Package ‘sfnetworks’

November 26, 2021

Title Tidy Geospatial Networks
Version 0.5.3
Maintainer Lucas van der Meer <luuvandermeer@live.nl>
Description Provides a tidy approach to spatial network analysis, in the form of classes and functions that enable a seamless interaction between the network analysis package 'tidygraph' and the spatial analysis package 'sf'.
License Apache License (>= 2)
BugReports https://github.com/luukvdmeer/sfnetworks/issues/
Depends R (>= 3.6)
Imports crayon, dplyr, graphics, igraph, lwgeom, rlang, sf, sfheaders, tibble, tidygraph, units, utils
Suggests dbscan, fansi, ggplot2 (>= 3.0.0), knitr, rmarkdown, spatstat.geom, spatstat.linnet, spatstat (>= 2.0.0), testthat, tidyverse, TSP, s2 (>= 1.0.1)
VignetteBuilder knitr
ByteCompile true
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
NeedsCompilation no
Author Lucas van der Meer [aut, cre] <https://orcid.org/0000-0001-6336-8628>, Lorena Abad [aut] <https://orcid.org/0000-0003-0554-7343>, Andrea Gilardi [aut] <https://orcid.org/0000-0002-9424-7439>, Robin Lovelace [aut] <https://orcid.org/0000-0001-5679-6536>
Repository CRAN
Date/Publication 2021-11-26 18:50:03 UTC
R topics documented:

as.linnet .. 2
as_sfnetwork ... 3
as_tibble ... 5
autoplot ... 6
is.sfnetwork ... 6
node_coordinates ... 7
plot.sfnetwork ... 8
roxel ... 9
s2 ... 10
sf ... 10
sfnetwork .. 13
sf_attr ... 16
spatial_edge_measures ... 17
spatial_edge_predicates .. 18
spatial_morphers .. 20
spatial_node_predicates .. 24
st_network_bbox ... 26
st_network_blend ... 27
st_network_cost ... 29
st_network_join ... 31
st_network_paths ... 33

Index 36

as.linnet Convert a sfnetwork into a linet

Description

A method to convert an object of class sfnetwork into linet format and enhance the interoperability between sfnetworks and spatstat. Use this method without the .sfnetwork suffix and after loading the spatstat package.

Usage

as.linnet.sfnetwork(X, ...)

Arguments

X An object of class sfnetwork with a projected CRS.

... Arguments passed to linet.

Value

An object of class linet.
as_sfnetwork

See Also

as_sfnetwork to convert objects of class linnet into objects of class sfnetwork.

\[
\begin{array}{ll}
\text{as_sfnetwork} & \text{Convert a foreign object to a sfnetwork}
\end{array}
\]

Description

Convert a given object into an object of class sfnetwork. If an object can be read by as_tbl_graph and the nodes can be read by st_as_sf, it is automatically supported.

Usage

as_sfnetwork(x, ...)

Default S3 method:
as_sfnetwork(x, ...)

S3 method for class 'sf'
as_sfnetwork(x, ...)

S3 method for class 'linnet'
as_sfnetwork(x, ...)

S3 method for class 'psp'
as_sfnetwork(x, ...)

S3 method for class 'sfc'
as_sfnetwork(x, ...)

S3 method for class 'sfNetwork'
as_sfnetwork(x, ...)

S3 method for class 'sfnetwork'
as_sfnetwork(x, ...)

S3 method for class 'tbl_graph'
as_sfnetwork(x, ...)

Arguments

x Object to be converted into an sfnetwork.

... Arguments passed on to the sfnetwork construction function.

Value

An object of class sfnetwork.
Methods (by class)

- sf: Only sf objects with either exclusively geometries of type LINestring or exclusively geometries of type POINT are supported. For lines, it is assumed that the given features form the edges. Nodes are created at the endpoints of the lines. Endpoints which are shared between multiple edges become a single node. For points, it is assumed that the given features geometries form the nodes. They will be connected by edges sequentially. Hence, point 1 to point 2, point 2 to point 3, etc.

Examples

```r
# From an sf object.
library(sf, quietly = TRUE)

# With LINestring geometries.
as_sfnetwork(roxel)

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(st_geometry(roxel))
plot(as_sfnetwork(roxel))
par(oldpar)

# With POINT geometries.
p1 = st_point(c(7, 51))
p2 = st_point(c(7, 52))
p3 = st_point(c(8, 52))
points = st_as_sf(st_sfc(p1, p2, p3))
as_sfnetwork(points)

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(st_geometry(points))
plot(as_sfnetwork(points))
par(oldpar)

# From a linnet object.
if (require(spatstat, quietly = TRUE)) {
as_sfnetwork(simplenet)
}

# From a psp object.
if (require(spatstat.geom, quietly = TRUE)) {
  set.seed(42)
  test_psp = psp(runif(10), runif(10), runif(10), runif(10), window=owin())
as_sfnetwork(test_psp)
}
```
as_tibble

Extract the active element of a sfnetwork as spatial tibble

Description

The sfnetwork method for as_tibble is conceptually different. Whenever a geometry list column is present, it will by default return what we call a 'spatial tibble'. With that we mean an object of class c('sf', 'tbl_df') instead of an object of class 'tbl_df'. This little conceptual trick is essential for how tidyverse functions handle sfnetwork objects, i.e. always using the corresponding sf method if present. When using as_tibble on sfnetwork objects directly as a user, you can disable this behaviour by setting spatial = FALSE.

Usage

S3 method for class 'sfnetwork'

as_tibble(x, active = NULL, spatial = TRUE, ...)

Arguments

- **x** An object of class sfnetwork.
- **active** Which network element (i.e. nodes or edges) to activate before extracting. If NULL, it will be set to the current active element of the given network. Defaults to NULL.
- **spatial** Should the extracted tibble be a 'spatial tibble', i.e. an object of class c('sf', 'tbl_df'), if it contains a geometry list column. Defaults to TRUE.
- **...** Arguments passed on to as_tibble.

Value

The active element of the network as an object of class tibble.

Examples

```r
library(tibble, quietly = TRUE)

net = as_sfnetwork(roixel)

# Extract the active network element as a spatial tibble.
as_tibble(net)

# Extract any network element as a spatial tibble.
as_tibble(net, "edges")

# Extract the active network element as a regular tibble.
as_tibble(net, spatial = FALSE)
```
autoplot

Plot sfnetwork geometries with ggplot2

Description

Plot the geometries of an object of class `sfnetwork` automatically as a `ggplot` object. Use this method without the `.sfnetwork` suffix and after loading the `ggplot2` package.

Usage

```r
autoplot.sfnetwork(object, 
                    ..., 
                    )
```

Arguments

- **object**

 An object of class `sfnetwork`.

- **...**

 Ignored.

Details

See `autoplot`.

Value

An object of class `ggplot`.

is.sfnetwork

Check if an object is a sfnetwork

Description

Check if an object is a `sfnetwork`

Usage

```r
is.sfnetwork(x)
```

Arguments

- **x**

 Object to be checked.

Value

`TRUE` if the given object is an object of class `sfnetwork`, `FALSE` otherwise.
Examples

```r
library(tidygraph, quietly = TRUE, warn.conflicts = FALSE)

net = as_sfnetwork(roxel)
is.sfnetwork(net)
is.sfnetwork(as_tbl_graph(net))
```

node_coordinates

Query node coordinates

Description

These functions allow to query specific coordinate values from the geometries of the nodes.

Usage

- `node_X()`
- `node_Y()`
- `node_Z()`
- `node_M()`

Details

Just as with all query functions in tidygraph, these functions are meant to be called inside tidygraph verbs such as `mutate` or `filter`, where the network that is currently being worked on is known and thus not needed as an argument to the function. If you want to use an algorithm outside of the tidygraph framework you can use `with_graph` to set the context temporarily while the algorithm is being evaluated.

Value

A numeric vector of the same length as the number of nodes in the network.

Note

If a requested coordinate value is not available for a node, `NA` will be returned.

Examples

```r
library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

# Create a network.
net = as_sfnetwork(roxel)
```
Use query function in a filter call.
filtered = net %>%
 activate("nodes") %>%
 filter(node_X() > 7.54)

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net, col = "grey")
plot(filtered, col = "red", add = TRUE)
par(oldpar)

Use query function in a mutate call.
net %>%
 activate("nodes") %>%
 mutate(X = node_X(), Y = node_Y())

plot.sfnetwork

Plot sfnetwork geometries

Description

Plot the geometries of an object of class `sfnetwork`.

Usage

```r
## S3 method for class 'sfnetwork'
plot(x, draw_lines = TRUE, ...)
```

Arguments

- `x` Object of class `sfnetwork`.
- `draw_lines` If the edges of the network are spatially implicit, should straight lines be drawn between connected nodes? Defaults to TRUE. Ignored when the edges of the network are spatially explicit.
- `...` Arguments passed on to `plot.sf`

Details

This is a basic plotting functionality. For more advanced plotting, it is recommended to extract the nodes and edges from the network, and plot them separately with one of the many available spatial plotting functions as can be found in `sf`, `tmap`, `ggplot2`, `ggspatial`, and others.
Examples

```r
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,1))
net = as_sfnetwork(roxel)
plot(net)

# When lines are spatially implicit.
par(mar = c(1,1,1,1), mfrow = c(1,2))
net = as_sfnetwork(roxel, edges_as_lines = FALSE)
plot(net)
plot(net, draw_lines = FALSE)

# Changing default settings.
par(mar = c(1,1,1,1), mfrow = c(1,1))
plot(net, col = "blue", pch = 18, lwd = 1, cex = 2)

# Add grid and axis
par(mar = c(2.5,2.5,1,1))
plot(net, graticule = TRUE, axes = TRUE)

par(oldpar)
```

roxel

Road network of Münster Roxel

Description

A dataset containing the road network (roads, bikelanes, footpaths, etc.) of Roxel, a neighborhood in the city of Münster, Germany. The data are taken from OpenStreetMap, querying by key = 'highway'. The topology is cleaned with the v.clean tool in GRASS GIS.

Usage

roxel

Format

An object of class `sf` with `LINESTRING` geometries, containing 851 features and three columns:

- **name** the name of the road, if it exists
- **type** the type of the road, e.g. cycleway
- **geometry** the geometry list column

Source

https://www.openstreetmap.org
s2

s2 methods for sfnetworks

Description

s2 methods for sfnetworks

Usage

as_s2_geography.sfnetwork(x, ...)

Arguments

x An object of class sfnetwork.

... Arguments passed on the corresponding s2 function.

sf

sf methods for sfnetwork objects.

Description

sf methods for sfnetwork objects.

Usage

S3 method for class 'sfnetwork'
st_as_sf(x, active = NULL, ...)

S3 method for class 'sfnetwork'
st_geometry(x, active = NULL, ...)

S3 replacement method for class 'sfnetwork'
st_geometry(x) <- value

S3 method for class 'sfnetwork'
st_bbox(x, ...)

S3 method for class 'sfnetwork'
st_coordinates(x, ...)

S3 method for class 'sfnetwork'
st_is(x, ...)

S3 method for class 'sfnetwork'
st_crs(x, ...)
S3 replacement method for class 'sfnetwork'
`st_crs(x) <- value`

S3 method for class 'sfnetwork'
`st_shift_longitude(x, ...)`

S3 method for class 'sfnetwork'
`st_transform(x, ...)`

S3 method for class 'sfnetwork'
`st_wrap_dateline(x, ...)`

S3 method for class 'sfnetwork'
`st_zm(x, ...)`

S3 method for class 'sfnetwork'
`st_m_range(x, ...)`

S3 method for class 'sfnetwork'
`st_z_range(x, ...)`

S3 method for class 'sfnetwork'
`st_agr(x, active = NULL, ...)`

S3 replacement method for class 'sfnetwork'
`st_agr(x) <- value`

S3 method for class 'sfnetwork'
`st_intersects(x, y = x, ...)`

S3 method for class 'sfnetwork'
`st_reverse(x, ...)`

S3 method for class 'sfnetwork'
`st_simplify(x, ...)`

S3 method for class 'sfnetwork'
`st_join(x, y, ...)`

S3 method for class 'morphed_sfnetwork'
`st_join(x, y, ...)`

S3 method for class 'sfnetwork'
`st_crop(x, y, ...)`

S3 method for class 'morphed_sfnetwork'
`st_crop(x, y, ...)"
S3 method for class 'sfnetwork'
\texttt{st_filter}(x, y, ...) \\
S3 method for class 'morphed_sfnetwork'
\texttt{st_filter}(x, y, ...)

Arguments

- **x**: An object of class \texttt{sfnetwork}.
- **active**: Which network element (i.e. nodes or edges) to activate before extracting. If \texttt{NULL}, it will be set to the current active element of the given network. Defaults to \texttt{NULL}.
- **...**: Arguments passed on the corresponding \texttt{sf} function.
- **value**: The value to be assigned. See the documentation of the corresponding \texttt{sf} function for details.
- **y**: An object of class \texttt{sf}, or directly convertible to it using \texttt{st_as_sf}. In some cases, it can also be an object of \texttt{sfg} or \texttt{bbox}. Always look at the documentation of the corresponding \texttt{sf} function for details.

Details

See the \texttt{sf} documentation.

Value

The \texttt{sfnetwork} method for \texttt{st_as_sf} returns the active element of the network as object of class \texttt{sf}. The \texttt{sfnetwork} and \texttt{morphed_sfnetwork} methods for \texttt{st_join}, \texttt{st_filter} and \texttt{st_crop} return an object of class \texttt{sfnetwork} and \texttt{morphed_sfnetwork} respectively. All other methods return the same type of objects as their corresponding \texttt{sf} function. See the \texttt{sf} documentation for details.

Examples

```r
library(sf, quietly = TRUE)

net = as_sfnetwork(roxel)

# Extract the active network element.
st_as_sf(net)

# Extract any network element.
st_as_sf(net, "edges")

# Get geometry of the active network element.
st_geometry(net)

# Get geometry of any network element.
st_geometry(net, "edges")

# Get bbox of the active network element.
```
`st_bbox(net)`

Get CRS of the network.
`st_crs(net)`

Get agr factor of the active network element.
`st_agr(net)`

Get agr factor of any network element.
`st_agr(net, "edges")`

Spatial join applied to the active network element.
`net = st_transform(net, 3035)`
`codes = st_as_sf(st_make_grid(net, n = c(2, 2)))`
`codes$post_code = as.character(seq(1000, 1000 + nrow(codes) * 10 - 10, 10))`

`joined = st_join(net, codes, join = st_intersects)`
`joined`

oldpar = par(no.readonly = TRUE)
`par(mar = c(1,1,1,1), mfrow = c(1,2))`
plot(net, col = "grey")
plot(codes, col = NA, border = "red", lty = 4, lwd = 4, add = TRUE)
`text(st_coordinates(st_centroid(st_geometry(codes))), codes$post_code)`
`plot(st_geometry(joined, "edges"))`
`plot(st_as_sf(joined, "nodes"), pch = 20, add = TRUE)`
par(oldpar)

Spatial filter applied to the active network element.
`p1 = st_point(c(4151358, 3208045))`
`p2 = st_point(c(4151340, 3207520))`
`p3 = st_point(c(4151756, 3207506))`
`p4 = st_point(c(4151774, 3208031))`
`poly = st_multipoint(c(p1, p2, p3, p4)) %>%
 st_cast("POLYGON") %>%
 st_sfc(crs = 3035) %>%
 st_as_sf()`
`filtered = st_filter(net, poly, .pred = st_intersects)`

oldpar = par(no.readonly = TRUE)
`par(mar = c(1,1,1,1), mfrow = c(1,2))`
plot(net, col = "grey")
plot(poly, border = "red", lty = 4, lwd = 4, add = TRUE)
`plot(filtered)`
par(oldpar)
Description

sfnetwork is a tidy data structure for geospatial networks. It extends the _tbl_graph_ data structure for relational data into the domain of geospatial networks, with nodes and edges embedded in geographical space, and offers smooth integration with _sf_ for spatial data analysis.

Usage

```r
sfnetwork(
  nodes,
  edges = NULL,
  directed = TRUE,
  node_key = "name",
  edges_as_lines = NULL,
  length_as_weight = FALSE,
  force = FALSE,
  ...
)
```

Arguments

- **nodes**: The nodes of the network. Should be an object of class _sf_, or directly convertible to it using _st_as_sf_. All features should have an associated geometry of type POINT.

- **edges**: The edges of the network. May be an object of class _sf_, with all features having an associated geometry of type LINESTRING. It may also be a regular data.frame or _tbl_df_ object. In any case, the nodes at the ends of each edge must either be encoded in a to and from column, as integers or characters. Integers should refer to the position of a node in the nodes table, while characters should refer to the name of a node encoded in the column referred to in the node_key argument. Setting edges to NULL will create a network without edges.

- **directed**: Should the constructed network be directed? Defaults to TRUE.

- **node_key**: The name of the column in the nodes table that character represented to and from columns should be matched against. If NA, the first column is always chosen. This setting has no effect if to and from are given as integers. Defaults to ‘name’.

- **edges_as_lines**: Should the edges be spatially explicit, i.e. have LINESTRING geometries stored in a geometry list column? If NULL, this will be automatically defined, by setting the argument to TRUE when the edges are given as an object of class _sf_, and FALSE otherwise. Defaults to NULL.

- **length_as_weight**: Should the length of the edges be stored in a column named weight? If set to TRUE, this will calculate the length of the linestring geometry of the edge in the case of spatially explicit edges, and the straight-line distance between the source and target node in the case of spatially implicit edges. If there is already a column named weight, it will be overwritten. Defaults to FALSE.

- **force**: Should network validity checks be skipped? Defaults to FALSE, meaning that network validity checks are executed when constructing the network. These
checks guarantee a valid spatial network structure. For the nodes, this means that they all should have POINT geometries. In the case of spatially explicit edges, it is also checked that all edges have LINESTRING geometries, nodes and edges have the same CRS and boundary points of edges match their corresponding node coordinates. These checks are important, but also time consuming. If you are already sure your input data meet the requirements, the checks are unnecessary and can be turned off to improve performance.

Arguments passed on to `st_as_sf`, if nodes need to be converted into an `sf` object during construction.

Value

An object of class `sfnetwork`.

Examples

```r
library(sf, quietly = TRUE)

## Create sfnetwork from sf objects
p1 = st_point(c(7, 51))
p2 = st_point(c(7, 52))
p3 = st_point(c(8, 52))
nodes = st_as_sf(st_sfc(p1, p2, p3, crs = 4326))

e1 = st_cast(st_union(p1, p2), "LINESTRING")
e2 = st_cast(st_union(p1, p3), "LINESTRING")
e3 = st_cast(st_union(p3, p2), "LINESTRING")
edges = st_as_sf(st_sfc(e1, e2, e3, crs = 4326))
edges$from = c(1, 1, 3)
edges$to = c(2, 3, 2)

# Default.
sfnetwork(nodes, edges)

# Undirected network.
sfnetwork(nodes, edges, directed = FALSE)

# Using character encoded from and to columns.
nodes$name = c("city", "village", "farm")
edges$from = c("city", "city", "farm")
edges$to = c("village", "farm", "village")
sfnetwork(nodes, edges, node_key = "name")

# Spatially implicit edges.
sfnetwork(nodes, edges, edges_as_lines = FALSE)

# Store edge lengths in a weight column.
sfnetwork(nodes, edges, length_as_weight = TRUE)

# Adjust the number of features printed by active and inactive components
oldoptions = options(sfn_max_print_active = 1, sfn_max_print_inactive = 2)
sfnetwork(nodes, edges)
```

...
options(oldoptions)

sf_attr

Query sf attributes from the active element of a sfnetwork

Description

Query sf attributes from the active element of a sfnetwork

Usage

sf_attr(x, name, active = NULL)

Arguments

- **x**: An object of class `sfnetwork`.
- **name**: Name of the attribute to query. Either `sf_column` or `agr`.
- **active**: Which network element (i.e. nodes or edges) to activate before extracting. If `NULL`, it will be set to the current active element of the given network. Defaults to `NULL`.

Details

sf attributes include `sf_column` (the name of the sf column) and `agr` (the attribute-geometry-relationships).

Value

The value of the attribute matched, or `NULL` if no exact match is found.

Examples

```
net = as_sfnetwork(roixel)
sf_attr(net, "agr", active = "edges")
sf_attr(net, "sf_column", active = "nodes")
```
spatial_edge_measures

Query spatial edge measures

Description

These functions are a collection of specific spatial edge measures, that form a spatial extension to edge measures in tidygraph.

Usage

edge_azimuth()

edge_circuity(Inf_as_NaN = FALSE)

data_length()

data_displacement()

Arguments

Inf_as_NaN Should the circuity values of loop edges be stored as NaN instead of Inf? Defaults to FALSE.

Details

Just as with all query functions in tidygraph, spatial edge measures are meant to be called inside tidygraph verbs such as mutate or filter, where the network that is currently being worked on is known and thus not needed as an argument to the function. If you want to use an algorithm outside of the tidygraph framework you can use with_graph to set the context temporarily while the algorithm is being evaluated.

Value

A numeric vector of the same length as the number of edges in the graph.

Functions

- edge_azimuth: The angle in radians between a straight line from the edge startpoint pointing north, and the straight line from the edge startpoint and the edge endpoint. Calculated with st_geod_azimuth. Requires a geographic CRS.
- edge_circuity: The ratio of the length of an edge linestring geometry versus the straight-line distance between its boundary nodes, as described in Giacomin & Levinson, 2015.
- edge_length: The length of an edge linestring geometry as calculated by st_length.
- edge_displacement: The straight-line distance between the two boundary nodes of an edge, as calculated by st_distance.
Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

net = as_sfnetwork(roxel)

net %>%
 activate("edges") %>%
 mutate(azimuth = edge_azimuth())

net %>%
 activate("edges") %>%
 mutate(circuity = edge_circuity())

net %>%
 activate("edges") %>%
 mutate(length = edge_length())

net %>%
 activate("edges") %>%
 mutate(displacement = edge_displacement())

spatial_edge_predicates

Query edges with spatial predicates

Description

These functions allow to interpret spatial relations between edges and other geospatial features directly inside filter and mutate calls. All functions return a logical vector of the same length as the number of edges in the network. Element i in that vector is TRUE whenever any(predicate(x[i],y[j])) is TRUE. Hence, in the case of using edge_intersects, element i in the returned vector is TRUE when edge i intersects with any of the features given in y.

Usage

edge_intersects(y, ...)
edge_is_disjoint(y, ...)
edge_touches(y, ...)
edge_crosses(y, ...)
edge_is_within(y, ...)
edge_contains(y, ...)
edge_contains_properly(y, ...)
edge_overlaps(y, ...)
edge_equals(y, ...)
edge_covers(y, ...)
edge_is_covered_by(y, ...)
edge_is_within_distance(y, ...)

Arguments

y The geospatial features to test the edges against, either as an object of class sf or sfc.
...
Arguments passed on to the corresponding spatial predicate function of sf. See geos_binary_pred.

Details

See geos_binary_pred for details on each spatial predicate. Just as with all query functions in tidygraph, these functions are meant to be called inside tidygraph verbs such as mutate or filter, where the network that is currently being worked on is known and thus not needed as an argument to the function. If you want to use an algorithm outside of the tidygraph framework you can use with_graph to set the context temporarily while the algorithm is being evaluated.

Value

A logical vector of the same length as the number of edges in the network.

Note

Note that edge_is_within_distance is a wrapper around the st_is_within_distance predicate from sf. Hence, it is based on 'as-the-crow-flies' distance, and not on distances over the network.

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

Create a network.
net = as_sfnetwork(roxel) %>%
 st_transform(3035)

Create a geometry to test against.
p1 = st_point(c(4151358, 3208045))
p2 = st_point(c(4151340, 3207520))
p3 = st_point(c(4151756, 3207506))
p4 = st_point(c(4151774, 3208031))

poly = st_multipoint(c(p1, p2, p3, p4)) %>%
 st_cast('POLYGON') %>%
 st_sfc(crs = 3035)

Use predicate query function in a filter call.
intersects = net %>%
 activate(edges) %>%
 filter(edge_intersects(poly))

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(st_geometry(net, "edges"))
plot(st_geometry(intersects, "edges"), col = "red", lwd = 2, add = TRUE)
par(oldpar)

Use predicate query function in a mutate call.
net %>%
 activate(edges) %>%
 mutate(disjoint = edge_is_disjoint(poly)) %>%
 select(disjoint)

spatial_morphers

Spatial morphers for sfnetworks

Description

Spatial morphers form spatial add-ons to the set of morphers provided by tidygraph. These functions are not meant to be called directly. They should either be passed into morph to create a temporary alternative representation of the input network. Such an alternative representation is a list of one or more network objects. Single elements of that list can be extracted directly as a new network by passing the morpher to convert instead, to make the changes lasting rather than temporary. Alternatively, if the morphed state contains multiple elements, all of them can be extracted together inside a tbl_df by passing the morpher to crystallise.

Usage

to_spatial_contracted(
 x,
 ..., simplify = FALSE, summarise_attributes = "ignore", store_original_data = FALSE)

to_spatial_directed(x)


```
to.spatial_explicit(x, ...)  
to.spatial_neighborhood(x, node, threshold, weights = NULL, from = TRUE, ...)  
to.spatial_shortest_paths(x, ...)  
to.spatial_simple(x, remove_multiple = TRUE, remove_loops = TRUE, summarise_attributes = "first", store_original_data = FALSE)  
to.spatial_smooth(x, store_original_data = FALSE)  
to.spatial_subdivision(x)  
to.spatial_subset(x, ..., subset_by = NULL)  
to.spatial_transformed(x, ...)  
```

Arguments

x
An object of class `sfnetwork`.

...
Arguments to be passed on to other functions. See the description of each morpher for details.

simplify
Should the network be simplified after contraction? This means that multiple edges and loop edges will be removed. Multiple edges are introduced by contraction when there are several connections between the same groups of nodes. Loop edges are introduced by contraction when there are connections within a group. Note however that setting this to `TRUE` also removes multiple edges and loop edges that already existed before contraction. Defaults to `FALSE`.

summarise_attributes
Whenever multiple features (i.e. nodes and/or edges) are merged into a single feature during morphing, how should their attributes be combined? Several options are possible, see `igraph-attribute-combination` for details.

store_original_data
Whenever multiple features (i.e. nodes and/or edges) are merged into a single feature during morphing, should the data of the original features be stored as an attribute of the new feature, in a column named `.orig_data`. This is in line with the design principles of `tidygraph`. Defaults to `FALSE`.

node
The geospatial point for which the neighborhood will be calculated. Can be an integer, referring to the index of the node for which the neighborhood will be calculated. Can also be an object of class `sf` or `sfc`, containing a single feature. In that case, this point will be snapped to its nearest node before calculating the neighborhood. When multiple indices or features are given, only the first one is taken.
threshold The threshold distance to be used. Only nodes within the threshold distance from
the reference node will be included in the neighborhood. Should be a numeric
value in the same units as the weight values used for distance calculation.

weights The edge weights used to calculate distances on the network. Can be a numeric
vector giving edge weights, or a column name referring to an attribute column in
the edges table containing those weights. If set to NULL, the values of a column
named weight in the edges table will be used automatically, as long as this col-
umn is present. If not, the geographic edge lengths will be calculated internally
and used as weights.

from Should distances be calculated from the reference node towards the other nodes?
Defaults to TRUE. If set to FALSE, distances will be calculated from the other
nodes towards the reference node instead.

remove_multiple Should multiple edges be merged into one. Defaults to TRUE.

remove_loops Should loop edges be removed. Defaults to TRUE.

subset_by Whether to create subgraphs based on nodes or edges.

Details

It also possible to create your own morphers. See the documentation of morph for the requirements
for custom morphers.

Value

Either a morphed_sfnetwork, which is a list of one or more sfnetwork objects, or a morphed_tbl_graph,
which is a list of one or more tbl_graph objects. See the description of each morpher for details.

Functions

• to_spatial_contracted: Combine groups of nodes into a single node per group. ... is
forwarded to group_by to create the groups. The centroid of the group of nodes will be
used as geometry of the contracted node. If edge are spatially explicit, edge geometries
are updated accordingly such that the valid spatial network structure is preserved. Returns
a morphed_sfnetwork containing a single element of class sfnetwork.

• to_spatial_directed: Make a network directed in the direction given by the linestring ge-
ometries of the edges. Differs from to_directed, which makes a network directed based on
the node indices given in the from and to columns. In undirected networks these indices may
not correspond with the endpoints of the linestring geometries. Returns a morphed_sfnetwork
containing a single element of class sfnetwork. This morpher requires edges to be spatially
explicit. If not, use to_directed.

• to_spatial_explicit: Create linestring geometries between source and target nodes of
edges. If the edges data can be directly converted to an object of class sf using st_as_sf,
extra arguments can be provided as ... and will be forwarded to st_as_sf internally. Other-
wise, straight lines will be drawn between the source and target node of each edge. Returns a
morphed_sfnetwork containing a single element of class sfnetwork.

• to_spatial_neighborhood: Limit a network to the spatial neighborhood of a specific node.
... is forwarded to node_distance_from (if from is TRUE) or node_distance_to (if from
is FALSE). Returns a morphed_sfnetwork containing a single element of class sfnetwork.
• to_spatial_shortest_paths: Limit a network to those nodes and edges that are part of the shortest path between two nodes. ... is evaluated in the same manner as \texttt{st_network_paths} with type = \texttt{"shortest"}. Returns a \texttt{morphed_sfnetwork} that may contain multiple elements of class \texttt{sfnetwork}, depending on the number of requested paths. When unmorphing only the first instance of both the node and edge data will be used, as the the same node and/or edge can be present in multiple paths.

• to_spatial_simple: Remove loop edges and/or merges multiple edges into a single edge. Multiple edges are edges that have the same source and target nodes (in directed networks) or edges that are incident to the same nodes (in undirected networks). When merging them into a single edge, the geometry of the first edge is preserved. The order of the edges can be influenced by calling \texttt{arrange} before simplifying. Returns a \texttt{morphed_sfnetwork} containing a single element of class \texttt{sfnetwork}.

• to_spatial_smooth: Construct a smoothed version of the network by iteratively removing pseudo nodes, while preserving the connectivity of the network. In the case of directed networks, pseudo nodes are those nodes that have only one incoming and one outgoing edge. In undirected networks, pseudo nodes are those nodes that have two incident edges. Connectivity of the network is preserved by concatenating the incident edges of each removed pseudo node. Returns a \texttt{morphed_sfnetwork} containing a single element of class \texttt{sfnetwork}.

• to_spatial_subdivision: Construct a subdivision of the network by subdividing edges at each interior point that is equal to any other interior or boundary point in the edges table. Interior points in this sense are those points that are included in their linestring geometry feature but are not endpoints of it, while boundary points are the endpoints of the linestrings. The network is reconstructed after subdivision such that edges are connected at the points of subdivision. Returns a \texttt{morphed_sfnetwork} containing a single element of class \texttt{sfnetwork}. This morpher requires edges to be spatially explicit.

• to_spatial_subset: Subset the network by applying a spatial filter, i.e. a filter on the geometry column based on a spatial predicate. ... is evaluated in the same manner as \texttt{st_filter}. Returns a \texttt{morphed_sfnetwork} containing a single element of class \texttt{sfnetwork}. For filters on an attribute column, use \texttt{to_subgraph}.

• to_spatial_transformed: Transform the geospatial coordinates of the network into a different coordinate reference system. ... is evaluated in the same manner as \texttt{st_transform}. Returns a \texttt{morphed_sfnetwork} containing a single element of class \texttt{sfnetwork}.

See Also

The vignette on \texttt{spatial morphers}.

Examples

```r
library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

net = as_sfnetwork(roxel, directed = FALSE) %>%
  st_transform(3035)

# Temporary changes with morph and unmorph.
net %>%
  activate("edges") %>%
```
mutate(weight = edge_length()) %>%
morph(to_spatial_shortest_paths, from = 1, to = 10) %>%
mutate(in_paths = TRUE) %>%
unmorph()

Lasting changes with convert.
net %>%
activate("edges") %>%
mutate(weight = edge_length()) %>%
convert(to_spatial_shortest_paths, from = 1, to = 10)

spatial_node_predicates

Query nodes with spatial predicates

Description

These functions allow to interpret spatial relations between nodes and other geospatial features directly inside `filter` and `mutate` calls. All functions return a logical vector of the same length as the number of nodes in the network. Element i in that vector is `TRUE` whenever any(predicate(x[i], y[j])) is `TRUE`. Hence, in the case of using `node_intersects`, element i in the returned vector is `TRUE` when node i intersects with any of the features given in y.

Usage

```r
node_intersects(y, ...)
node_is_disjoint(y, ...)
node_touches(y, ...)
node_is_within(y, ...)
node_equals(y, ...)
node_is_covered_by(y, ...)
node_is_within_distance(y, ...)
```

Arguments

- `y` The geospatial features to test the nodes against, either as an object of class `sf` or `sfc`.
- `...` Arguments passed on to the corresponding spatial predicate function of sf. See `geos_binary_pred`.

Example

```r
mutate(weight = edge_length()) %>%
morph(to_spatial_shortest_paths, from = 1, to = 10) %>%
mutate(in_paths = TRUE) %>%
unmorph()

# Lasting changes with convert.
net %>%
activate("edges") %>%
mutate(weight = edge_length()) %>%
convert(to_spatial_shortest_paths, from = 1, to = 10)
```
Details

See `geos_binary_pred` for details on each spatial predicate. Just as with all query functions in tidygraph, these functions are meant to be called inside tidygraph verbs such as `mutate` or `filter`, where the network that is currently being worked on is known and thus not needed as an argument to the function. If you want to use an algorithm outside of the tidygraph framework you can use `with_graph` to set the context temporarily while the algorithm is being evaluated.

Value

A logical vector of the same length as the number of nodes in the network.

Note

Note that `node_is_within_distance` is a wrapper around the `st_is_within_distance` predicate from sf. Hence, it is based on ‘as-the-crow-flies’ distance, and not on distances over the network. For distances over the network, use `node_distance_to` with edge lengths as weights argument.

Examples

```r
library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

# Create a network.
net = as_sfnetwork(roxel) %>%
  st_transform(3035)

# Create a geometry to test against.
p1 = st_point(c(4151358, 3208045))
p2 = st_point(c(4151340, 3207520))
p3 = st_point(c(4151756, 3207506))
p4 = st_point(c(4151774, 3208031))

poly = st_multipoint(c(p1, p2, p3, p4)) %>%
  st_cast('POLYGON') %>%
  st_sfc(crs = 3035)

# Use predicate query function in a filter call.
within = net %>%
  activate("nodes") %>%
  filter(node_is_within(poly))

disjoint = net %>%
  activate("nodes") %>%
  filter(node_is_disjoint(poly))

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net)
plot(within, col = "red", add = TRUE)
plot(disjoint, col = "blue", add = TRUE)
par(oldpar)
```
Use predicate query function in a mutate call.
net %>%
 activate("nodes") %>%
 mutate(within = node_is_within(poly)) %>%
 select(within)

st_network_bbox
Get the bounding box of a spatial network

Description

A spatial network specific bounding box extractor, returning the combined bounding box of the nodes and edges in the network.

Usage

```r
st_network_bbox(x, ...)
```

Arguments

- `x` An object of class `sfnetwork`.
- `...` Arguments passed on to `st_bbox`.

Details

See `st_bbox` for details.

Value

The bounding box of the network as an object of class `bbox`.

Examples

```r
library(sf)

# Create a network.
node1 = st_point(c(8, 51))
node2 = st_point(c(7, 51.5))
node3 = st_point(c(8, 52))
node4 = st_point(c(9, 51))
edge1 = st_sfc(st_linestring(c(node1, node2, node3)))
nodes = st_as_sf(c(st_sfc(node1), st_sfc(node3), st_sfc(node4)))
edges = st_as_sf(edge1)
edges$from = 1
edges$to = 2
net = sfnetwork(nodes, edges)
```
Create bounding boxes for nodes, edges and the whole network.
node_bbox = st_bbox(activate(net, "nodes"))
edge_bbox = st_bbox(activate(net, "edges"))
net_bbox = st_network_bbox(net)

Plot.
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(net, lwd = 2, cex = 4, main = "Element bounding boxes")
plot(st_as_sfc(node_bbox), border = "red", lty = 2, lwd = 4, add = TRUE)
plot(st_as_sfc(edge_bbox), border = "blue", lty = 2, lwd = 4, add = TRUE)
plot(net, lwd = 2, cex = 4, main = "Network bounding box")
plot(st_as_sfc(net_bbox), border = "red", lty = 2, lwd = 4, add = TRUE)
par(oldpar)

st_network_blend

Blend geospatial points into a spatial network

Description

Blending a point into a network is the combined process of first snapping the given point to its nearest point on its nearest edge in the network, subsequently splitting that edge at the location of the snapped point, and finally adding the snapped point as node to the network. If the location of the snapped point is already a node in the network, the attributes of the point (if any) will be joined to that node.

Usage

```
st_network_blend(x, y, tolerance = Inf)
```

Arguments

- **x**
 An object of class `sfnetwor`.
- **y**
 The spatial features to be blended, either as object of class `sf` or `sfc`, with POINT geometries.
- **tolerance**
 The tolerance distance to be used. Only features that are at least as close to the network as the tolerance distance will be blended. Should be a non-negative number preferably given as an object of class `units`. Otherwise, it will be assumed that the unit is meters. If set to `Inf` all features will be blended. Defaults to `Inf`.

Details

There are two important details to be aware of. Firstly: when the snap locations of multiple points are equal, only the first of these points is blended into the network. By arranging \(y \) before blending you can influence which (type of) point is given priority in such cases. Secondly: when the snap location of a point intersects with multiple edges, it is only blended into the first of these edges. You might want to run the `to_spatial_subdivision` morpher after blending, such that intersecting but unconnected edges get connected.

Value

The blended network as an object of class `sfnetwork`.

Note

Due to internal rounding of rational numbers, it may occur that the intersection point between a line and a point is not evaluated as actually intersecting that line by the designated algorithm. Instead, the intersection point lies a tiny-bit away from the edge. Therefore, it is recommended to set the tolerance to a very small number (for example `1e-5`) even if you only want to blend points that intersect the line.

Examples

```r
library(sf, quietly = TRUE)

# Create a network and a set of points to blend.
n11 = st_point(c(0,0))
n12 = st_point(c(1,1))
e1 = st_sfc(st_linestring(c(n11, n12)), crs = 3857)

n21 = n12
n22 = st_point(c(0,2))
e2 = st_sfc(st_linestring(c(n21, n22)), crs = 3857)

n31 = n22
n32 = st_point(c(-1,1))
e3 = st_sfc(st_linestring(c(n31, n32)), crs = 3857)

net = as_sfnetwork(c(e1,e2,e3))

pts = net %>%
  st_bbox() %>%
  st_as_sfc() %>%
  st_sample(10, type = "random") %>%
  st_set_crs(3857) %>%
  st_cast("POINT")

# Blend points into the network.
# --> By default tolerance is set to Inf
# --> Meaning that all points get blended
b1 = st_network_blend(net, pts)
b1
```
Blend points with a tolerance.
tol = units::set_units(0.2, "m")
b2 = st_network_blend(net, pts, tolerance = tol)
b2

Plot results.
Initial network and points.
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,3))
plot(net, cex = 2, main = "Network + set of points")
plot(pts, cex = 2, col = "red", pch = 20, add = TRUE)

Blend with no tolerance
plot(b1, cex = 2, main = "Blend with tolerance = Inf")
plot(pts, cex = 2, col = "red", pch = 20, add = TRUE)

Blend with tolerance.
within = st_is_within_distance(pts, st_geometry(net, "edges"), tol)
pts_within = pts[lengths(within) > 0]
plot(b2, cex = 2, main = "Blend with tolerance = 0.2 m")
plot(pts, cex = 2, col = "grey", pch = 20, add = TRUE)
plot(pts_within, cex = 2, col = "red", pch = 20, add = TRUE)
par(oldpar)

st_network_cost
Compute a cost matrix of a spatial network

Description

Wrapper around distances to calculate costs of pairwise shortest paths between points in a spatial network. It allows to provide any set of geospatial point as from and to arguments. If such a geospatial point is not equal to a node in the network, it will be snapped to its nearest node before calculating costs.

Usage

st_network_cost(
 x,
 from = igraph::V(x),
 to = igraph::V(x),
 weights = NULL,
 Inf_as_NaN = FALSE,
 ...
)
Arguments

- **x**: An object of class `sf_network`.
- **from**: The (set of) geospatial point(s) from which the shortest paths will be calculated. Can be an object of class `sf` or `sfc`. Alternatively, it can be a numeric vector containing the indices of the nodes from which the shortest paths will be calculated, or a character vector containing the names of the nodes from which the shortest paths will be calculated. By default, all nodes in the network are included.
- **to**: The (set of) geospatial point(s) to which the shortest paths will be calculated. Can be an object of class `sf` or `sfc`. Features with duplicated nearest node indices will be removed before calculating the cost matrix. Alternatively, it can be a numeric vector containing the indices of the nodes to which the shortest paths will be calculated, or a character vector containing the names of the nodes to which the shortest paths will be calculated. Duplicated values will be removed before calculating the cost matrix. By default, all nodes in the network are included.
- **weights**: The edge weights to be used in the shortest path calculation. Can be a numeric vector giving edge weights, or a column name referring to an attribute column in the edges table containing those weights. If set to `NULL`, the values of a column named `weight` in the edges table will be used automatically, as long as this column is present. If not, the geographic edge lengths will be calculated internally and used as weights. If set to `NA`, no weights are used, even if the edges have a weight column.
- **Inf_as_NaN**: Should the cost values of unconnected nodes be stored as `NaN` instead of `Inf`? Defaults to `FALSE`.
- **...**: Arguments passed on to `distances`.

Details

Spatial features provided to the `from` and/or `to` argument don’t necessarily have to be points. Internally, the nearest node to each feature is found by calling `st_nearest_feature`, so any feature with a geometry type that is accepted by that function can be provided as `from` and/or `to` argument.

When directly providing integer node indices or character node names to the `from` and/or `to` argument, keep the following in mind. A node index should correspond to a row-number of the nodes table of the network. A node name should correspond to a value of a column in the nodes table named `name`. This column should contain character values without duplicates.

For more details on the wrapped function from `igraph` see the `distances` documentation page.

Value

An \(n \times m \) numeric matrix where \(n \) is the length of the `from` argument, and \(m \) is the length of unique values in the `to` argument. When the `to` argument contains spatial features that have the same nearest node, these features are considered duplicates.

Note

By default, `distances` calculates costs by allowing to travel each edge in both directions, hence by assuming an undirected network. This is the default even when the input network is directed! For
directed networks, the behaviour can be changed by setting mode = "out" to consider only outbound edges, or mode = "in" to consider only inbound edges.

Furthermore, distances does not allow duplicated values in the to argument. This also means that when providing spatial features, sets of multiple features that happen to have the same nearest node will be reduced to one by selecting only the first of these features.

See Also

st_network_paths

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

Create a network with edge lenghts as weights.
These weights will be used automatically in shortest paths calculation.
net = as_sfnetwork(roxel, directed = FALSE) %>%
 st_transform(3035) %>%
 activate("edges") %>%
 mutate(weight = edge_length())

Providing node indices.
st_network_cost(net, from = c(495, 121), to = c(495, 121))

Providing nodes as spatial points.
Points that don't equal a node will be snapped to their nearest node.
p1 = st_geometry(net, "nodes")[495] + st_sfc(st_point(c(50, -50)))
st_crs(p1) = st_crs(net)
p2 = st_geometry(net, "nodes")[121] + st_sfc(st_point(c(-10, 100)))
st_crs(p2) = st_crs(net)
st_network_cost(net, from = c(p1, p2), to = c(p1, p2))

Using another column for weights.
net %>%
 activate("edges") %>%
 mutate(foo = runif(n(), min = 0, max = 1)) %>%
 st_network_cost(c(p1, p2), c(p1, p2), weights = "foo")

Not providing any from or to points includes all nodes by default.
with_graph(net, graph_order()) # Our network has 701 nodes.
cost_matrix = st_network_cost(net)
dim(cost_matrix)

st_network_join

Join two spatial networks based on equality of node geometries
Description

A spatial network specific join function which makes a spatial full join on the geometries of the nodes data, based on the `st_equals` spatial predicate. Edge data are combined using a `bind_rows` semantic, meaning that data are matched by column name and values are filled with `NA` if missing in either of the networks. The `from` and `to` columns in the edge data are updated such that they match the new node indices of the resulting network.

Usage

```r
st_network_join(x, y, ...)```

Arguments

- **x**: An object of class `sfnetwork`.
- **y**: An object of class `sfnetwork`, or directly convertible to it using `as_sfnetwork`.
- **...**: Arguments passed on to `graph_join`.

Value

The joined networks as an object of class `sfnetwork`.

Examples

```r
library(sf, quietly = TRUE)

node1 = st_point(c(0, 0))
node2 = st_point(c(1, 0))
node3 = st_point(c(1,1))
node4 = st_point(c(0,1))
edge1 = st_sfc(st_linestring(c(node1, node2)))
edge2 = st_sfc(st_linestring(c(node2, node3)))
edge3 = st_sfc(st_linestring(c(node3, node4)))

net1 = as_sfnetwork(c(edge1, edge2))
net2 = as_sfnetwork(c(edge2, edge3))

joined = st_network_join(net1, net2)

Plot results.
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1), mfrow = c(1,2))
plot(net1, pch = 15, cex = 2, lwd = 4)
plot(net2, col = "red", pch = 18, cex = 2, lty = 3, lwd = 4, add = TRUE)
plot(joined, cex = 2, lwd = 4)
par(oldpar)
```
st_network_paths
Paths between points in geographical space

Description

Combined wrapper around shortest_paths, all_shortest_paths and all_simple_paths from igraph, allowing to provide any geospatial point as from argument and any set of geospatial points as to argument. If such a geospatial point is not equal to a node in the network, it will be snapped to its nearest node before calculating the shortest or simple paths.

Usage

st_network_paths(
  x, from, to = igraph::V(x), weights = NULL,
  type = "shortest",
  ...
)

Arguments

x
An object of class sfnetwork.

from
The geospatial point from which the paths will be calculated. Can be an object an object of class sf or sfc, containing a single feature. When multiple features are given, only the first one is used. Alternatively, it can be an integer, referring to the index of the node from which the paths will be calculated, or a character, referring to the name of the node from which the paths will be calculated.

to
The (set of) geospatial point(s) to which the paths will be calculated. Can be an object of class sf or sfc. Alternatively it can be a numeric vector containing the indices of the nodes to which the paths will be calculated, or a character vector containing the names of the nodes to which the paths will be calculated. By default, all nodes in the network are included.

weights
The edge weights to be used in the shortest path calculation. Can be a numeric vector giving edge weights, or a column name referring to an attribute column in the edges table containing those weights. If set to NULL, the values of a column named weight in the edges table will be used automatically, as long as this column is present. If not, the geographic edge lengths will be calculated internally and used as weights. If set to NA, no weights are used, even if the edges have a weight column. Ignored when type = 'all_simple'.

type
Character defining which type of path calculation should be performed. If set to 'shortest' paths are calculated using shortest_paths, if set to 'all_shortest' paths are calculated using all_shortest_paths, if set to 'all_simple' paths are calculated using all_simple_paths. Defaults to 'shortest'.

... Arguments passed on to the corresponding igraph or igraph function. Arguments predecessors and inbound.edges are ignored.
Details

Spatial features provided to the from and/or to argument don’t necessarily have to be points. Internally, the nearest node to each feature is found by calling st_nearest_feature, so any feature with a geometry type that is accepted by that function can be provided as from and/or to argument.

When directly providing integer node indices or character node names to the from and/or to argument, keep the following in mind. A node index should correspond to a row-number of the nodes table of the network. A node name should correspond to a value of a column in the nodes table named name. This column should contain character values without duplicates.

For more details on the wrapped functions from igraph see the shortest_paths or all_simple_paths documentation pages.

Value

An object of class tbl_df with one row per returned path. Depending on the setting of the type argument, columns can be node_paths (a list column with for each path the ordered indices of nodes present in that path) and edge_paths (a list column with for each path the ordered indices of edges present in that path). 'all_shortest' and 'all_simple' return only node_paths, while 'shortest' returns both.

See Also

st_network_cost

Examples

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

# Create a network with edge lengths as weights. # These weights will be used automatically in shortest paths calculation.
net = as_sfnetwork(roxel, directed = FALSE) %>%
  st_transform(3035) %>%
  activate("edges") %>%
  mutate(weight = edge_length())

# Providing node indices.
paths = st_network_paths(net, from = 495, to = 121)
paths

node_path = paths %>%
  slice(1) %>%
  pull(node_paths) %>%
  unlist()
node_path

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net, col = "grey")
plot(slice(activate(net, "nodes"), node_path), col = "red", add = TRUE)
par(oldpar)
# Providing nodes as spatial points.
# Points that don’t equal a node will be snapped to their nearest node.
p1 = st_geometry(net, "nodes") + st_sfc(st_point(c(50, -50)))
st_crs(p1) = st_crs(net)
p2 = st_geometry(net, "nodes") + st_sfc(st_point(c(-10, 100)))
st_crs(p2) = st_crs(net)

paths = st_network_paths(net, from = p1, to = p2)
paths

node_path = paths %>%
  slice(1) %>%
  pull(node_paths) %>%
  unlist()
node_path

oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net, col = "grey")
plot(c(p1, p2), col = "black", pch = 8, add = TRUE)
plot(slice(activate(net, "nodes"), node_path), col = "red", add = TRUE)
par(oldpar)

# Using another column for weights.
net %>%
  activate("edges") %>%
  mutate(foo = runif(n(), min = 0, max = 1)) %>%
  st_network_paths(p1, p2, weights = "foo")

# Obtaining all simple paths between two nodes.
# Beware, this function can take long when:
# --> Providing a lot of ‘to’ nodes.
# --> The network is large and dense.
net = as_sfnetwork(roxel, directed = TRUE)
st_network_paths(net, from = 1, to = 12, type = "all_simple")

# Obtaining all shortest paths between two nodes.
# Not using edge weights.
# Hence, a shortest path is the paths with the least number of edges.
st_network_paths(net, from = 5, to = 1, weights = NA, type = "all_shortest")
Index

* datasets
  - roxel, 9
  - all_shortest_paths, 33
  - all_simple_paths, 33, 34
  - arrange, 23
  - as.linnet, 2
  - as_s2_geography.sfnetwork(s2), 10
  - as_sf_network, 3, 3, 32
  - as_tblGraph, 3
  - as_tibble, 5, 5
  - autoplot, 6, 6
  - bbox, 12, 26
  - bind_rows, 32
  - convert, 20
  - crystallise, 20
  - data.frame, 14
  - distances, 29–31
  - edge_azimuth (spatial_edge_measures), 17
  - edge_circuity (spatial_edge_measures), 17
  - edge_contains (spatial_edge_predicates), 18
  - edge_contains_properly (spatial_edge_predicates), 18
  - edge_covers (spatial_edge_predicates), 18
  - edge_crosses (spatial_edge_predicates), 18
  - edge_displacement (spatial_edge_measures), 17
  - edge_equals (spatial_edge_predicates), 18
  - edge_intersects (spatial_edge_predicates), 18
  - edge_is_disjoint (spatial_edge_predicates), 18
  - edge_is_within (spatial_edge_predicates), 18
  - edge_is_within_distance (spatial_edge_predicates), 18
  - edge_length (spatial_edge_measures), 17
  - edge_overlaps (spatial_edge_predicates), 18
  - edgeTouches (spatial_edge_predicates), 18
  - filter, 7, 17–19, 24, 25
  - geos_binary_pred, 19, 24, 25
  - ggplot, 6
  - graph_join, 32
  - group_by, 22
  - igraph, 30, 33, 34
  - is_sf_network, 6
  - linnet, 2, 3
  - morph, 20, 22
  - morphers, 20
  - mutate, 7, 17–19, 24, 25
  - node_coordinates, 7
  - node_distance_from, 22
  - node_distance_to, 22, 25
  - node_equals (spatial_node_predicates), 24
  - node_intersects (spatial_node_predicates), 24
  - node_is_covered_by (spatial_node_predicates), 24
  - node_is_disjoint (spatial_node_predicates), 24
  - node_is_within (spatial_node_predicates), 24
node_is_within_distance
    (spatial_node_predicates), 24
node_M (node_coordinates), 7
node_touches (spatial_node_predicates), 24
node_X (node_coordinates), 7
node_Y (node_coordinates), 7
node_Z (node_coordinates), 7
plot.sf, 8
plot.sfnetwork, 8
roxel, 9
s2, 10
sf, 5, 9, 10, 12, 14, 15, 19, 21, 22, 24, 27, 30, 33
sf_attr, 16
sfc, 19, 21, 24, 27, 30, 33
sfg, 12
sfnetwork, 2, 3, 5, 6, 8, 10, 12, 13, 16, 21–23, 26–28, 30, 32, 33
shortest_paths, 33, 34
spatial_edge_measures, 17
spatial_edge_predicates, 18
spatial_node_predicates, 24
st_agr.sfnetwork (sf), 10
st_agr-.sfnetwork (sf), 10
st_as_sf, 3, 12, 14, 15, 22
st_as_sf.sfnetwork (sf), 10
st_bbox, 26
st_bbox.sfnetwork (sf), 10
st_coordinates.sfnetwork (sf), 10
st_crop, 12
st_crop.morphed_sfnetwork (sf), 10
st_crop.sfnetwork (sf), 10
st_crs.sfnetwork (sf), 10
st_crs-.sfnetwork (sf), 10
st_distance, 17
st_equals, 32
st_filter, 12, 23
st_filter.morphed_sfnetwork (sf), 10
st_filter.sfnetwork (sf), 10
st_geod_azimuth, 17
st_geometry.sfnetwork (sf), 10
st_geometry-.sfnetwork (sf), 10
st_intersects.sfnetwork (sf), 10
st_is.sfnetwork (sf), 10
st_join, 12
st_join.morphed_sfnetwork (sf), 10
st_join.sfnetwork (sf), 10
st_length, 17
st_m_range.sfnetwork (sf), 10
st_nearest_feature, 30, 34
st_network_bbox, 26
st_network_blend, 27
st_network_cost, 29, 34
st_network_join, 31
st_network_paths, 23, 31, 33
st_reverse.sfnetwork (sf), 10
st_shift_longitude.sfnetwork (sf), 10
st_simplify.sfnetwork (sf), 10
st_transform, 23
st_transform.sfnetwork (sf), 10
st_wrap_dateline.sfnetwork (sf), 10
st_z_range.sfnetwork (sf), 10
st_zm.sfnetwork (sf), 10
tbl_df, 14, 20, 34
tbl_graph, 14, 22
tibble, 5
tidygraph, 17
to_directed, 22
to.spatial_contracted
    (spatial_morphers), 20
to.spatial_directed (spatial_morphers), 20
to.spatial_explicit (spatial_morphers), 20
to.spatial_neighborhood (spatial_morphers), 20
to.spatial shortest_paths (spatial_morphers), 20
to.spatial_simple (spatial_morphers), 20
to.spatial_smooth (spatial_morphers), 20
to.spatial_subdivision, 28
to.spatial_subdivision (spatial_morphers), 20
to.spatial_subset (spatial_morphers), 20
to.spatial_transformed (spatial_morphers), 20
to_subgraph, 23
units, 27
with_graph, 7, 17, 19, 25