simmr
Use:
install.packages("simmr")
then
library(simmr)
Some geese isotope data is included with this package. Find where it is with:
system.file("extdata", "geese_data.xls", package = "simmr")
Load into R with:
library(readxl)
<- system.file("extdata", "geese_data.xls", package = "simmr")
path <- lapply(excel_sheets(path), read_excel, path = path) geese_data
If you want to see what the original Excel sheet looks like you can
run system(paste('open',path))
.
We can now separate out the data into parts
<- geese_data[[1]]
targets <- geese_data[[2]]
sources <- geese_data[[3]]
TEFs <- geese_data[[4]] concdep
Note that if you don’t have TEFs or concentration dependence you can set these all to the value 0 or just leave them blank in the step below.
simmr
<- simmr_load(
geese_simmr mixtures = targets[, 1:2],
source_names = sources$Sources,
source_means = sources[, 2:3],
source_sds = sources[, 4:5],
correction_means = TEFs[, 2:3],
correction_sds = TEFs[, 4:5],
concentration_means = concdep[, 2:3],
group = as.factor(paste("Day", targets$Time))
)
plot(geese_simmr, group = 1:8)
simmr
and check convergence<- simmr_mcmc(geese_simmr)
geese_simmr_out summary(geese_simmr_out,
type = "diagnostics",
group = 1
)
Check that the model fitted well:
posterior_predictive(geese_simmr_out, group = 5)
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 40
## Unobserved stochastic nodes: 46
## Total graph size: 198
##
## Initializing model
Look at the influence of the prior:
prior_viz(geese_simmr_out)
Look at the histogram of the dietary proportions:
plot(geese_simmr_out, type = "histogram")
compare_groups(geese_simmr_out,
groups = 1:4,
source_name = "Enteromorpha"
)
## Most popular orderings are as follows:
## Probability
## Day 428 > Day 124 > Day 398 > Day 1 0.2200
## Day 428 > Day 124 > Day 1 > Day 398 0.1775
## Day 428 > Day 398 > Day 124 > Day 1 0.1717
## Day 428 > Day 1 > Day 124 > Day 398 0.0956
## Day 428 > Day 398 > Day 1 > Day 124 0.0869
## Day 428 > Day 1 > Day 398 > Day 124 0.0536
## Day 398 > Day 428 > Day 124 > Day 1 0.0456
## Day 124 > Day 428 > Day 398 > Day 1 0.0428
## Day 124 > Day 428 > Day 1 > Day 398 0.0256
## Day 398 > Day 428 > Day 1 > Day 124 0.0178
## Day 398 > Day 124 > Day 428 > Day 1 0.0158
## Day 124 > Day 398 > Day 428 > Day 1 0.0103
## Day 1 > Day 428 > Day 124 > Day 398 0.0100
## Day 1 > Day 428 > Day 398 > Day 124 0.0058
## Day 124 > Day 1 > Day 428 > Day 398 0.0050
## Day 1 > Day 124 > Day 428 > Day 398 0.0039
## Day 398 > Day 1 > Day 428 > Day 124 0.0033
## Day 124 > Day 1 > Day 398 > Day 428 0.0031
## Day 398 > Day 124 > Day 1 > Day 428 0.0019
## Day 1 > Day 398 > Day 428 > Day 124 0.0017
## Day 1 > Day 124 > Day 398 > Day 428 0.0008
## Day 398 > Day 1 > Day 124 > Day 428 0.0008
## Day 124 > Day 398 > Day 1 > Day 428 0.0006
For the many more options available to run and analyse output, see
the main vignette via vignette('simmr')