test type of test to be conducted.

Details

An ANOVA table with the following components on display:

Value

model the respective model aliases.
slope type of slope fitted, which may be any of, unparallel, parallel, or partial slope.
no.par the no of parameters in the model.
AIC the akaike information criterion.
logLik the realized log-likelihood.
Test the different pair(s) of test(s) conducted.
LR.stat the computed Likelihood ratio statistic.
df the degree of freedom.
Pr(chi) the p-value of test statistic.
See Also

serp, confint.serp, vcov.serp

Examples

library(serp)
m1 <- serp(rating ~ temp + contact, slope = "parallel", link = "logit",
data = wine)
m2 <- update(m1, ~ contact)
anova(m1, m2)

BIC.serp

BIC for a fitted serp object

Description

Returns the bayesian information criterion of a fitted object of class serp. For the penalized slopes, the effective degrees of freedom (edf) is obtained from the trace of the generalized hat matrix which depends on the tuning parameter.

Usage

S3 method for class 'serp'
BIC(object, ...)

Arguments

object An object of class serp.
... additional arguments.

Value

A single numeric value of the model.

See Also

serp, AIC.serp, coef.serp, logLik.serp.

Examples

library(serp)
m <- serp(rating ~ temp + contact, slope = "parallel", link = "loglog",
data = wine)
BIC(m)
coef.serp

Coefficients for a fitted serp object

Description

Returns the coefficients of a fitted object of class serp.

Usage

S3 method for class 'serp'
coef(object, ...)

S3 method for class 'serp'
coefficients(object, ...)

Arguments

object An object of class serp.
... additional arguments.

Value

A vector of model coefficients.

See Also

serp, AIC.serp, BIC.serp, logLik.serp

Examples

library(serp)

m <- serp(rating ~ temp + contact, slope = "parallel", link = "loglog",
 data = wine)

coeff(m)

confint.serp

Confidence interval for a fitted serp object

Description

Provides the confidence interval of estimates for an object of class serp.

Usage

S3 method for class 'serp'
confint(object, ..., parm, level = 0.95)
Arguments

- **object**: An object of class `serp`.
- **...**: additional arguments.
- **parm**: unused argument.
- **level**: significance level.

Value

A matrix of the confidence intervals of fitted model.

See Also

- `serp`, `anova.serp`, `vcov.serp`

Examples

```r
library(serp)
m <- serp(rating ~ temp + contact, slope = "parallel", link = "logit", data = wine)
confint(m)
```

logLik.serp

Log-likelihood for a fitted serp object

Description

Returns the Log-likelihood for a fitted object of class `serp`.

Usage

```r
## S3 method for class 'serp'
logLik(object, ...)
```

Arguments

- **object**: An object of class `serp`.
- **...**: additional arguments.

Value

A single numeric value of model log-likelihood

See Also

- `serp`, `AIC.serp`, `BIC.serp`, `coef.serp`
Examples

```r
library(serp)
m <- serp(rating ~ temp + contact, slope = "parallel", link = "loglog",
data = wine)
logLik(m)
```

predict.serp

Prediction from fitted serp model

Description

This function takes a fitted serp object produced by serp() and produces predicted values. Type of predictions returned include response, link and class. Prediction is also possible with new set of values having the same column names as in the original values used for the model fit.

Usage

```r
## S3 method for class 'serp'
predict(object, type = c("link", "response", "class"),
       newdata = NULL, ...)
```

Arguments

- `object` An object of class serp.
- `type` could be any of these: response, link or terms.
- `newdata` fresh dataset with all relevant variables.
- `...` additional arguments.

Value

A vector of predicted classes with type equal to 'class' or a dataframe of predicted values for type equal to 'response' and 'link'.

See Also

anova.serp, summary.serp, confint.serp, vcov.serp

Examples

```r
library(serp)
m <- serp(rating ~ temp + contact, slope = "penalize",
reverse = TRUE, link = "logit", tuneMethod = "user",
lambda = 1, data = wine)
head(predict(m, type = "link"))
head(predict(m, type = "response"))
predict(m, type = "class")
```
n.wine <- wine[1:20,,]
predict(m, newdata = n.wine, type = "class")

print.serp

Print method for a fitted serp object

Description

Prints out a vector of coefficients of the fitted model with some additional goodness-of-fit measures.

Usage

```r
## S3 method for class 'serp'
print(x, ...)  
```

Arguments

- `x` An object of class serp.
- `...` additional arguments.

Value

No return value

See Also

serp, print.summary.serp

print.summary.serp

Print method for an object of class summary.serp

Description

Prints out the information supplied via summary.serp method.

Usage

```r
## S3 method for class 'summary.serp'
print(x, ...)  
```

Arguments

- `x` An object of class summary.serp.
- `...` additional arguments.
serp

Value

No return value

See Also

serp, print.serp

Description

Fits cumulative link models (CLMs) with the smooth-effect-on-response penalty (SERP) via a modi-

fied Newton-Raphson algorithm. SERP enables the regularization of the parameter space between

the general and the restricted cumulative models, with a resultant shrinkage of all subject-specific
effects to global effects. The Akaike information criterion (aic), K-fold cross validation (cv), among

other tuning aproaches, provide the means of arriving at an optimal tuning parameter in a in a sit-

uation where a user-supplied tuning value is not available. The slope argument allows for the

selection of a penalized, unparallel, parallel, or partial slope.

Usage

serp(

formula,

link = c("logit", "probit", "loglog", "cloglog", "cauchit"),
slope = c("penalize", "parallel", "unparallel", "partial"),
tuneMethod = c("aic", "cv", "finite", "user"),
reverse = FALSE,
lambdaGrid = NULL,
cvMetric = c("brier", "logloss", "misclass"),
gridType = c("discrete", "fine"),
globalEff = NULL,
data,
subset,
weights = NULL,
weight.type = c("analytic", "frequency"),
na.action = NULL,
lambda = NULL,
contrasts = NULL,
control = list(),
...
)

Arguments

formula regression formula of the form: response ~ predictors. The response should be

a factor (ordered).
link sets the link function for the cumulative link model including: logit, probit, complementary log-log, cloglog, cauchit.

slope selects the form of coefficients used in the model, with penalize denoting the penalized coefficients, unparallel, parallel and partial denoting the unpenalized non-parallel, parallel and semi-parallel coefficients respectively.

tuneMethod sets the method of choosing an optimal shrinkage parameter, including: aic, cv, finite and user. i.e., the lambda value along parameter shrinkage path at which the fit's AIC or the k-fold cross-validated test error is minimal. The finite tuning is used to obtain the model along parameter shrinkage for which the log-Likelihood exist (is finite). The 'user' tuning supports a user-supplied lambda value.

reverse false by default, when true the sign of the linear predictor is reversed.

lambdaGrid optional user-supplied lambda grid for the aic, and cv tuning methods, when the discrete gridType is chosen. Negative range of values are not allowed. A short lambda grid could increase computation time assuming large number of predictors and cases in the model.

cvMetric sets the performance metric for the cv tuning, with the brier score used by default.

gridType chooses if a discrete or a continuous lambda grid should be used to select the optimal tuning parameter. The former is used by default and could be adjusted as desired in serp.control. The latter is on the range (0, maxPen). A user-supplied grid is also possible, which automatically overrides the internal grid.

globalEff specifies variable(s) to be assigned global effects during penalization or when slope is set to partial. Variables are specified as a formula with an empty left hand side, for instance, globalEff = ~predictors.

data optional dataframe explaining the variables used in the formula.

subset specifies which subset of the rows of the data should be used for fit. All observations are used by default.

weights optional case weights in fitting. Negative weights are not allowed. Defaults to 1.

weight.type chooses between analytic and frequency weights with the former used by default. The latter should be used when weights are mere case counts used to compress the data set.

na.action a function to filter missing data.

lambda a user-supplied single numeric value for the tuning parameter when using the user tuning method. Negative values are not allowed.

contrasts a list of contrasts to be used for some or all of the factors appearing as variables in the model formula.

control A list of fit control parameters to replace default values returned by serp.control. Values not set assume default values.

... additional arguments.
Details

The `serp` function fits the cumulative link model (CLM) with smooth-effect-on-response penalty (SERP). The cumulative model developed by McCullagh (1980) is probably most frequently used ordinal model. When motivated by an underlying latent variable, a simple form of the model is expressed as follows:

\[
P(Y \leq r|x) = F(\delta_0r + x^T\delta)
\]

where \(x\) is a vector of covariates, \(\delta\) a vector of regression parameters and \(F\) a continuous distribution function. This model assumes that the effect of \(x\) does not depend on the category. However, with this assumption relaxed, one obtains the following general cumulative model:

\[
P(Y \leq r|x) = F(\delta_0r + x^T\delta_r),
\]

where \(r=1,\ldots,k-1\). This model, however, has the stochastic ordering property, which implies that \(P(Y \leq r-1|x) < P(Y \leq r|x)\) holds for all \(x\) and all categories \(r\). Such assumption is often problematic, resulting in unstable likelihoods with ill-conditioned parameter space during the iterative procedure.

SERP offers a means of arriving at stable estimates of the general model. It provides a form of regularization that is based on minimizing the penalized log-likelihood:

\[
l_p(\delta) = l(\delta) - J_\lambda(\delta)
\]

where \(l(\delta)\), is the log-likelihood of the general cumulative model and \(J_\lambda(\delta) = \lambda J(\delta)\) the penalty function weighted by the turning parameter \(\lambda\). Assuming an ordered categorical outcome \(Y \in \{1, \ldots, k\}\), and considering that the corresponding parameters \(\delta_{1j}, \ldots, \delta_{k-1,j}\) vary smoothly over the categories, the following penalty (Tutz and Gertheiss, 2016),

\[
J_\lambda(\delta) = \sum_{j=1}^{p} \sum_{r=1}^{k-2} (\delta_{r+1,j} - \delta_{r,j})^2
\]

enables the smoothing of response categories such that all category-specific effects associated with the response turn towards a common global effect. SERP could also be applied to a semi-parallel model with only the category-specific part of the model penalized. See, Ugba (2021), Ugba et al. (2021) for further details and application in empirical studies.

An object of class `serp` with the components listed below, depending on the type of slope modeled. Other summary methods include: `summary`, `coef`, `predict`, `vcov`, `anova`, etc.

Value

- `aic` the akaike information criterion, with effective degrees of freedom obtained from the trace of the generalized hat matrix depending on the tuning parameter.
- `bic` the bayesian information criterion, with effective degrees of freedom obtained from the trace of the generalized hat matrix depending on the tuning parameter.
call
coefficient
converged
contrasts
control
cvMetric
deviance
edf
fitted.values
globalEff
gradient
Hessian
iter
lambda
lambdaGrid
logLik
link
message
misc
model
na.action
nobs
nrFold
rdf
reverse
slope
Terms
testError
tuneMethod
value
ylev

the matched call.
a vector of coefficients of the fitted model.
a character vector of fit convergence status.
(where relevant) the contrasts used in the model.
list of control parameters from serp.control.
the performance metric used for cv tuning.
the residual deviance.
the (effective) number of degrees of freedom used by the model
the fitted probabilities.
variable(s) in model treated as global effect(s)
a column vector of gradients for the coefficients at the model convergence.
the hessian matrix for the coefficients at the model convergence.
number of interactions before convergence or non-convergence.
a user-supplied single numeric value for the user tuning tuning method.
a numeric vector of lambda values used to determine the optimum tuning parameter.
the realized log-likelihood at the model convergence.
character vector indicating the link function of the fit.
character vector stating the type of convergence obtained
a list to hold miscellaneous fit information.
model.frame having variables from formula.
(where relevant) information on the treatment of NAs.
the number of observations.
the number of k-fold cross validation for the cv tuning method. Default to k = 5.
the residual degrees of freedom
a logical vector indicating the the direction of the cumulative probabilities. Default to P(Y<=r).
a character vector indicating the type of slope parameters fitted. Default to penalize.
the terms structure describing the model.
numeric value of the cross-validated test error at which the optimal tuning parameter emerged.
a character vector specifying the method for choosing an optimal shrinkage parameter.
numeric value of AIC or logLik obtained at the optimal tuning parameter when using aic or finite tuning methods respectively.
the number of the response levels.
References

See Also

anova.serp, summary.serp, predict.serp, confint.serp, vcov.serp

Examples

```r
require(serp)

## The unpenalized non-proportional odds model returns unbounded estimates, hence,
## not fully identifiable.
f1 <- serp(rating ~ temp + contact, slope = "unparallel",
           reverse = TRUE, link = "logit", data = wine)
coef(f1)

## The penalized non-proportional odds model with a user-supplied lambda gives
## a fully identified model with bounded estimates. A suitable tuning criterion
## could as well be used to select lambda (e.g., aic, cv)

f2 <- serp(rating ~ temp + contact, slope = "penalize",
           link = "logit", reverse = TRUE, tuneMethod = "user",
           lambda = 1e1, data = wine)
coef(f2)

## A penalized partial proportional odds model with some variables set to
## global effect is also possible.

f3 <- serp(rating ~ temp + contact, slope = "penalize",
           reverse = TRUE, link = "logit", tuneMethod = "user",
           lambda = 2e1, globalEff = ~ temp, data = wine)
coef(f3)

## The unpenalized proportional odds model having constrained estimates can
## as well be fit. Under extreme shrinkage, estimates in f2 equal those in
## this model.

f4 <- serp(rating ~ temp + contact, slope = "parallel",
           reverse = FALSE, link = "logit", data = wine)
summary(f4)
```
Control parameters for a fitted serp object

Description

Default control parameters for ’serp’ fit. User-supplied control parameters could be specified in the main function.

Usage

serp.control(
 maxits = 5e01,
 eps = 1e-07,
 maxpen = 1e07,
 trace = 0L,
 maxAdjIter = 5e0,
 max.half.iter = 1e01,
 relTol = 1e-03,
 nrFold = 5e0,
 cv.seed = 1e01,
 grid.length = 5e01,
 misclass.thresh = 5e-01,
 minP = .Machine$double.eps,
 ...
)

Arguments

maxits the maximum number of Newton’s iterations. Default to 100.
eps threshold value during optimization at which the iteration routine terminates. In other words, when the reported change in the log-likelihood goes below this threshold, convergence is achieved.
maxpen the upper end point of the interval from zero to be searched for a tuning parameter.
trace prints the Newton’s fitting process at each iteration step. If 0 (default) no information is printed, if 1, 2 or 3 different shades of information are printed.
maxAdjIter the maximum allowable number of Newton step adjustment to forestall an early optimization failure. Defaults to 5.
max.half.iter the maximum number of iteration step-halfings. Defaults to 10.
relTol relative convergence tolerance, defaults to 1e-03. checks relative changes in the parameter estimates between Newton iterations.
nrFold the number of k-fold cross validation for the CV tuning method. Default to k = 5.
cv.seed single numeric value to change the random seed in CV tuning.
grid.length the length of the discrete lambda grid for the penalty method.
misclass.thresh
 to reset the classification threshold in errorMetrics when type is 'misclass'.

minP
 A near zero minimum value the fitted probabilities are allowed to get during iteration to prevent numerical instability.

... additional arguments.

Value
 a list of control parameters.

See Also
 serp

Examples

library(serp)
serp(rating ~ contact, slope = "parallel", link = "logit",
control = list(maxits = 2e01, eps=1e-05, trace = 2),
data = wine)
Value

coefficients the matrix of coefficients, standard errors, z-values and p-values.
null.deviance the deviance for the intercept only model.
null.logLik the log-likelihood for the intercept only model.
penalty list of penalization information obtained with slope set to "penalize".
expcoefs the exponentiated coefficients.

See Also

anova.serp, predict.serp, confint.serp, vcov.serp

Examples

library(serp)
m <- serp(rating ~ temp + contact, slope = "penalize",
reverse = TRUE, link = "logit", tuneMethod = "user",
lambda = 0, data = wine)
summary(m)

vcov.serp Variance covariance matrix for a fitted serp object

Description

Provides the Variance covariance matrix of an object of class serp.

Usage

S3 method for class 'serp'
vcov(object, ...)

Arguments

object An object of class serp.
...
additional arguments.

Value

A variance covariance matrix of a fitted model.

See Also

serp
serp, anova.serp, confint.serp
Examples

library(serp)
m <- serp(rating ~ temp + contact, slope = "parallel", link = "logit",
 data = serp::wine)
vcov(m)

wine Bitterness of wine dataset

Description

The `wine` dataset adopted from Randall(1989), represents the outcome of a factorial experiment on factors determining the bitterness of wine. Two treatment factors (temperature and contact) with two levels each are provided, with the rating of wine taken on a continuous scale in the interval from 0 (none) to 100 (intense). These were subsequently grouped into five ordered categories ranging from 1 = 'least bitter' to 5 = 'most bitter'. Altogether, nine different judges assessed wine from two bottles and out of the four treatment conditions, making a total of 72 observations.

Usage

wine

Format

A data frame with 72 rows and 6 variables:

Value

response scorings of wine bitterness on a 0—100 continuous scale.
rating ordered factor with 5 levels; a grouped version of response.
contact factor with two levels ("no" and "yes").
temp temperature: factor with two levels.
judge factor with nine levels.
bottle factor with eight levels.

Source

Taken from Randall (1989).

References

Examples

```r
## Not run:
str(wine)
head(wine)

## End(Not run)
```
Index

* dataset
 wine, 17

AIC.serp, 2, 4–6
anova.serp, 3, 6, 7, 13, 16

BIC.serp, 3, 4, 5, 6

coeff.serp, 3, 4, 5, 6
coefficients.serp (coef.serp), 5
confint.serp, 4, 5, 7, 13, 16

logLik.serp, 3–5, 6

predict.serp, 7, 13, 16
print.serp, 8, 9
print.summary.serp, 8, 8

serp, 3–6, 8, 9, 9, 15, 16
serp.control, 14
summary.serp, 7, 13, 15

vcov.serp, 4, 6, 7, 13, 16, 16

wine, 17