
Package ‘simglm’
May 31, 2019

Type Package

Version 0.7.4

License MIT + file LICENSE

Title Simulate Models Based on the Generalized Linear Model

Description Simulates regression models,
including both simple regression and generalized linear mixed
models with up to three level of nesting. Power simulations that are
flexible allowing the specification of missing data, unbalanced designs,
and different random error distributions are built into the package.

Depends R (>= 3.3.0)

Imports stats, methods, Matrix, rlang, dplyr, purrr, broom,
future.apply

Suggests knitr, lme4, nlme, testthat, shiny, e1071, ggplot2, tidyr,
geepack, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 6.1.1

Author Brandon LeBeau [aut, cre]

Maintainer Brandon LeBeau <lebebr01+simglm@gmail.com>

NeedsCompilation no

Repository CRAN

Date/Publication 2019-05-31 17:10:03 UTC

R topics documented:
compute_statistics . 3
corr_variables . 3
cross_class . 4
data_glm_nested . 5
data_glm_nested3 . 5
data_glm_single . 6

1

2 R topics documented:

data_reg_nested . 7
data_reg_nested3 . 7
data_reg_single . 8
desireVar . 8
extract_coefficients . 9
generate_missing . 9
generate_response . 10
missing_data . 10
model_fit . 11
parse_crossclass . 12
parse_formula . 12
parse_power . 13
parse_randomeffect . 13
parse_varyarguments . 14
rbimod . 14
replicate_simulation . 15
run_shiny . 16
simglm . 16
simulate_error . 17
simulate_fixed . 17
simulate_heterogeneity . 18
simulate_randomeffect . 18
sim_continuous . 19
sim_continuous2 . 19
sim_err_nested . 20
sim_err_single . 21
sim_factor . 22
sim_factor2 . 23
sim_fixef_nested . 23
sim_fixef_nested3 . 24
sim_fixef_single . 26
sim_glm . 27
sim_glm_nested . 30
sim_glm_nested3 . 33
sim_glm_single . 36
sim_knot . 37
sim_pow . 38
sim_pow_glm . 43
sim_pow_glm_nested . 47
sim_pow_glm_nested3 . 50
sim_pow_glm_single . 53
sim_pow_nested . 55
sim_pow_nested3 . 58
sim_pow_single . 61
sim_rand_eff . 63
sim_reg . 64
sim_reg_nested . 68
sim_reg_nested3 . 71

compute_statistics 3

sim_reg_single . 75
sim_time . 77
transform_outcome . 77
varcov_randeff . 78

Index 79

compute_statistics Compute Power, Type I Error, or Precision Statistics

Description

Compute Power, Type I Error, or Precision Statistics

Usage

compute_statistics(data, sim_args, power = TRUE, type_1_error = TRUE,
precision = TRUE)

Arguments

data A list of model results generated by replicate_simulation function.

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

power TRUE/FALSE flag indicating whether power should be computed. Defaults to
TRUE.

type_1_error TRUE/FALSE flag indicating whether type I error rate should be computed.
Defaults to TRUE.

precision TRUE/FALSE flag indicating whether precision should be computed. Defaults
to TRUE.

corr_variables Function to correlate variables

Description

Inputs a matrix and other parameters and outputs a correlated matrix

Usage

corr_variables(mat, cor_vars, cov_param, standardize = TRUE)

4 cross_class

Arguments

mat A matrix of variables to correlate

cor_vars A vector of correlations to specify, must be specified by row where the first
element is the correlation between variable 1 and variable 2, second correlation
is between variable 1 and variable 3, and so on.

cov_param Variable specification similar to specifying fixed effects. See sim_reg for more
details.

standardize TRUE/FALSE flag indicating whether variables should be standardized prior to
correlating (this is needed for accurate correlated variables)

cross_class Cross Classified Generation

Description

Input cross classified simulation parameters, output cross classified structure as a function of the
original id variables. This function currently only supports a single (intercept) cross classified
random effect.

Usage

cross_class(num_ids, samp_size, random_param)

Arguments

num_ids Number of cross classified ids to generate.

samp_size Sample size to generate, this is used to pass to the sample function.

random_param A list of data generating characteristics used to generate the cross classified ran-
dom effect. This function needs to include:

• random_var The variance of the cross classified random effect.
• rand_gen The random generating function used.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

See sim_rand_eff for additional parameters that can be passed.

data_glm_nested 5

data_glm_nested Generate logistic regression outcome

Description

Takes simulation parameter arguments and returns simulated data for two different probability dis-
tributions. One is logistic (0/1) outcome and the second being poisson (count) outcomes.

Usage

data_glm_nested(Xmat, Zmat, beta, rand_eff, n, p, outcome_type)

Arguments

Xmat A matrix of covariates.

Zmat Design matrix for random effects.

beta A vector of regression parameters.

rand_eff A vector of random effects, must be stacked.

n Number of clusters.

p Number of units within each cluster.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

data_glm_nested3 Simulates three level nested data with a single third level random effect

Description

Takes simulation parameter arguments and returns simulated data for two different probability dis-
tributions. One is logistic (0/1) outcome and the second being poisson (count) outcomes.

Usage

data_glm_nested3(Xmat, Zmat, Zmat3, beta, rand_eff, rand_eff3, k, n, p,
outcome_type)

6 data_glm_single

Arguments

Xmat A matrix of covariates.

Zmat Design matrix for random effects.

Zmat3 Design matrix for level 3 random effects.

beta A vector of regression parameters.

rand_eff A vector of random effects, must be stacked.

rand_eff3 A vector of level 3 random effects, must be stacked.

k Number of third level clusters.

n Number of clusters.

p Number of units within each cluster.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

data_glm_single Generate logistic regression outcome

Description

Takes simulation parameter arguments and returns simulated data for two different probability dis-
tributions. One is logistic (0/1) outcome and the second being poisson (count) outcomes.

Usage

data_glm_single(Xmat, beta, n, outcome_type)

Arguments

Xmat A matrix of covariates.

beta A vector of regression parameters.

n Number of clusters.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

data_reg_nested 7

data_reg_nested Simulates two level nested data

Description

Takes simulation parameter arguments and returns simulated data.

Usage

data_reg_nested(Xmat, Zmat, beta, rand_eff, n, p, err)

Arguments

Xmat A matrix of covariates.
Zmat Design matrix for random effects.
beta A vector of regression parameters.
rand_eff A vector of random effects, must be stacked.
n Number of clusters.
p Number of units within each cluster.
err A vector of within cluster errors.

data_reg_nested3 Simulates three level nested data with a single third level random effect

Description

Takes simulation parameter arguments and returns simulated data.

Usage

data_reg_nested3(Xmat, Zmat, Zmat3, beta, rand_eff, rand_eff3, k, n, p,
err)

Arguments

Xmat A matrix of covariates.
Zmat Design matrix for random effects.
Zmat3 Design matrix for level 3 random effects.
beta A vector of regression parameters.
rand_eff A vector of random effects, must be stacked.
rand_eff3 A vector of level 3 random effects, must be stacked.
k Number of third level clusters.
n Number of clusters.
p Number of units within each cluster.
err A vector of within cluster errors.

8 desireVar

data_reg_single Simulates single level data

Description

Takes simulation parameter arguments and returns simulated data.

Usage

data_reg_single(Xmat, beta, n, err)

Arguments

Xmat A matrix of covariates.

beta A vector of regression parameters.

n Number of clusters.

err A vector of within cluster errors.

Details

This is a helper function to the master function sim_reg, this function does the actual simulation to
return the data for single level models.

desireVar Computes mixture normal variance

Description

Input the desired variance, number of distributions, and mean of the distributions, returns a value of
the variance of each mixture distribution.

Usage

desireVar(desVar, num_dist, means, equalWeight = TRUE)

Arguments

desVar Desired overall variance of mixture normal distribution.

num_dist Number of normal distributions.

means Vector of means for each normal distribution. Must equal num_dist.

equalWeight Should equal weights be used, only TRUE is currently supported.

extract_coefficients 9

Details

This function can be used to generate the inputs for the rbimod variances when a specific variance
is desired. Especially useful when attempting to simulate a mixture normal/bimodal distribution.

Examples

calculating variance to be 2.5 with 2 distributions
desireVar(2.5, 2, means = c(-1, 1), equalWeight = TRUE)

extract_coefficients Extract Coefficients

Description

Extract Coefficients

Usage

extract_coefficients(model, extract_function = NULL)

Arguments

model A returned model object from a fitted model.
extract_function

A function that extracts model results. The function must take the model object
as the only argument.

generate_missing Tidy Missing Data Function

Description

Tidy Missing Data Function

Usage

generate_missing(data, sim_args)

Arguments

data Data simulated from other functions to pass to this function.
sim_args A named list with special model formula syntax. See details and examples for

more information. The named list may contain the following:
• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

10 missing_data

generate_response Simulate response variable

Description

Simulate response variable

Usage

generate_response(data, sim_args, keep_intermediate = TRUE, ...)

Arguments

data Data simulated from other functions to pass to this function.

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

keep_intermediate

TRUE/FALSE flag indicating whether intermediate steps should be kept. This
would include fixed effects times regression weights, random effect summations,
etc. Default is TRUE.

... Other arguments to pass to error simulation functions.

missing_data Missing Data Functions

Description

Function that inputs simulated data and returns data frame with new response variable that includes
missing data. Missing data types incorporated include dropout missing data, missing at random,
and random missing data.

Usage

missing_data(sim_data, resp_var = "sim_data",
new_outcome = "sim_data2", clust_var = NULL, within_id = NULL,
miss_prop = NULL, dropout_location = NULL, type = c("dropout",
"random", "mar"), miss_cov, mar_prop)

dropout_missing(sim_data, resp_var = "sim_data",
new_outcome = "sim_data2", clust_var = "clustID",
within_id = "withinID", miss_prop = NULL, dropout_location = NULL)

model_fit 11

random_missing(sim_data, resp_var = "sim_data",
new_outcome = "sim_data2", miss_prop, clust_var = NULL,
within_id = "withinID")

mar_missing(sim_data, resp_var = "sim_data", new_outcome = "sim_data2",
miss_cov, mar_prop)

Arguments

sim_data Simulated data frame

resp_var Character string of response variable with complete data.

new_outcome Character string of new outcome variable name that includes the missing data.

clust_var Cluster variable used for the grouping, set to NULL by default which means no
clustering.

within_id ID variable within each cluster.

miss_prop Proportion of missing data overall
dropout_location

A vector the same length as the number of clusters representing the number of
data observations for each individual.

type The type of missing data to generate, currently supports droput, random, or
missing at random (mar) missing data.

miss_cov Covariate that the missing values are based on.

mar_prop Proportion of missing data for each unique value specified in the miss_cov ar-
gument.

model_fit Tidy Model Fitting Function

Description

Tidy Model Fitting Function

Usage

model_fit(data, sim_args, ...)

Arguments

data A data object, most likely generated from within simglm

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)

12 parse_formula

• error: This is the error (i.e. residual term).
• model_fit: These are arguments passed to the model_fit function.

... Currently not used.

parse_crossclass Parse Cross-classified Random Effects

Description

Parse Cross-classified Random Effects

Usage

parse_crossclass(sim_args, random_formula_parsed)

Arguments

sim_args Simulation arguments
random_formula_parsed

This is the output from parse_randomeffect.

parse_formula Parses tidy formula simulation syntax

Description

A function that parses the formula simulation syntax in order to simulate data.

Usage

parse_formula(sim_args)

Arguments

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

parse_power 13

parse_power Parse power specifications

Description

Parse power specifications

Usage

parse_power(sim_args)

Arguments

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)

• random: This is the random portion of the model (i.e. random effects)

• error: This is the error (i.e. residual term).

parse_randomeffect Parses random effect specification

Description

Parses random effect specification

Usage

parse_randomeffect(formula)

Arguments

formula Random effect formula already parsed by parse_formula

14 rbimod

parse_varyarguments Parse varying arguments

Description

Parse varying arguments

Usage

parse_varyarguments(sim_args)

Arguments

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

rbimod Simulating mixture normal distributions

Description

Input simulation metrics returns mixture normal random variable.

Usage

rbimod(n, mean, var, num_dist)

Arguments

n Number of random draws. Optionally can be a vector with number in each
simulated normal distribution.

mean Vector of mean values for each normal distribution. Must be the same length as
num_dist.

var Vector of variance values for each normal distribution. Must be the same length
as num_dist.

num_dist Number of normal distributions to use when simulating mixture normal distri-
bution.

replicate_simulation 15

Details

Function to simulate mixture normal distributions. The function computes adds the specified num-
ber of normal distributions into a single vector.

Use of the function desireVar can be used to generate a mixture normal distribution with a specific
global variance.

Examples

mix normal with two normal distributions (bimodal)
simData <- rbimod(100, mean = c(-2, 3), var = c(1.5, 1.5), num_dist = 2)
plot(density(simData))

mixt normal with four distributions (multimodal)
simData <- rbimod(400, mean = c(-14, -4, 6, 20), var = c(rep(1.2, 4)),

num_dist = 4)
plot(density(simData))

replicate_simulation Replicate Simulation

Description

Replicate Simulation

Usage

replicate_simulation(sim_args, return_list = FALSE, future.seed = TRUE,
...)

Arguments

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

return_list TRUE/FALSE indicating whether a full list output should be returned. If TRUE,
the nested list is returned. If FALSE, replications are combined with a replica-
tion id appended.

future.seed TRUE/FALSE or numeric. Default value is true, see future_replicate.

... Currently not used.

16 simglm

run_shiny Run Shiny Application Demo

Description

Function runs Shiny Application Demo

Usage

run_shiny()

Details

This function does not take any arguments and will run the Shiny Application. If running from
RStudio, will open the application in the viewer, otherwise will use the default internet browser.

simglm simglm: A package to simulate and perform power by simulation for
models based on the generalized linear model.

Description

The simglm package provides two categories of important functions: simulation functions (sim_reg
and sim_glm) and power functions (sim_pow and sim_pow_glm). #’

This function is most useful to pass to replicate_simulation. The function attempts to determine
automatically which aspects to add to the simulation/power generation based on the elements found
in the sim_args argument.

Usage

simglm(sim_args)

Arguments

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

simulate_error 17

simulate_error Tidy error simulation

Description

Tidy error simulation

Usage

simulate_error(data, sim_args, ...)

Arguments

data Data simulated from other functions to pass to this function.

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

... Other arguments to pass to error simulation functions.

simulate_fixed Tidy fixed effect formula simulation

Description

This function simulates the fixed portion of the model using a formula syntax.

Usage

simulate_fixed(data, sim_args, ...)

Arguments

data Data simulated from other functions to pass to this function. Can pass NULL if
first in simulation string.

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

... Other arguments to pass to error simulation functions.

18 simulate_randomeffect

simulate_heterogeneity

Tidy heterogeneity of variance simulation

Description

This function simulates heterogeneity of level one error variance.

Usage

simulate_heterogeneity(data, sim_args, ...)

Arguments

data Data simulated from other functions to pass to this function. This function needs
to be specified after ‘simulate_fixed‘ and ‘simulate_error‘.

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

... Other arguments to pass to error simulation functions.

simulate_randomeffect Tidy random effect formula simulation

Description

This function simulates the random portion of the model using a formula syntax.

Usage

simulate_randomeffect(data, sim_args, ...)

Arguments

data Data simulated from other functions to pass to this function. Can pass NULL if
first in simulation string.

sim_args A named list with special model formula syntax. See details and examples for
more information. The named list may contain the following:

• fixed: This is the fixed portion of the model (i.e. covariates)
• random: This is the random portion of the model (i.e. random effects)
• error: This is the error (i.e. residual term).

... Other arguments to pass to error simulation functions.

sim_continuous 19

sim_continuous Simulate continuous variables

Description

Function that simulates continuous variables. Any distribution function in R is supported.

Usage

sim_continuous(k = NULL, n, p, dist_fun, var_type = c("level1",
"level2", "level3", "single"), ...)

Arguments

k Number of third level clusters.

n Number of clusters or number of observations for single level

p Number of within cluster observations for multilevel

dist_fun A distribution function. This argument takes a quoted R distribution function
(e.g. ’rnorm’).

var_type Variable type for the variable, must be either "level1", "level2", "level3", or
"single"

... Additional parameters to pass to the dist_fun argument.

sim_continuous2 Simulate continuous variables

Description

Function that simulates continuous variables. Any distribution function in R is supported.

Usage

sim_continuous2(n, dist = "rnorm", var_level = 1, variance = NULL,
ther_sim = FALSE, ther_val = NULL, ...)

Arguments

n A list of sample sizes.

dist A distribution function. This argument takes a quoted R distribution function
(e.g. ’rnorm’). Default is ’rnorm’.

var_level The level the variable should be simulated at. This can either be 1, 2, or 3
specifying a level 1, level 2, or level 3 variable respectively.

variance The variance for random effect simulation.

20 sim_err_nested

ther_sim A TRUE/FALSE flag indicating whether the error simulation function should be
simulated, that is should the mean and standard deviation used for standardiza-
tion be simulated.

ther_val A vector of 2 that should include the theoretical mean and standard deviation of
the generating function.

... Additional parameters to pass to the dist_fun argument.

sim_err_nested Function that simulates errors.

Description

Input error simulation parameters and outputs simulated errors.

Usage

sim_err_nested(error_var, n, p, with_err_gen, arima = FALSE,
lvl1_err_params = NULL, arima_mod = list(NULL), ther = c(0, 1),
ther_sim = FALSE, homogeneity = TRUE, fixef = NULL,
heterogeneity_var = NULL, ...)

Arguments

error_var Scalar of error variance

n Cluster sample size.

p Within cluster sample size.

with_err_gen The generating function used as a character, (e.g. ’rnorm’).

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

lvl1_err_params

Additional values that need to be passed to the function called from with_err_gen.

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

ther A vector of length two that specifies the theoretical mean and standard deviation
of the with_err_gen. This would commonly be used to standardize the gener-
ating variable to have a mean of 0 and standard deviation of 1 to meet model
assumptions. The variable is then rescaled to have the variance specified by
error_var.

ther_sim A TRUE/FALSE flag indicating whether the error simulation function should be
simulated, that is should the mean and standard deviation used for standardiza-
tion be simulated.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

sim_err_single 21

fixef The design matrix, this is passed internally and used for heterogeneity of vari-
ance simulation.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

... Not currently used.

sim_err_single Function that simulates errors.

Description

Input error simulation parameters and outputs simulated errors.

Usage

sim_err_single(error_var, n, with_err_gen, arima = FALSE,
lvl1_err_params = NULL, arima_mod = list(NULL), ther = c(0, 1),
ther_sim = FALSE, homogeneity = TRUE, fixef = NULL,
heterogeneity_var = NULL, ...)

Arguments

error_var Numeric scalar of error variance or vector used when simulating heterogeneity
of variance.

n Cluster sample size.

with_err_gen The generating function used.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

lvl1_err_params

Additional values that need to be passed to the function called from with_err_gen.

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

ther A vector of length two that specifies the theoretical mean and standard deviation
of the with_err_gen. This would commonly be used to standardize the gener-
ating variable to have a mean of 0 and standard deviation of 1 to meet model
assumptions. The variable is then rescaled to have the variance specified by
error_var.

ther_sim A TRUE/FALSE flag indicating whether the error simulation function should be
simulated, that is should the mean and standard deviation used for standardiza-
tion be simulated.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

22 sim_factor

fixef The design matrix, this is passed internally and used for heterogeneity of vari-
ance simulation.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

... Not currently used.

Details

Simulates error term for single level regression models.

sim_factor Simulate categorical, factor, or discrete variables

Description

Function that simulates discrete, factor, or categorical variables. Is essentially a wrapper around the
sample function from base R.

Usage

sim_factor(k = NULL, n, p, numlevels, var_type = c("level1", "level2",
"level3", "single"), ...)

Arguments

k Number of third level clusters.

n Number of clusters or number of observations for single level

p Number of within cluster observations for multilevel

numlevels Scalar indicating the number of levels for categorical, factor, or discrete variable

var_type Variable type for the variable, must be either "level1", "level2", "level3", or
"single"

... Additional parameters passed to the sample function.

sim_factor2 23

sim_factor2 Simulate categorical, factor, or discrete variables

Description

Function that simulates discrete, factor, or categorical variables. Is essentially a wrapper around the
sample function from base R.

Usage

sim_factor2(n, levels, var_level = 1, replace = TRUE, ...)

Arguments

n A list of sample sizes.

levels Scalar indicating the number of levels for categorical, factor, or discrete variable.
Can also specify levels as a character vector.

var_level The level the variable should be simulated at. This can either be 1, 2, or 3
specifying a level 1, level 2, or level 3 variable respectively.

replace TRUE/FALSE indicating whether levels should be sampled with replacement.
Default is TRUE.

... Additional parameters passed to the sample function.

sim_fixef_nested Simulates design matrix.

Description

Input fixed variables, sample size, and number of within variables, returns design matrix.

Usage

sim_fixef_nested(fixed, fixed_vars, cov_param, n, p, data_str,
cor_vars = NULL, fact_vars = list(NULL), contrasts = NULL,
knot_args = list(NULL))

Arguments

fixed One sided formula for fixed effects in the simulation.

fixed_vars Character vector of covariates for design matrix.

cov_param List of arguments to pass to the continuous generating function. Required argu-
ments include:

• dist_fun: This is a quoted R distribution function.

24 sim_fixef_nested3

• var_type: This is the level of variable to generate. Must be either ’level1’
or ’level2’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples for example code for this. Does not include intercept, time, factors, or
interactions.

n Number of clusters.

p Number of within cluster units.

data_str Type of data. Must be "cross", or "long".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels: Number of levels for ordinal or factor variables.
• var_type: Must be ’level1’ or ’level2’.

Optional arguments passed on to sample in a nested list. These include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

Details

Simulates the fixed effects for the sim_reg function when a linear mixed model is specified. This
function assumes a time variable when longitudinal data is specified and does include any interac-
tions that are specified.

sim_fixef_nested3 Simulates design matrix.

Description

Input fixed variables, sample size, and number of within variables, returns design matrix.

Usage

sim_fixef_nested3(fixed, fixed_vars, cov_param, k, n, p, data_str,
cor_vars = NULL, fact_vars = list(NULL), contrasts = NULL,
knot_args = list(NULL))

sim_fixef_nested3 25

Arguments

fixed One sided formula for fixed effects in the simulation.

fixed_vars Character vector of covariates for design matrix.

cov_param List of arguments. Required arguments are:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be either ’level1’,

’level2’, or ’level3’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples for example code for this. Does not include intercept, time, factors, or
interactions.

k Number of third level clusters.

n Number of clusters.

p Number of within cluster units.

data_str Type of data. Must be "cross", or "long".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’level1’, ’level2’, or ’level3’.

Optional arguments passed on to sample in a nested list. These include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

Details

Simulates the fixed effects for the sim_reg function when a linear mixed model is specified. This
function assumes a time variable when longitudinal data is specified and does include any interac-
tions that are specified.

26 sim_fixef_single

sim_fixef_single Simulates design matrix for single level model.

Description

Input fixed variables, sample size, and number of within variables, returns design matrix.

Usage

sim_fixef_single(fixed, fixed_vars, n, cov_param, cor_vars = NULL,
fact_vars = list(NULL), contrasts = NULL, knot_args = list(NULL))

Arguments

fixed One sided formula for fixed effects in the simulation.

fixed_vars Character vector of covariates for design matrix.

n Number of clusters.

cov_param List of arguments to pass to the continuous generating function. Required argu-
ments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’single’. Must

be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples for example code for this. Does not include intercept, time, factors, or
interactions.

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’single’.

Optional arguments passed on to sample in a nested list. These include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

sim_glm 27

Details

Simulates the fixed effects for the sim_reg function when simulating a simple regression model.

sim_glm Master generalized simulation function.

Description

Takes simulation parameters as inputs and returns simulated data.

Usage

sim_glm(fixed, random, random3, fixed_param, random_param = list(),
random_param3 = list(), cov_param, k, n, p, data_str,
cor_vars = NULL, fact_vars = list(NULL), unbal = list(level2 =
FALSE, level3 = FALSE), unbal_design = list(level2 = NULL, level3 =
NULL), contrasts = NULL, outcome_type, cross_class_params = NULL,
knot_args = list(NULL), ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

random3 One sided formula for random effects at third level in the simulation. Must be a
subset of fixed (and likely of random).

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

random_param3 A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,

28 sim_glm

• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be either ’single’,

’level1’, ’level2’, or ’level3’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

k Number of third level clusters.

n Cluster sample size.

p Within cluster sample size.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’single’, ’level1’, ’level2’, or ’level3’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

unbal A named TRUE/FALSE list specifying whether unbalanced simulation design
is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

sim_glm 29

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

... Not currently used.

Details

Simulated data is useful for classroom demonstrations and to study the impacts of assumption vio-
lations on parameter estimates, statistical power, or empirical type I error rates.

This function allows researchers a flexible approach to simulate regression models, including sin-
gle level models and cross sectional or longitudinal linear mixed models (aka. hierarchical linear
models or multilevel models).

Examples

generating parameters for single level regression
set.seed(2)
fixed <- ~1 + act + diff + numCourse + act:numCourse
fixed_param <- c(0.1, -0.2, 0.15, 0.5, -0.02)
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("single", "single", "single"),
opts = list(list(mean = 0, sd = 4),
list(mean = 0, sd = 3),
list(mean = 0, sd = 3)))

n <- 150
temp_single <- sim_glm(fixed = fixed, fixed_param = fixed_param,

cov_param = cov_param, n = n, data_str = "single", outcome_type = 'logistic')

counts
temp_single <- sim_glm(fixed = fixed, fixed_param = fixed_param,

cov_param = cov_param, n = n, data_str = "single", outcome_type = 'poisson')

Longitudinal linear mixed model example
fixed <- ~1 + time + diff + act + time:act
random <- ~1 + time + diff

30 sim_glm_nested

fixed_param <- c(0.1, -0.2, 0.15, 0.5, -0.02)
random_param <- list(random_var = c(7, 4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm'),

var_type = c("level1", "level2"),
opts = list(list(mean = 0, sd = 1.5),
list(mean = 0, sd = 4)))

n <- 150
p <- 30
data_str <- "long"
temp_long <- sim_glm(fixed, random, random3 = NULL, fixed_param,
random_param, random_param3 = NULL,
cov_param, k = NULL, n, p, data_str = data_str, outcome_type = 'logistic')

counts
temp_long <- sim_glm(fixed, random, random3 = NULL, fixed_param,
random_param, random_param3 = NULL,
cov_param, k = NULL, n, p, data_str = data_str, outcome_type = 'poisson')

Three level example
fixed <- ~1 + time + diff + act + actClust + time:act
random <- ~1 + time + diff
random3 <- ~ 1 + time
fixed_param <- c(0.1, -0.2, 0.15, 0.5, -0.02, 0.03)
random_param <- list(random_var = c(7, 4, 2), rand_gen = 'rnorm')
random_param3 <- list(random_var = c(4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("level1", "level2", "level3"),
opts = list(list(mean = 0, sd = 1.5),
list(mean = 0, sd = 4),
list(mean = 0, sd = 2)))

k <- 10
n <- 15
p <- 10
data_str <- "long"
temp_three <- sim_glm(fixed, random, random3, fixed_param, random_param,

random_param3, cov_param, k,n, p, data_str = data_str, outcome_type = 'logistic')

count data sim
temp_three <- sim_glm(fixed, random, random3, fixed_param, random_param,
random_param3, cov_param, k,n, p, data_str = data_str, outcome_type = 'poisson')

sim_glm_nested Simulate two level logistic regression model

Description

Takes simulation parameters as inputs and returns simulated data.

sim_glm_nested 31

Usage

sim_glm_nested(fixed, random, fixed_param, random_param = list(),
cov_param, n, p, data_str, cor_vars = NULL, fact_vars = list(NULL),
unbal = FALSE, unbal_design = NULL, contrasts = NULL, outcome_type,
cross_class_params = NULL, knot_args = list(NULL), ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’level1’ or

’level2’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

n Cluster sample size.

p Within cluster sample size.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’level1’ or ’level2’.

Optional arguments include:

• replace
• prob
• value.labels

32 sim_glm_nested

See also sample for use of these optional arguments.

unbal A vector of sample sizes for the number of observations for each level 2 cluster.
Must have same length as level two sample size n. Alternative specification can
be TRUE, which uses additional argument, unbal_design.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within a
cluster via a named list. This will be drawn from a random uniform distribution
with min and max specified. Secondly, the sample sizes within each cluster can
be specified. This takes the form of a vector that must have the same length as
the level two sample size.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

... Not currently used.

Details

Simulates data for the nested logistic regression models. Returns a data frame with ID variables,
fixed effects, random effects, and many other variables to help when running simulation studies.

Examples

Longitudinal linear mixed model example
fixed <- ~1 + time + diff + act + time:act
random <- ~1 + time + diff

sim_glm_nested3 33

fixed_param <- c(0.1, -0.2, 0.15, 0.5, -0.02)
random_param <- list(random_var = c(7, 4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm'),

var_type = c("level1", "level2"),
opts = list(list(mean = 0, sd = 1.5),
list(mean = 0, sd = 4)))

n <- 150
p <- 30
data_str <- "long"
temp_long <- sim_glm(fixed, random, random3 = NULL, fixed_param,
random_param, random_param3 = NULL,
cov_param, k = NULL, n, p, data_str = data_str, outcome_type = 'logistic')

sim_glm_nested3 Function to simulate three level nested data

Description

Takes simulation parameters as inputs and returns simulated data.

Usage

sim_glm_nested3(fixed, random, random3, fixed_param,
random_param = list(), random_param3 = list(), cov_param, k, n, p,
data_str, cor_vars = NULL, fact_vars = list(NULL),
unbal = list(level2 = FALSE, level3 = FALSE),
unbal_design = list(level2 = NULL, level3 = NULL), contrasts = NULL,
outcome_type, cross_class_params = NULL, knot_args = list(NULL), ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

random3 One sided formula for random effects at third level in the simulation. Must be a
subset of fixed (and likely of random).

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,

34 sim_glm_nested3

• ...: Additional parameters needed for rand_gen function.
random_param3 A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:
• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’level1’, ’level2’,

or ’level3’. Must be same order as fixed formula above.
Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

k Number of third level clusters.
n Level two sample size within each level three cluster.
p Within cluster sample size within each level two cluster.
data_str Type of data. Must be "cross", "long", or "single".
cor_vars A vector of correlations between variables.
fact_vars A nested list of factor, categorical, or ordinal variable specification, each list

must include:
• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’single’, ’level1’, ’level2’, or ’level3’.

Optional arguments include:
• replace
• prob
• value.labels

See also sample for use of these optional arguments.
unbal A named TRUE/FALSE list specifying whether unbalanced simulation design

is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

sim_glm_nested3 35

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

... Not currently used.

Details

Simulates data for the linear mixed model, both cross sectional and longitudinal data. Returns a
data frame with ID variables, fixed effects, and many other variables useful to help when running
simulation studies.

See Also

sim_reg for a convenient wrapper for all data conditions.

Examples

Three level example
fixed <- ~1 + time + diff + act + actClust + time:act
random <- ~1 + time + diff
random3 <- ~ 1 + time
fixed_param <- c(0.1, -0.2, 0.15, 0.5, -0.02, 0.04)
random_param <- list(random_var = c(7, 4, 2), rand_gen = 'rnorm')
random_param3 <- list(random_var = c(4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("level1", "level2", "level3"),
opts = list(list(mean = 0, sd = 1.5),

36 sim_glm_single

list(mean = 0, sd = 4),
list(mean = 0, sd = 2)))

k <- 10
n <- 15
p <- 10
data_str <- "long"
temp_three <- sim_glm(fixed, random, random3, fixed_param, random_param,

random_param3, cov_param, k,n, p, data_str = data_str,
outcome_type = 'logistic')

sim_glm_single Simulation single level logistic regression model

Description

Takes simulation parameters as inputs and returns simulated data.

Usage

sim_glm_single(fixed, fixed_param, cov_param, n, data_str,
cor_vars = NULL, fact_vars = list(NULL), contrasts = NULL,
outcome_type, knot_args = list(NULL), ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’single’. Must

be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

n Cluster sample size.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’single’, ’lvl1’, ’lvl2’, or ’lvl3’.

sim_knot 37

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

... Not currently used.

Details

Simulates data for the simple logistic regression models. Returns a data frame with ID variables,
fixed effects, and many other variables to help when running simulation studies.

Examples

generating parameters for single level regression
set.seed(2)
fixed <- ~1 + act + diff + numCourse + act:numCourse
fixed_param <- c(0.1, -0.2, 0.15, 0.5, -0.02)
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("single", "single", "single"),
opts = list(list(mean = 0, sd = 4),
list(mean = 0, sd = 3),
list(mean = 0, sd = 3)))

n <- 150
temp_single <- sim_glm(fixed = fixed, fixed_param = fixed_param,

cov_param = cov_param, n = n, data_str = "single",
outcome_type = 'logistic')

sim_knot Simulate knot locations

Description

Function that generates knot locations. An example of usefulness of this funciton would be with
generation of interrupted time series data. Another application may be with simulation of piecewise
linear data structures.

38 sim_pow

Usage

sim_knot(var, knot_locations, right = FALSE)

Arguments

var Variable used to create knots in the data.

knot_locations The locations to create knots. These need to be specified with the scale of the
variable in mind. See examples.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa. See cut for more details. Defaults to FALSE, which is likely
most desirable behavior in this context.

Examples

sim_knot(0:10, knot_locations = c(4, 9))
sim_knot(rnorm(100), knot_locations = c(-1, 1.5))
sim_knot(0:8, knot_locations = 5)
sim_knot(0:8, knot_locations = 5, right = TRUE)

sim_pow Master power simulation function.

Description

Input simulation conditions, returns power for term.

Usage

sim_pow(fixed, random = NULL, random3 = NULL, fixed_param,
random_param = list(NULL), random_param3 = list(NULL), cov_param,
k = NULL, n, p = NULL, error_var, with_err_gen, arima = FALSE,
data_str, cor_vars = NULL, fact_vars = list(NULL),
unbal = list(level2 = FALSE, level3 = FALSE),
unbal_design = list(level2 = NULL, level3 = NULL),
lvl1_err_params = NULL, arima_mod = list(NULL), contrasts = NULL,
homogeneity = TRUE, heterogeneity_var = NULL,
cross_class_params = NULL, knot_args = list(NULL), missing = FALSE,
missing_args = list(NULL), pow_param, alpha, pow_dist = c("z", "t"),
pow_tail = c(1, 2), replicates, terms_vary = NULL,
raw_power = TRUE, lm_fit_mod = NULL, lme4_fit_mod = NULL,
nlme_fit_mod = NULL, arima_fit_mod = NULL, general_mod = NULL,
general_extract = NULL, ...)

sim_pow 39

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

random3 One sided formula for random effects at third level in the simulation. Must be a
subset of fixed (and likely of random).

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

random_param3 A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be either ’single’,

’level1’, ’level2’, or ’level3’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

k Number of third level clusters.

n Cluster sample size.

p Within cluster sample size.

error_var Scalar of error variance.

with_err_gen Distribution function to pass on to the level one simulation of errors.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

40 sim_pow

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’single’, ’level1’, ’level2’, or ’level3’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

unbal A named TRUE/FALSE list specifying whether unbalanced simulation design
is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

lvl1_err_params

Additional parameters passed as a list on to the level one error generating func-
tion

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect

sim_pow 41

– rand_gen: The random generating function used to generate the cross
classified random effect.

Optional elements are:
– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

missing TRUE/FALSE flag indicating whether missing data should be simulated.

missing_args Additional missing arguments to pass to the missing_data function. See missing_data
for examples.

pow_param Number of parameter to calculate power includes intercept where applicable.

alpha What should the per test alpha rate be used for the hypothesis testing.

pow_dist Which distribution should be used when testing hypothesis test, z or t?

pow_tail One-tailed or two-tailed test?

replicates How many replications should be done (i.e. the denominator in power calcula-
tion).

terms_vary A named list of terms that should vary as a function for the power simulation.
The names must match arguments to the simulation function, see sim_reg for
examples. Values specified here should not be included as arguments in the
function call.

raw_power TRUE/FALSE indicating whether raw power output should be returned. Default
is TRUE, which will create a new nested column with raw data by variable(s)
manipulated in power analysis.

lm_fit_mod Valid lm syntax to be used for model fitting.

lme4_fit_mod Valid lme4 syntax to be used for model fitting.

nlme_fit_mod Valid nlme syntax to be used for model fitting. This should be specified as a
named list with fixed and random components.

arima_fit_mod Valid nlme syntax for fitting serial correlation structures. See corStruct for
help. This must be specified to include serial correlation.

general_mod Valid model syntax. This syntax can be from any R package. By default, broom
is used to extract model result information. Note, package must be defined or
loaded prior to running the sim_pow function.

general_extract

A valid function to extract model results if general_mod argument is used. This
argument is primarily used if extracting model results is not possibly using the
broom package. If this is left NULL (default), broom is used to collect model
results.

... Currently not used.

42 sim_pow

Details

This function is a wrapper that replicates the simulation functions for simple regression and the
linear mixed model power functions. This function replicates the power call a specified number of
times and prints outs a matrix with the results.

Examples

single level example
fixed <- ~ 1 + act + diff + numCourse + act:numCourse
fixed_param <- c(0.5, 1.1, 0.6, 0.9, 1.1)
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("single", "single", "single"),
opts = list(list(mean = 0, sd = 2),

list(mean = 0, sd = 2),
list(mean = 0, sd = 1)))

n <- 150
error_var <- 20
with_err_gen <- 'rnorm'
pow_param <- c('(Intercept)', 'act', 'diff', 'numCourse')
alpha <- .01
pow_dist <- "t"
pow_tail <- 2
replicates <- 2
power_out <- sim_pow(fixed = fixed, fixed_param = fixed_param, cov_param = cov_param,

n = n, error_var = error_var, with_err_gen = with_err_gen,
data_str = "single", pow_param = pow_param, alpha = alpha,
pow_dist = pow_dist, pow_tail = pow_tail,
replicates = replicates, raw_power = FALSE)

Vary terms example
fixed <- ~ 1 + act + diff + numCourse + act:numCourse
fixed_param <- c(0.5, 1.1, 0.6, 0.9, 1.1)
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("single", "single", "single"),
opts = list(list(mean = 0, sd = 2),

list(mean = 0, sd = 2),
list(mean = 0, sd = 1)))

n <- NULL
error_var <- NULL
with_err_gen <- 'rnorm'
pow_param <- c('(Intercept)', 'act', 'diff', 'numCourse')
alpha <- .01
pow_dist <- "t"
pow_tail <- 2
replicates <- 1
terms_vary <- list(n = c(20, 40, 60, 80, 100), error_var = c(5, 10, 20))
power_out <- sim_pow(fixed = fixed, fixed_param = fixed_param, cov_param = cov_param,

n = n, error_var = error_var, with_err_gen = with_err_gen,
data_str = "single", pow_param = pow_param, alpha = alpha,
pow_dist = pow_dist, pow_tail = pow_tail,
replicates = replicates, terms_vary = terms_vary,

sim_pow_glm 43

raw_power = FALSE)

Three level example
fixed <- ~1 + time + diff + act + actClust + time:act
random <- ~1 + time
random3 <- ~ 1 + time
fixed_param <- c(4, 2, 6, 2.3, 7, 0)
random_param <- list(random_var = c(7, 4), rand_gen = 'rnorm')
random_param3 <- list(random_var = c(4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("level1", "level2", "level3"),
opts = list(list(mean = 0, sd = 1.5),

list(mean = 0, sd = 4),
list(mean = 0, sd = 2)))

k <- 10
n <- 15
p <- 5
error_var <- 4
with_err_gen <- 'rnorm'
data_str <- "long"
pow_param <- c('time', 'diff', 'act', 'actClust')
alpha <- .01
pow_dist <- "z"
pow_tail <- 2
replicates <- 1
power_out <- sim_pow(fixed = fixed, random = random, random3 = random3,

fixed_param = fixed_param,
random_param = random_param,
random_param3 = random_param3,
cov_param = cov_param,
k = k, n = n, p = p,
error_var = error_var, with_err_gen = "rnorm",
data_str = data_str,
unbal = list(level3 = FALSE, level2 = FALSE),
pow_param = pow_param, alpha = alpha,
pow_dist = pow_dist, pow_tail = pow_tail,
replicates = replicates, raw_power = FALSE)

sim_pow_glm Master power simulation function for glm models.

Description

Input simulation conditions, returns power for term.

Usage

sim_pow_glm(fixed, random = NULL, random3 = NULL, fixed_param,

44 sim_pow_glm

random_param = list(NULL), random_param3 = list(NULL), cov_param,
k = NULL, n, p = NULL, data_str, cor_vars = NULL,
fact_vars = list(NULL), unbal = list(level2 = FALSE, level3 = FALSE),
unbal_design = list(level2 = NULL, level3 = NULL), contrasts = NULL,
outcome_type, cross_class_params = NULL, knot_args = list(NULL),
missing = FALSE, missing_args = list(NULL), pow_param, alpha,
pow_dist = c("z", "t"), pow_tail = c(1, 2), replicates,
terms_vary = NULL, raw_power = TRUE, glm_fit_mod = NULL,
lme4_fit_mod = NULL, glm_fit_family = NULL, lme4_fit_family = NULL,
general_mod = NULL, general_extract = NULL, ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

random3 One sided formula for random effects at third level in the simulation. Must be a
subset of fixed(and likely of random).

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

random_param3 A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be either ’single’,

’level1’, ’level2’, or ’level3’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

sim_pow_glm 45

k Number of third level clusters.

n Cluster sample size.

p Within cluster sample size.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’single’, ’level1’, ’level2’, or ’level3’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

unbal A named TRUE/FALSE list specifying whether unbalanced simulation design
is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,

46 sim_pow_glm

– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

missing TRUE/FALSE flag indicating whether missing data should be simulated.

missing_args Additional missing arguments to pass to the missing_data function. See missing_data
for examples.

pow_param Number of parameter to calculate power includes intercept where applicable.

alpha What should the per test alpha rate be used for the hypothesis testing.

pow_dist Which distribution should be used when testing hypothesis test, z or t?

pow_tail One-tailed or two-tailed test?

replicates How many replications should be done (i.e. the denominator in power calcula-
tion).

terms_vary A named list of terms that should vary as a function for the power simulation.
The names must match arguments to the simulation function, see sim_glm for
examples. Values specified here should not be included as arguments in the
function call.

raw_power TRUE/FALSE indicating whether raw power output should be returned. Default
is TRUE, which will create a new nested column with raw data by variable(s)
manipulated in power analysis.

glm_fit_mod Valid glm syntax to be used for model fitting.

lme4_fit_mod Valid lme4 syntax to be used for model fitting.

glm_fit_family Valid family syntax to pass to the glm function.
lme4_fit_family

Valid lme4 family specification passed to glmer.

general_mod Valid model syntax. This syntax can be from any R package. By default, broom
is used to extract model result information. Note, package must be defined or
loaded prior to running the sim_pow function.

general_extract

A valid function to extract model results if general_mod argument is used. This
argument is primarily used if extracting model results is not possibly using the
broom package. If this is left NULL (default), broom is used to collect model
results.

... Current not used.

Details

This function is a wrapper that replicates the simulation functions for simple generalized regression
and the generalized linear mixed model power functions. This function replicates the power call a
specified number of times and prints outs a matrix with the results.

sim_pow_glm_nested 47

Examples

single level dichotomous (glm) example
fixed <- ~ 1 + act + diff
fixed_param <- c(0.1, 0.5, 0.3)
cov_param <- list(dist_fun = c('rnorm', 'rnorm'),

var_type = c("single", "single"),
opts = list(list(mean = 0, sd = 2),

list(mean = 0, sd = 4)))
n <- 50
pow_param <- c('(Intercept)', 'act', 'diff')
alpha <- .01
pow_dist <- "z"
pow_tail <- 2
replicates <- 2

power_out <- sim_pow_glm(fixed = fixed, fixed_param = fixed_param,
cov_param = cov_param,
n = n, data_str = "single",
outcome_type = 'logistic',
pow_param = pow_param, alpha = alpha,
pow_dist = pow_dist, pow_tail = pow_tail,
replicates = replicates, raw_power = FALSE)

sim_pow_glm_nested Power simulation for nested designs

Description

Takes simulation conditions as input, exports power.

Usage

sim_pow_glm_nested(fixed, random, fixed_param, random_param = list(),
cov_param, n, p, data_str, cor_vars = NULL, fact_vars = list(NULL),
unbal = list(level2 = FALSE, level3 = FALSE),
unbal_design = list(level2 = NULL, level3 = NULL), contrasts = NULL,
outcome_type, cross_class_params = NULL, knot_args = list(NULL),
missing = FALSE, missing_args = list(NULL), pow_param = NULL,
alpha, pow_dist = c("z", "t"), pow_tail = c(1, 2),
lme4_fit_mod = NULL, lme4_fit_family, general_mod = NULL,
general_extract = NULL, ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

48 sim_pow_glm_nested

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.
random_param A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:
• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’level1’ or

’level2’. Must be same order as fixed formula above.
Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

n Cluster sample size.
p Within cluster sample size.
data_str Type of data. Must be "cross", "long", or "single".
cor_vars A vector of correlations between variables.
fact_vars A nested list of factor, categorical, or ordinal variable specification, each list

must include:
• numlevels: Number of levels for ordinal or factor variables.
• var_type: Must be ’level1’ or ’level2’.

Optional arguments include:
• replace
• prob
• value.labels

See also sample for use of these optional arguments.
unbal A named TRUE/FALSE list specifying whether unbalanced simulation design

is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

sim_pow_glm_nested 49

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

missing TRUE/FALSE flag indicating whether missing data should be simulated.

missing_args Additional missing arguments to pass to the missing_data function. See missing_data
for examples.

pow_param Name of variable to calculate power for, must be a name from fixed.

alpha What should the per test alpha rate be used for the hypothesis testing.

pow_dist Which distribution should be used when testing hypothesis test, z or t?

pow_tail One-tailed or two-tailed test?

lme4_fit_mod Valid lme4 formula syntax to be used for model fitting.
lme4_fit_family

Valid lme4 family specification passed to glmer.

general_mod Valid model syntax. This syntax can be from any R package. By default, broom
is used to extract model result information. Note, package must be defined or
loaded prior to running the sim_pow function.

general_extract

A valid function to extract model results if general_mod argument is used. This
argument is primarily used if extracting model results is not possibly using the
broom package. If this is left NULL (default), broom is used to collect model
results.

... Not currently used.

50 sim_pow_glm_nested3

Details

Power function to compute power for a regression term for the generalized linear mixed model.
This function would need to be replicated to make any statement about power. Use sim_pow_glm
as a convenient wrapper for this.

See Also

sim_pow_glm for a wrapper to replicate.

sim_pow_glm_nested3 Power simulation for nested designs

Description

Takes simulation conditions as input, exports power.

Usage

sim_pow_glm_nested3(fixed, random, random3, fixed_param,
random_param = list(), random_param3 = list(), cov_param, k, n, p,
data_str, cor_vars = NULL, fact_vars = list(NULL),
unbal = list(level2 = FALSE, level3 = FALSE),
unbal_design = list(level2 = NULL, level3 = NULL), contrasts = NULL,
outcome_type, cross_class_params = NULL, knot_args = list(NULL),
missing = FALSE, missing_args = list(NULL), pow_param = NULL,
alpha, pow_dist = c("z", "t"), pow_tail = c(1, 2),
lme4_fit_mod = NULL, lme4_fit_family, general_mod = NULL,
general_extract = NULL, ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

random3 One sided formula for random effects at third level in the simulation. Must be a
subset of fixed (and likely of random).

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,

sim_pow_glm_nested3 51

• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

random_param3 A list of named elements that must contain:
• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:
• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’level1’, ’level2’,

or ’level3’. Must be same order as fixed formula above.
Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

k Number of third level clusters.
n Cluster sample size.
p Within cluster sample size.
data_str Type of data. Must be "cross", "long", or "single".
cor_vars A vector of correlations between variables.
fact_vars A nested list of factor, categorical, or ordinal variable specification, each list

must include:
• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’level1’, ’level2’, or ’level3’.

Optional arguments include:
• replace
• prob
• value.labels

See also sample for use of these optional arguments.
unbal A named TRUE/FALSE list specifying whether unbalanced simulation design

is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

52 sim_pow_glm_nested3

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

missing TRUE/FALSE flag indicating whether missing data should be simulated.

missing_args Additional missing arguments to pass to the missing_data function. See missing_data
for examples.

pow_param Name of variable to calculate power for, must be a name from fixed.

alpha What should the per test alpha rate be used for the hypothesis testing.

pow_dist Which distribution should be used when testing hypothesis test, z or t?

pow_tail One-tailed or two-tailed test?

lme4_fit_mod Valid lme4 formula syntax to be used for model fitting.
lme4_fit_family

Valid lme4 family specification passed to glmer.

general_mod Valid model syntax. This syntax can be from any R package. By default, broom
is used to extract model result information. Note, package must be defined or
loaded prior to running the sim_pow function.

general_extract

A valid function to extract model results if general_mod argument is used. This
argument is primarily used if extracting model results is not possibly using the
broom package. If this is left NULL (default), broom is used to collect model
results.

... Not currently used.

sim_pow_glm_single 53

Details

Power function to compute power for a regression term for the generalized linear mixed model.
This function would need to be replicated to make any statement about power. Use sim_pow_glm
as a convenient wrapper for this.

See Also

sim_pow_glm for a wrapper to replicate.

sim_pow_glm_single Function to simulate power.

Description

Input simulation conditions and which term to compute power for, export reported power.

Usage

sim_pow_glm_single(fixed, fixed_param, cov_param, n, data_str,
cor_vars = NULL, fact_vars = list(NULL), contrasts = NULL,
outcome_type, knot_args = list(NULL), missing = FALSE,
missing_args = list(NULL), pow_param = NULL, alpha,
pow_dist = c("z", "t"), pow_tail = c(1, 2), glm_fit_mod = NULL,
glm_fit_family, general_mod = NULL, general_extract = NULL, ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’single’. Must

be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

n Cluster sample size.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels: Number of levels for ordinal or factor variables.

54 sim_pow_glm_single

• var_type: Must be ’single’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

outcome_type A vector specifying the type of outcome, must be either logistic or poisson.
Logitstic outcome will be 0/1 and poisson outcome will be counts.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

missing TRUE/FALSE flag indicating whether missing data should be simulated.

missing_args Additional missing arguments to pass to the missing_data function. See missing_data
for examples.

pow_param Name of variable to calculate power for, must be a name from fixed.

alpha What should the per test alpha rate be used for the hypothesis testing.

pow_dist Which distribution should be used when testing hypothesis test, z or t?

pow_tail One-tailed or two-tailed test?

glm_fit_mod Valid glm syntax to be used for model fitting.

glm_fit_family Valid family syntax to pass to the glm function.

general_mod Valid model syntax. This syntax can be from any R package. By default, broom
is used to extract model result information. Note, package must be defined or
loaded prior to running the sim_pow function.

general_extract

A valid function to extract model results if general_mod argument is used. This
argument is primarily used if extracting model results is not possibly using the
broom package. If this is left NULL (default), broom is used to collect model
results.

... Additional specification needed to pass to the random generating function de-
fined by with_err_gen.

Details

Power function to compute power for a regression term for simple generalized regression models.
This function would need to be replicated to make any statement about power. Use sim_pow_glm
as a convenient wrapper for this.

See Also

sim_pow_glm for a wrapper to replicate.

sim_pow_nested 55

sim_pow_nested Power simulation for nested designs

Description

Takes simulation conditions as input, exports power.

Usage

sim_pow_nested(fixed, random, fixed_param, random_param = list(),
cov_param, n, p, error_var, with_err_gen, arima = FALSE, data_str,
cor_vars = NULL, fact_vars = list(NULL), unbal = FALSE,
unbal_design = NULL, lvl1_err_params = NULL,
arima_mod = list(NULL), contrasts = NULL, homogeneity = TRUE,
heterogeneity_var = NULL, cross_class_params = NULL,
knot_args = list(NULL), missing = FALSE, missing_args = list(NULL),
pow_param = NULL, alpha, pow_dist = c("z", "t"), pow_tail = c(1,
2), lme4_fit_mod = NULL, nlme_fit_mod = NULL, arima_fit_mod = NULL,
general_mod = NULL, general_extract = NULL, ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’level1’ or

’level2’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

56 sim_pow_nested

n Cluster sample size.

p Within cluster sample size.

error_var Scalar of error variance.

with_err_gen Simulated within cluster error distribution. Must be a quoted ’r’ distribution
function.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels: Number of levels for ordinal or factor variables.
• var_type: Must be ’level1’ or ’level2’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

unbal A vector of sample sizes for the number of observations for each level 2 cluster.
Must have same length as level two sample size n. Alternative specification can
be TRUE, which uses additional argument, unbal_design.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within a
cluster via a named list. This will be drawn from a random uniform distribution
with min and max specified. Secondly, the sample sizes within each cluster can
be specified. This takes the form of a vector that must have the same length as
the level two sample size.

lvl1_err_params

Additional parameters passed as a list on to the level one error generating func-
tion

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

sim_pow_nested 57

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

missing TRUE/FALSE flag indicating whether missing data should be simulated.

missing_args Additional missing arguments to pass to the missing_data function. See missing_data
for examples.

pow_param Name of variable to calculate power for, must be a name from fixed.

alpha What should the per test alpha rate be used for the hypothesis testing.

pow_dist Which distribution should be used when testing hypothesis test, z or t?

pow_tail One-tailed or two-tailed test?

lme4_fit_mod Valid lme4 syntax to be used for model fitting.

nlme_fit_mod Valid nlme syntax to be used for model fitting. This should be specified as a
named list with fixed and random components.

arima_fit_mod Valid nlme syntax for fitting serial correlation structures. See corStruct for
help. This must be specified to include serial correlation.

general_mod Valid model syntax. This syntax can be from any R package. By default, broom
is used to extract model result information. Note, package must be defined or
loaded prior to running the sim_pow function.

general_extract

A valid function to extract model results if general_mod argument is used. This
argument is primarily used if extracting model results is not possibly using the
broom package. If this is left NULL (default), broom is used to collect model
results.

... Not currently used.

Details

Power function to compute power for a regression term for the linear mixed model. This function
would need to be replicated to make any statement about power. Use sim_pow as a convenient
wrapper for this.

58 sim_pow_nested3

See Also

sim_pow for a wrapper to replicate.

sim_pow_nested3 Power simulation for nested designs

Description

Takes simulation conditions as input, exports power.

Usage

sim_pow_nested3(fixed, random, random3, fixed_param,
random_param = list(), random_param3 = list(), cov_param, k, n, p,
error_var, with_err_gen, arima = FALSE, data_str, cor_vars = NULL,
fact_vars = list(NULL), unbal = list(level2 = FALSE, level3 = FALSE),
unbal_design = list(level2 = NULL, level3 = NULL),
lvl1_err_params = NULL, arima_mod = list(NULL), contrasts = NULL,
homogeneity = TRUE, heterogeneity_var = NULL,
cross_class_params = NULL, knot_args = list(NULL), missing = FALSE,
missing_args = list(NULL), pow_param = NULL, alpha,
pow_dist = c("z", "t"), pow_tail = c(1, 2), lme4_fit_mod = NULL,
nlme_fit_mod = NULL, arima_fit_mod = NULL, general_mod = NULL,
general_extract = NULL, ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

random3 One sided formula for random effects at third level in the simulation. Must be a
subset of fixed (and likely of random).

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

random_param3 A list of named elements that must contain:

sim_pow_nested3 59

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’level1’, ’level2’,

or ’level3’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

k Number of third level clusters.

n Cluster sample size.

p Within cluster sample size.

error_var Scalar of error variance.

with_err_gen Simulated within cluster error distribution. Must be a quoted ’r’ distribution
function.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels: Number of levels for ordinal or factor variables.
• var_type: Must be ’level1’, ’level2’, or ’level3’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

unbal A named TRUE/FALSE list specifying whether unbalanced simulation design
is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

60 sim_pow_nested3

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

lvl1_err_params

Additional parameters passed as a list on to the level one error generating func-
tion

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

missing TRUE/FALSE flag indicating whether missing data should be simulated.

missing_args Additional missing arguments to pass to the missing_data function. See missing_data
for examples.

pow_param Name of variable to calculate power for, must be a name from fixed.

alpha What should the per test alpha rate be used for the hypothesis testing.

sim_pow_single 61

pow_dist Which distribution should be used when testing hypothesis test, z or t?

pow_tail One-tailed or two-tailed test?

lme4_fit_mod Valid lme4 syntax to be used for model fitting.

nlme_fit_mod Valid nlme syntax to be used for model fitting. This should be specified as a
named list with fixed and random components.

arima_fit_mod Valid nlme syntax for fitting serial correlation structures. See corStruct for
help. This must be specified to include serial correlation.

general_mod Valid model syntax. This syntax can be from any R package. By default, broom
is used to extract model result information. Note, package must be defined or
loaded prior to running the sim_pow function.

general_extract

A valid function to extract model results if general_mod argument is used. This
argument is primarily used if extracting model results is not possibly using the
broom package. If this is left NULL (default), broom is used to collect model
results.

... Not currently used.

Details

Power function to compute power for a regression term for the linear mixed model. This function
would need to be replicated to make any statement about power. Use sim_pow as a convenient
wrapper for this.

See Also

sim_pow for a wrapper to replicate.

sim_pow_single Function to simulate power.

Description

Input simulation conditions and which term to compute power for, export reported power.

Usage

sim_pow_single(fixed, fixed_param, cov_param, n, error_var, with_err_gen,
arima = FALSE, data_str, cor_vars = NULL, fact_vars = list(NULL),
lvl1_err_params = NULL, arima_mod = list(NULL), contrasts = NULL,
homogeneity = TRUE, heterogeneity_var = NULL,
knot_args = list(NULL), missing = FALSE, missing_args = list(NULL),
pow_param = NULL, alpha, pow_dist = c("z", "t"), pow_tail = c(1,
2), lm_fit_mod = NULL, general_mod = NULL, general_extract = NULL,
...)

62 sim_pow_single

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’single’. Must

be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

n Cluster sample size.

error_var Scalar of error variance.

with_err_gen Simulated within cluster error distribution. Must be a quoted ’r’ distribution
function.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels: Number of levels for ordinal or factor variables.
• var_type: Must be ’single’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.
lvl1_err_params

Additional parameters passed as a list on to the level one error generating func-
tion

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

sim_rand_eff 63

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

missing TRUE/FALSE flag indicating whether missing data should be simulated.

missing_args Additional missing arguments to pass to the missing_data function. See missing_data
for examples.

pow_param Name of variable to calculate power for, must be a name from fixed.

alpha What should the per test alpha rate be used for the hypothesis testing.

pow_dist Which distribution should be used when testing hypothesis test, z or t?

pow_tail One-tailed or two-tailed test?

lm_fit_mod Valid lm syntax to be used for model fitting.

general_mod Valid model syntax. This syntax can be from any R package. By default, broom
is used to extract model result information. Note, package must be defined or
loaded prior to running the sim_pow function.

general_extract

A valid function to extract model results if general_mod argument is used. This
argument is primarily used if extracting model results is not possibly using the
broom package. If this is left NULL (default), broom is used to collect model
results.

... Additional specification needed to pass to the random generating function de-
fined by with_err_gen.

Details

Power function to compute power for a regression term for simple regression models. This function
would need to be replicated to make any statement about power. Use sim_pow as a convenient
wrapper for this.

See Also

sim_pow for a wrapper to replicate.

sim_rand_eff Function to simulate random effects.

Description

Input simulation parameters and returns random effects.

Usage

sim_rand_eff(random_var, n, rand_gen, ther = c(0, 1), ther_sim = FALSE,
cor_vars = NULL, ...)

64 sim_reg

Arguments

random_var Variance of random effects. Must be same length as random.

n Cluster sample size.

rand_gen The generating function used (e.g. rnorm).

ther A vector of length two that specifies the theoretical mean and standard deviation
of the rand_gen. This would commonly be used to standardize the generating
variable to have a mean of 0 and standard deviation of 1 to meet model assump-
tions. The variable is then rescaled to have the variance specified by random_var.

ther_sim A TRUE/FALSE flag indicating whether the error simulation function should be
simulated, that is should the mean and standard deviation used for standardiza-
tion be simulated.

cor_vars A vector of correlations between random effects.

... Additional values that need to be passed to the function called from rand_gen.

Details

Simulates random effects for the master function sim_reg when simulating a linear mixed model,
both cross sectional and longitudinal. Allows the ability to simulate random effects from a Laplace,
chi-square (1), mixture normal, or normal distribution.

sim_reg Master continuous simulation function.

Description

Takes simulation parameters as inputs and returns simulated data.

Usage

sim_reg(fixed, random, random3, fixed_param, random_param = list(),
random_param3 = list(), cov_param, k, n, p, error_var, with_err_gen,
arima = FALSE, data_str, cor_vars = NULL, fact_vars = list(NULL),
unbal = list(level2 = FALSE, level3 = FALSE),
unbal_design = list(level2 = NULL, level3 = NULL),
lvl1_err_params = NULL, arima_mod = list(NULL), contrasts = NULL,
homogeneity = TRUE, heterogeneity_var = NULL,
cross_class_params = NULL, knot_args = list(NULL), ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

sim_reg 65

random3 One sided formula for random effects at third level in the simulation. Must be a
subset of fixed (and likely of random).

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

random_param3 A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be either ’single’,

’level1’, ’level2’, or ’level3’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

k Number of third level clusters.

n Cluster sample size.

p Within cluster sample size.

error_var Scalar of error variance.

with_err_gen Distribution function to pass on to the level one simulation of errors.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

data_str Type of data. Must be "cross", "long", or "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.

66 sim_reg

• var_type = Must be ’single’, ’level1’, ’level2’, or ’level3’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

unbal A named TRUE/FALSE list specifying whether unbalanced simulation design
is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

lvl1_err_params

Additional parameters passed as a list on to the level one error generating func-
tion

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,

sim_reg 67

– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

... Not currently used.

Details

Simulated data is useful for classroom demonstrations and to study the impacts of assumption vio-
lations on parameter estimates, statistical power, or empirical type I error rates.

This function allows researchers a flexible approach to simulate regression models, including sin-
gle level models and cross sectional or longitudinal linear mixed models (aka. hierarchical linear
models or multilevel models).

Examples

generating parameters for single level regression
fixed <- ~1 + act + diff + numCourse + act:numCourse
fixed_param <- c(2, 4, 1, 3.5, 2)
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("single", "single", "single"),
opts = list(list(mean = 0, sd = 4),
list(mean = 0, sd = 3),
list(mean = 0, sd = 3)))

n <- 150
error_var <- 3
with_err_gen <- 'rnorm'
temp_single <- sim_reg(fixed = fixed, fixed_param = fixed_param,

cov_param = cov_param,
n = n, error_var = error_var, with_err_gen = with_err_gen,
data_str = "single")

Fitting regression to obtain parameter estimates
summary(lm(sim_data ~ 1 + act + diff + numCourse + act:numCourse,

data = temp_single))

Longitudinal linear mixed model example
fixed <- ~1 + time + diff + act + time:act
random <- ~1 + time + diff
fixed_param <- c(4, 2, 6, 2.3, 7)
random_param <- list(random_var = c(7, 4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm'),

var_type = c("level1", "level2"),
opts = list(list(mean = 0, sd = 1.5),
list(mean = 0, sd = 4)))

n <- 150
p <- 30
error_var <- 4
with_err_gen <- 'rnorm'

68 sim_reg_nested

data_str <- "long"
temp_long <- sim_reg(fixed, random, random3 = NULL, fixed_param,

random_param, random_param3 = NULL,
cov_param, k = NULL, n, p, error_var, with_err_gen, data_str = data_str)

fitting lmer model
library(lme4)
lmer(sim_data ~ 1 + time + diff + act + time:act +

(1 + time + diff | clustID),
data = temp_long)

Three level example
fixed <- ~1 + time + diff + act + actClust + time:act
random <- ~1 + time + diff
random3 <- ~ 1 + time
fixed_param <- c(4, 2, 6, 2.3, 7, 0)
random_param <- list(random_var = c(7, 4, 2), rand_gen = 'rnorm')
random_param3 <- list(random_var = c(4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("level1", "level2", "level3"),
opts = list(list(mean = 0, sd = 1.5),
list(mean = 0, sd = 4),
list(mean = 0, sd = 2)))

k <- 10
n <- 15
p <- 10
error_var <- 4
with_err_gen <- 'rnorm'
data_str <- "long"
temp_three <- sim_reg(fixed, random, random3, fixed_param, random_param,
random_param3, cov_param, k,n, p, error_var, with_err_gen,

data_str = data_str)

library(lme4)
lmer(sim_data ~ 1 + time + diff + act + actClust + time:act +

(1 + time + diff | clustID) +
(1 | clust3ID), data = temp_three)

sim_reg_nested Function to simulate nested data

Description

Takes simulation parameters as inputs and returns simulated data.

Usage

sim_reg_nested(fixed, random, fixed_param, random_param = list(),
cov_param, n, p, error_var, with_err_gen, arima = FALSE, data_str,

sim_reg_nested 69

cor_vars = NULL, fact_vars = list(NULL), unbal = FALSE,
unbal_design = NULL, lvl1_err_params = NULL,
arima_mod = list(NULL), contrasts = NULL, homogeneity = TRUE,
heterogeneity_var = NULL, cross_class_params = NULL,
knot_args = list(NULL), ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’level1’ or

’level2’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

n Cluster sample size.

p Within cluster sample size.

error_var Scalar of error variance.

with_err_gen Simulated within cluster error distribution. Must be a quoted ’r’ distribution
function.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

data_str Type of data. Must be "cross" or "long".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.

70 sim_reg_nested

• var_type = Must be ’level1’ or ’level2’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

unbal A vector of sample sizes for the number of observations for each level 2 cluster.
Must have same length as level two sample size n. Alternative specification can
be TRUE, which uses additional argument, unbal_design.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within a
cluster via a named list. This will be drawn from a random uniform distribution
with min and max specified. Secondly, the sample sizes within each cluster can
be specified. This takes the form of a vector that must have the same length as
the level two sample size.

lvl1_err_params

Additional parameters passed as a list on to the level one error generating func-
tion

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

sim_reg_nested3 71

• var
• knot_locations

... Not currently used.

Details

Simulates data for the linear mixed model, both cross sectional and longitudinal data. Returns a
data frame with ID variables, fixed effects, and many other variables useful to help when running
simulation studies.

See Also

sim_reg for a convenient wrapper for all data conditions.

Examples

#' # Longitudinal linear mixed model example
fixed <- ~1 + time + diff + act + time:act
random <- ~1 + time + diff
fixed_param <- c(4, 2, 6, 2.3, 7)
random_param <- list(random_var = c(7, 4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm'),

var_type = c("level1", "level2"),
opts = list(list(mean = 0, sd = 1.5),
list(mean = 0, sd = 4)))

n <- 150
p <- 30
error_var <- 4
with_err_gen <- 'rnorm'
data_str <- "long"
temp_long <- sim_reg(fixed, random, random3 = NULL, fixed_param,

random_param, random_param3 = NULL,
cov_param, k = NULL, n, p, error_var, with_err_gen, data_str = data_str)

sim_reg_nested3 Function to simulate three level nested data

Description

Takes simulation parameters as inputs and returns simulated data.

Usage

sim_reg_nested3(fixed, random, random3, fixed_param,
random_param = list(), random_param3 = list(), cov_param, k, n, p,
error_var, with_err_gen, arima = FALSE, data_str, cor_vars = NULL,
fact_vars = list(NULL), unbal = list(level2 = FALSE, level3 = FALSE),
unbal_design = list(level2 = NULL, level3 = NULL),

72 sim_reg_nested3

lvl1_err_params = NULL, arima_mod = list(NULL), contrasts = NULL,
homogeneity = TRUE, heterogeneity_var = NULL,
cross_class_params = NULL, knot_args = list(NULL), ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

random One sided formula for random effects in the simulation. Must be a subset of
fixed.

random3 One sided formula for random effects at third level in the simulation. Must be a
subset of fixed (and likely of random).

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

random_param A list of named elements that must contain:

• random_var: variance of random parameters,
• rand_gen: Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

random_param3 A list of named elements that must contain:

• random_var = variance of random parameters,
• rand_gen = Name of simulation function for random effects.

Optional elements are:

• ther: Theorectial mean and variance from rand_gen,
• ther_sim: Simulate mean/variance for standardization purposes,
• cor_vars: Correlation between random effects,
• ...: Additional parameters needed for rand_gen function.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’level1’, ’level2’,

or ’level3’. Must be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

k Number of third level clusters.

n Level two cluster sample size within each level three cluster.

p Within cluster sample size within each level two cluster.

error_var Scalar of error variance.

sim_reg_nested3 73

with_err_gen Simulated within cluster error distribution. Must be a quoted ’r’ distribution
function.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

data_str Type of data. Must be "cross" or "long".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’level1’, ’level2’, or ’level3’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.

unbal A named TRUE/FALSE list specifying whether unbalanced simulation design
is desired. The named elements must be: "level2" or "level3" representing un-
balanced simulation for level two and three respectively. Default is FALSE,
indicating balanced sample sizes at both levels.

unbal_design When unbal = TRUE, this specifies the design for unbalanced simulation in one
of two ways. It can represent the minimum and maximum sample size within
a cluster via a named list. This will be drawn from a random uniform distribu-
tion with min and max specified. Secondly, the actual sample sizes within each
cluster can be specified. This takes the form of a vector that must have the same
length as the level two or three sample size. These are specified as a named list
in which level two sample size is controlled via "level2" and level three sample
size is controlled via "level3".

lvl1_err_params

Additional parameters passed as a list on to the level one error generating func-
tion

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

cross_class_params

A list of named parameters when cross classified data structures are desired.
Must include the following arguments:

74 sim_reg_nested3

• num_ids: The number of cross classified clusters. These are in addition to
the typical cluster ids

• random_param: This argument is a list of arguments passed to sim_rand_eff.
These must include:

– random_var: The variance of the cross classified random effect
– rand_gen: The random generating function used to generate the cross

classified random effect.
Optional elements are:

– ther: Theorectial mean and variance from rand_gen,
– ther_sim: Simulate mean/variance for standardization purposes,
– cor_vars: Correlation between random effects,
– ...: Additional parameters needed for rand_gen function.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

... Not currently used.

Details

Simulates data for the linear mixed model, both cross sectional and longitudinal data. Returns a
data frame with ID variables, fixed effects, and many other variables useful to help when running
simulation studies.

See Also

sim_reg for a convenient wrapper for all data conditions.

Examples

#' # Three level example
fixed <- ~1 + time + diff + act + actClust + time:act
random <- ~1 + time + diff
random3 <- ~ 1 + time
fixed_param <- c(4, 2, 6, 2.3, 7, 0)
random_param <- list(random_var = c(7, 4, 2), rand_gen = 'rnorm')
random_param3 <- list(random_var = c(4, 2), rand_gen = 'rnorm')
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("level1", "level2", "level3"),
opts = list(list(mean = 0, sd = 1.5),
list(mean = 0, sd = 4),
list(mean = 0, sd = 2)))

k <- 10
n <- 15
p <- 10
error_var <- 4
with_err_gen <- 'rnorm'
data_str <- "long"

sim_reg_single 75

temp_three <- sim_reg(fixed, random, random3, fixed_param, random_param,
random_param3, cov_param, k,n, p, error_var, with_err_gen,
data_str = data_str)

sim_reg_single Master function to simulate single level data.

Description

Takes simulation parameters as inputs and returns simulated data.

Usage

sim_reg_single(fixed, fixed_param, cov_param, n, error_var, with_err_gen,
arima = FALSE, data_str, cor_vars = NULL, fact_vars = list(NULL),
lvl1_err_params = NULL, arima_mod = list(NULL), contrasts = NULL,
homogeneity = TRUE, heterogeneity_var = NULL,
knot_args = list(NULL), ...)

Arguments

fixed One sided formula for fixed effects in the simulation. To suppress intercept add
-1 to formula.

fixed_param Fixed effect parameter values (i.e. beta weights). Must be same length as fixed.

cov_param List of arguments to pass to the continuous generating function, must be the
same order as the variables specified in fixed. This list does not include intercept,
time, factors, or interactions. Required arguments include:

• dist_fun: This is a quoted R distribution function.
• var_type: This is the level of variable to generate. Must be ’single’. Must

be same order as fixed formula above.

Optional arguments to the distribution functions are in a nested list, see the ex-
amples or vignettes for example code.

n Cluster sample size.

error_var Scalar of error variance.

with_err_gen Simulated within cluster error distribution. Must be a quoted ’r’ distribution
function.

arima TRUE/FALSE flag indicating whether residuals should be correlated. If TRUE,
must specify a valid model to pass to arima.sim via the arima_mod argument.
See arima.sim for examples.

data_str Type of data. Must be "single".

cor_vars A vector of correlations between variables.

fact_vars A nested list of factor, categorical, or ordinal variable specification, each list
must include:

76 sim_reg_single

• numlevels = Number of levels for ordinal or factor variables.
• var_type = Must be ’single’.

Optional arguments include:

• replace
• prob
• value.labels

See also sample for use of these optional arguments.
lvl1_err_params

Additional parameters passed as a list on to the level one error generating func-
tion

arima_mod A list indicating the ARIMA model to pass to arima.sim. See arima.sim for
examples.

contrasts An optional list that specifies the contrasts to be used for factor variables (i.e.
those variables with .f or .c). See contrasts for more detail.

homogeneity Either TRUE (default) indicating homogeneity of variance assumption is as-
sumed or FALSE to indicate desire to generate heterogeneity of variance.

heterogeneity_var

Variable name as a character string to use for heterogeneity of variance simula-
tion.

knot_args A nested list of named knot arguments. See sim_knot for more details. Argu-
ments must include:

• var
• knot_locations

... Not currently used.

Details

Simulates data for the simple regression models. Returns a data frame with ID variables, fixed
effects, and many other variables useful to help when running simulation studies.

See Also

sim_reg for a convenient wrapper for all data conditions.

Examples

#' # generating parameters for single level regression
fixed <- ~1 + act + diff + numCourse + act:numCourse
fixed_param <- c(2, 4, 1, 3.5, 2)
cov_param <- list(dist_fun = c('rnorm', 'rnorm', 'rnorm'),

var_type = c("single", "single", "single"),
opts = list(list(mean = 0, sd = 4),
list(mean = 0, sd = 3),
list(mean = 0, sd = 3)))

n <- 150
error_var <- 3

sim_time 77

with_err_gen <- 'rnorm'
temp_single <- sim_reg(fixed = fixed, fixed_param = fixed_param,

cov_param = cov_param,
n = n, error_var = error_var, with_err_gen = with_err_gen,
data_str = "single")

sim_time Simulate Time

Description

This function simulates data for the time variable of longitudinal data.

Usage

sim_time(n, time_levels = NULL, ...)

Arguments

n Sample size of the levels.

time_levels The values the time variable should take. If NULL (default), the time values are
discrete integers starting at 0 and going to n - 1.

... Currently not used.

transform_outcome Transform response variable

Description

Transform response variable

Usage

transform_outcome(outcome, type, ...)

Arguments

outcome The outcome variable to transform.

type Type of transformation to apply.

... Additional arguments passed to distribution functions.

78 varcov_randeff

varcov_randeff Function to create random effect variance-covariance matrices

Description

Input variances of random effects and correlation between random effects, returns variance-covariance
matrix of random effects.

Usage

varcov_randeff(random_var, cor_re)

Arguments

random_var Variance of random effects.

cor_re Correlation between random effects, currently only a constant supported.

Index

arima.sim, 20, 21, 39, 40, 56, 59, 60, 62, 65,
66, 69, 70, 73, 75, 76

compute_statistics, 3
contrasts, 24–26, 28, 32, 35, 37, 40, 45, 49,

52, 54, 56, 60, 62, 66, 70, 73, 76
corr_variables, 3
corStruct, 41, 57, 61
cross_class, 4
cut, 38

data_glm_nested, 5
data_glm_nested3, 5
data_glm_single, 6
data_reg_nested, 7
data_reg_nested3, 7
data_reg_single, 8
desireVar, 8, 15
dropout_missing (missing_data), 10

extract_coefficients, 9

future_replicate, 15

generate_missing, 9
generate_response, 10

mar_missing (missing_data), 10
missing_data, 10, 41, 46, 49, 52, 54, 57, 60,

63
model_fit, 11, 12

parse_crossclass, 12
parse_formula, 12, 13
parse_power, 13
parse_randomeffect, 12, 13
parse_varyarguments, 14

random_missing (missing_data), 10
rbimod, 9, 14
replicate_simulation, 3, 15, 16

run_shiny, 16

sample, 4, 24–26, 28, 32, 34, 37, 40, 45, 48,
51, 54, 56, 59, 62, 66, 70, 73, 76

sim_continuous, 19
sim_continuous2, 19
sim_err_nested, 20
sim_err_single, 21
sim_factor, 22
sim_factor2, 23
sim_fixef_nested, 23
sim_fixef_nested3, 24
sim_fixef_single, 26
sim_glm, 16, 27, 46
sim_glm_nested, 30
sim_glm_nested3, 33
sim_glm_single, 36
sim_knot, 24–26, 29, 32, 35, 37, 37, 41, 46,

49, 52, 54, 57, 60, 63, 67, 70, 74, 76
sim_pow, 16, 38, 57, 58, 61, 63
sim_pow_glm, 16, 43, 50, 53, 54
sim_pow_glm_nested, 47
sim_pow_glm_nested3, 50
sim_pow_glm_single, 53
sim_pow_nested, 55
sim_pow_nested3, 58
sim_pow_single, 61
sim_rand_eff, 4, 29, 32, 35, 40, 45, 49, 52,

57, 60, 63, 66, 70, 74
sim_reg, 4, 8, 16, 24, 25, 27, 35, 41, 64, 64,

71, 74, 76
sim_reg_nested, 68
sim_reg_nested3, 71
sim_reg_single, 75
sim_time, 77
simglm, 16
simglm-package (simglm), 16
simulate_error, 17
simulate_fixed, 17
simulate_heterogeneity, 18

79

80 INDEX

simulate_randomeffect, 18

transform_outcome, 77

varcov_randeff, 78

	compute_statistics
	corr_variables
	cross_class
	data_glm_nested
	data_glm_nested3
	data_glm_single
	data_reg_nested
	data_reg_nested3
	data_reg_single
	desireVar
	extract_coefficients
	generate_missing
	generate_response
	missing_data
	model_fit
	parse_crossclass
	parse_formula
	parse_power
	parse_randomeffect
	parse_varyarguments
	rbimod
	replicate_simulation
	run_shiny
	simglm
	simulate_error
	simulate_fixed
	simulate_heterogeneity
	simulate_randomeffect
	sim_continuous
	sim_continuous2
	sim_err_nested
	sim_err_single
	sim_factor
	sim_factor2
	sim_fixef_nested
	sim_fixef_nested3
	sim_fixef_single
	sim_glm
	sim_glm_nested
	sim_glm_nested3
	sim_glm_single
	sim_knot
	sim_pow
	sim_pow_glm
	sim_pow_glm_nested
	sim_pow_glm_nested3
	sim_pow_glm_single
	sim_pow_nested
	sim_pow_nested3
	sim_pow_single
	sim_rand_eff
	sim_reg
	sim_reg_nested
	sim_reg_nested3
	sim_reg_single
	sim_time
	transform_outcome
	varcov_randeff
	Index

