Package ‘sjSDM’

Type Package

Title Scalable Joint Species Distribution Modeling

Version 1.0.5

Description A scalable method to estimate joint Species Distribution Models (jSDMs) for big community datasets based on a Monte Carlo approximation of the joint likelihood. The numerical approximation is based on 'PyTorch' and 'reticulate', and can be run on CPUs and GPUs alike. The method is described in Pichler & Hartig (2021) <doi:10.1111/2041-210X.13687>. The package contains various extensions, including support for different response families, ability to account for spatial autocorrelation, and deep neural networks instead of the linear predictor in jSDMs.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.0)

Imports reticulate, stats, mvtnorm, utils, rstudioapi, abind, graphics, grDevices, Metrics, parallel, mgcv, cli, crayon, ggplot2, checkmate, mathjaxr, ggtern

Suggests testthat, knitr, rmarkdown

RoxygenNote 7.2.3

URL https://theoreticalecology.github.io/s-jSDM/
Roxygen list(old_usage = FALSE)
VignetteBuilder knitr
RdMacros mathjaxr

R topics documented:

AccSGD ... 3
AdaBound ... 4
Adamax ... 4
anova.sjSDM 5
bioticStruct 6
checkModel 9
check_module 10
coeff.sjSDM 10
DiffGrad .. 10
DNN .. 11
generateSpatialEV 14
getCor ... 15
ggetCov .. 16
getImportance 16
gGetSe ... 17
gGetWeights 17
importance 18
installation_help 19
install_diagnostic 21
install_sjSDM 22
is_torch_available 22
linear ... 23
logLik.sjSDM 26
madgrad .. 26
new_image .. 27
plot.sjSDM 27
plot.sjSDM.DNN 28
plot.sjSDManova 29
plot.sjSDManysigma 30
plot.sjSDManysigma_cv 31
plotInternalStructure 32
plots.sjSDMcoef 33
predict.sjSDM 34
print.bioticStruct 34
print.DNN 35
print.linear 35
print.sjSDM 36
print.sjSDManova 36
print.sjSDManysigma 37
print.sjSDManysigma_cv 37
RSprop .. 38
Rsquared .. 38
setWeights 39
SGD ... 40
AccSGD

accelerated stochastic gradient, see Kidambi et al., 2018 for details

Usage

\[
\text{AccSGD}(kappa = 1000, xi = 10, \text{small_const} = 0.7, \text{weight_decay} = 0)
\]

Arguments

- **kappa**: long step
- **xi**: advantage parameter
- **small_const**: small constant
- **weight_decay**: l2 penalty on weights

Value

Anonymous function that returns optimizer when called.

References

AdaBound

Description

Adaptive gradient methods with dynamic bound of learning rate, see Luo et al., 2019 for details.

Usage

```r
AdaBound(
  betas = c(0.9, 0.999),
  final_lr = 0.1,
  gamma = 0.001,
  eps = 1e-08,
  weight_decay = 0,
  amsbound = TRUE
)
```

Arguments

- `betas` betas
- `final_lr` eps
- `gamma` small const
- `eps` eps
- `weight_decay` weight_decay
- `amsbound` amsbound

Value

Anonymous function that returns optimizer when called.

References

Adamax

Description

Adamax optimizer, see Kingma and Ba, 2014

Usage

```r
Adamax(betas = c(0.9, 0.999), eps = 1e-08, weight_decay = 0.002)
```
Arguments

- `betas` exponential decay rates
- `eps` fuzz factor
- `weight_decay` L2 penalty on weights

Value

Anonymous function that returns optimizer when called.

References

Description

Calculates type II anova. Shared contributions (e.g. between space and environment) are also calculated (and divided proportionally) and can be optionally visualized via `plot.sjSDManova` with `add_shared=TRUE`. The anova can get unstable for many species and few occurrences/observations. We recommend using large numbers for `samples`.

Usage

```r
## S3 method for class 'sjSDM'
anova(object, samples = 5000L, ...)
```

Arguments

- `object` model of object `sjSDM`
- `samples` Number of Monte Carlo samples
- `...` optional arguments which are passed to the calculation of the logLikelihood

Details

Compute analysis of variance

Value

An S3 class of type `sjSDManova` including the following components:

- `results` Data frame of results.
- `to_print` Data frame, summarized results for type I anova.
- `N` Number of observations (sites).
- `spatial` Logical, spatial model or not.
- `species` individual species R2s.
bioticStruct

sites individual site R2s.
lls individual site by species negative-log-likelihood values.

Implemented S3 methods are print.sjSDManova and plot.sjSDManova

See Also

plot.sjSDManova, print.sjSDManova, plotInternalStructure

bioticStruct
biotic structure

Description

define biotic (species-species) association (interaction) structure

Usage

```r
bioticStruct(
  df = NULL,
  lambda = 0,
  alpha = 0.5,
  on_diag = FALSE,
  reg_on_Cov = TRUE,
  inverse = FALSE,
  diag = FALSE
)
```

Arguments

- `df`
 degree of freedom for covariance parametrization, if NULL df is set to ncol(Y)/2
- `lambda`
 lambda penalty, strength of regularization: \(\lambda \ast (\text{lasso + ridge}) \)
- `alpha`
 weighting between lasso and ridge: \((1-\alpha)\ast|\text{covariances}| + \alpha||\text{covariances}||^2 \)
- `on_diag`
 regularization on diagonals
- `reg_on_Cov`
 regularization on covariance matrix
- `inverse`
 regularization on the inverse covariance matrix
- `diag`
 use diagonal matrix with zeros (internal usage)

Value

An S3 class of type `bioticStruct` including the following components:

- `l1_cov`
 L1 regularization strength.
- `l2_cov`
 L2 regularization strength.
- `inverse`
 Logical, use inverse covariance matrix or not.
- `diag`
 Logical, use diagonal matrix or not.
- `reg_on_Cov`
 Logical, regularize covariance matrix or not.
- `on_diag`
 Logical, regularize diagonals or not.

Implemented S3 methods include `print.bioticStruct`
See Also

sjSDM

Examples

Not run:

Basic workflow:
simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

fit model:
model = sjSDM(Y = com$response, env = com$env_weights, iter = 50L)
increase iter for your own data

coef(model)
summary(model)
getcov(model)

plot results
species = c("sp1", "sp2", "sp3", "sp4", "sp5", "sp6", "sp7")
group = c("mammal", "bird", "fish", "mammal", "amphibian", "amphibian")
group = data.frame(species=species, group=group)
plot(model, group=group)

calculate post-hoc p-values:
p = getSe(model)
summary(p)

or turn on the option in the sjSDM function:
model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
 family = binomial("probit"),
 iter = 2L)
summary(model)

fit model with interactions:
model = sjSDM(Y = com$response,
 env = linear(data = com$env_weights, formula = ~X1:X2 + X3),
 se = TRUE,
 iter = 2L) # increase iter for your own data
summary(model)

without intercept:
model = update(model, env_formula = ~0+X1:X2 + X3)
summary(model)

predict with model:
preds = predict(model, newdata = com$env_weights)

calculate R-squared:
R2 = Rsquared(model)
print(R2)

With spatial terms:
linear spatial model
XY = matrix(rnorm(200), 100, 2)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = linear(XY, ~0+X1:X2),
 iter = 50L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = XY)
R2 = Rsquared(model)
print(R2)

Using spatial eigenvectors as predictors to account
for spatial autocorrelation is a common approach:
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = linear(SPV, ~0+, lambda = 0.1),
 iter = 50L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)

Visualize internal meta-community structure
an = anova(model)
plot(an, internal=TRUE)

non-linear (deep neural network) model
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = DNN(SPV, hidden = c(5L, 5L), ~0+.),
 iter = 2L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)

Regularization
lambda is the regularization strength
alpha weights the lasso or ridge penalty:
- alpha = 0 --> pure lasso
- alpha = 1.0 --> pure ridge
model = sjSDM(Y = com$response,
 env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),
 # we can do the same for the species-species associations
 biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
 iter = 2L) # increase iter for your own data
summary(model)
coef(model)
getCov(model)

Anova
com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)
XY = matrix(rnorm(400), 200, 2)
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = linear(SPV, ~0+.),
 iter = 50L) # increase iter for your own data
result = anova(model)
print(result)
Deep neural network
we can fit also a deep neural network instead of a linear model:
```r
model = sjSDM(Y = com$response,
               env = DNN(com.env_weights, hidden = c(10L, 10L, 10L)),
               iter = 2L) # increase iter for your own data
```
summary(model)
getCov(model)
pred = predict(model, newdata = com.env_weights)

extract weights
weights = getWeights(model)

we can also assign weights:
setWeights(model, weights)

with regularization:
```r
model = sjSDM(Y = com$response,
               env = DNN(com.env_weights, lambda = 0.01, alpha = 0.5),
               biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
               iter = 2L) # increase iter for your own data
```
getcov(model)
getWeights(model)

End(Not run)
DiffGrad

check_module

Description
check if module is loaded

Usage
check_module()

coeff.sjSDM

Return coefficients from a fitted sjSDM model

Description
Return coefficients from a fitted sjSDM model

Usage
S3 method for class 'sjSDM'
coef(object, ...)

Arguments

object a model fitted by sjSDM
...
optional arguments for compatibility with the generic function, no function implemented

Value
Matrix of environmental coefficients or list of environmental and spatial coefficients for spatial models.

DiffGrad

Description
DiffGrad

Usage
DiffGrad(betas = c(0.9, 0.999), eps = 1e-08, weight_decay = 0)
DNN

Non-linear model (deep neural network) of environmental responses

Description

specify the model to be fitted

Usage

DNN(
data = NULL,
formula = NULL,
hidden = c(10L, 10L, 10L),
activation = "selu",
bias = TRUE,
lambda = 0,
alpha = 0.5,
dropout = 0
)

Arguments

data matrix of environmental predictors
formula formula object for predictors
hidden hidden units in layers, length of hidden corresponds to number of layers
activation activation functions, can be of length one, or a vector of activation functions for each layer. Currently supported: tanh, relu, leakyrelu, selu, or sigmoid
bias whether use biases in the layers, can be of length one, or a vector (number of hidden layers including (last layer) but not first layer (intercept in first layer is specified by formula)) of logicals for each layer.
lambda lambda penalty, strength of regularization: \(\lambda * (\text{lasso} + \text{ridge}) \)
alpha weighting between lasso and ridge: \((1 - \alpha) * |\text{weights}| + \alpha ||\text{weights}||^2 \)
dropout probability of dropout rate
Value

An S3 class of type 'DNN' including the following components:

- **formula**: Model matrix formula
- **X**: Model matrix of covariates
- **data**: Raw data
- **l1_coef**: L1 regularization strength, can be -99 if lambda = 0.0
- **l2_coef**: L2 regularization strength, can be -99 if lambda = 0.0
- **hidden**: Integer vector of hidden neurons in the deep neural network. Length of vector corresponds to the number of hidden layers.
- **activation**: Character vector of activation functions.
- **bias**: Logical vector whether to use bias or not in each hidden layer.

Implemented S3 methods include `print.DNN`

See Also

`linear`, `sjSDM`

Examples

```r
## Not run:

# Basic workflow:
## simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

## fit model:
model = sjSDM(Y = com$response, env = com$env_weights, iter = 50L)
# increase iter for your own data
coef(model)
summary(model)
getCov(model)

## plot results
species = c("sp1","sp2","sp3","sp4","sp5","sp6","sp7")
group = c("mammal","bird","fish","fish","mammal","amphibian","amphibian")
group = data.frame(species = species, group = group)
plot(model, group = group)

## calculate post-hoc p-values:
p = getSe(model)
summary(p)

## or turn on the option in the sjSDM function:
model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
                family = binomial("probit"),
                iter = 2L)
summary(model)

## fit model with interactions:
model = sjSDM(Y = com$response,}
## Linear Model

```r
env = linear(data = com$env_weights, formula = ~X1:X2 + X3),
 se = TRUE,
 iter = 2L) # increase iter for your own data
summary(model)

Without intercept:
model = update(model, env_formula = ~0+X1:X2 + X3)
summary(model)

Predict with model:
preds = predict(model, newdata = com$env_weights)

Calculate R-squared:
R2 = Rsquared(model)
print(R2)

With spatial terms:
Linear spatial model
XY = matrix(rnorm(200), 100, 2)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = linear(XY, ~0+X1:X2),
 iter = 50L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = XY)
R2 = Rsquared(model)
print(R2)

Using spatial eigenvectors as predictors to account
for spatial autocorrelation is a common approach:
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = linear(SPV, ~0+. lambda = 0.1),
 iter = 50L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)

Visualize internal meta-community structure
an = anova(model)
plot(an, internal=TRUE)

Non-linear (deep neural network) model
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = DNN(SPV,hidden = c(5L, 5L), ~0+.),
 iter = 2L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)
```

# Regularization

## Lambda is the regularization strength
## Alpha weights the lasso or ridge penalty:
### - alpha = 0 --> pure lasso
### - alpha = 1.0 --> pure ridge
model = sjSDM(Y = com$response,
  env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),
generateSpatialEV

Generate spatial eigenvectors
Description
Generates a Moran’s eigenvector map of the distance matrix. See Dray, Legendre, and Peres-Neto, 2006 for more information.

Usage
generateSpatialEV(coords = NULL, threshold = 0)

Arguments
- coords: matrix or data.frame of coordinates
- threshold: ignore distances greater than threshold

Value
Matrix of spatial eigenvectors.

References

------

Description
get species-species association correlation matrix

Usage
getCor(object)

Arguments
- object: a model fitted by sjSDM, or sjSDM with DNN object

Value
Matrix of dimensions species by species corresponding to the covariance (occurrence) matrix.

See Also
sjSDM, DNN
**getCov**

Description
get species-species association (covariance) matrix

Usage
getCov(object)

## S3 method for class 'sjSDM'
getCov(object)

Arguments

- **object**
  - a model fitted by *sjSDM*, or *sjSDM* with DNN object

Value
Matrix of dimensions species by species corresponding to the covariance (occurrence) matrix.

See Also

 *sjSDM*, *DNN*

---

**getImportance**

Description
variation partitioning with coefficients

Usage
getImportance(beta, sp = NULL, association, covX, covSP = NULL)

Arguments

- **beta**
  - abiotic weights
- **sp**
  - spatial weights
- **association**
  - species associations
- **covX**
  - environmental covariance matrix
- **covSP**
  - spatial covariance matrix

Author(s)
Maximilian Pichler
getSe

Post hoc calculation of standard errors

Description
Post hoc calculation of standard errors

Usage
getSe(object, step_size = NULL, parallel = 0L)

Arguments
- object: a model fitted by sjSDM
- step_size: batch size for stochastic gradient descent
- parallel: number of cpu cores for the data loader, only necessary for large datasets

Value
The object passed to this function but the object$se field contains the standard errors now

getWeights
Get weights

Description
return weights of each layer

Usage
getWeights(object)

## S3 method for class 'sjSDM'
getWeights(object)

Arguments
- object: object of class sjSDM with DNN

Value
- layers - list of layer weights
- sigma - weight to construct covariance matrix
**importance**

**Description**
Computes standardized variance components with respect to abiotic, biotic, and spatial effect groups.

**Usage**

```r
importance(x, save_memory = TRUE, ...)
```

**Arguments**

- `x`: object fitted by `sjSDM` or a list with beta, the association matrix, and the correlation matrix of the predictors, see details below
- `save_memory`: use torch backend to calculate importance with single precision floats
- `...`: additional arguments

**Details**
This variance partitioning approach is based on Ovaskainen et al., 2017. For an example how to interpret the outputs, see Leibold et al., 2021. This function will be deprecated in the future. Please use `plot(anova(model), internal=TRUE)` (currently only supported for spatial models).

**Value**
An S3 class of type 'sjSDMimportance' including the following components:

- `names`: Character vector, species names.
- `res`: Data frame of results.
- `spatial`: Logical, spatial model or not.

Implemented S3 methods include `print.sjSDMimportance` and `plot.sjSDMimportance`

**Author(s)**
Maximilian Pichler

**References**


**See Also**
`print.sjSDMimportance`, `plot.sjSDMimportance`
Examples

```r
Not run:
library(sjSDM)
com = simulate_SDM(sites = 300L, species = 12L,
 link = "identical", response = "identical")
Raw = com$response
SP = matrix(rnorm(300*2), 300, 2)
SPweights = matrix(rnorm(12L), 1L)
SPweights[1,1:6] = 0
Y = Raw + (SP[,1,drop=FALSE]*SP[,2,drop=FALSE]) %*% SPweights
Y = ifelse(Y > 0, 1, 0)
model = sjSDM(Y = Y, env = linear(com$env_weights, lambda = 0.001),
 spatial = linear(SP, formula = ~0+X1:X2, lambda = 0.001),
 biotic = bioticStruct(lambda = 0.001), iter = 40L)
imp = importance(model)
plot(imp)
End(Not run)
```

Description

Trouble shooting guide for the installation of the sjSDM package

We provide a function `install_sjSDM` to install automatically all necessary python dependencies but it can fail sometimes because of individual system settings or if other python/conda installations get into the way.

'PyTorch' Installation - Before you start

A few notes before you start with the installation (skip this point if you do not know 'conda'):

- existing 'conda' installations: make sure you have the latest conda3/miniconda3 version and remove unnecessary 'conda' installations.
- existing 'conda'/virtualenv' environments (skip this point if you do not know 'conda'): we currently enforce the usage of a specific environment called 'r-sjsdm', so if you want use a custom environment it should be named 'r-sjsdm'

Windows - automatic installation

Sometimes the automatic 'miniconda' installation (via `install_sjSDM`) doesn’t work because of white spaces in the user's name. But you can easily download and install 'conda' on your own:

Download and install the latest 'conda' version

Afterwards run:

```r
install_sjSDM(version = c("gpu")) # or "cpu" if you do not have a proper gpu device
```

Reload the package and run the example, if this doesn’t work:

- Restart RStudio
- Install manually 'pytorch', see the following section
Windows - manual installation

Download and install the latest `conda` version:

- Install the latest `conda` version
- Open the command window (cmd.exe - hit windows key + r and write cmd)

Run in cmd.exe:

```bash
$ conda create --name r-sjsdm python=3.7
$ conda activate r-sjsdm
$ conda install pytorch torchvision cpuonly -c pytorch # cpu
$ conda install pytorch torchvision cudatoolkit=11.3 -c pytorch #gpu
$ python -m pip install pyro-ppl torch_optimizer madgrad
```

Restart R, try to run the example, and if this doesn’t work:

- Restart RStudio
- See the 'Help and bugs' section

Linux - automatic installation

Run in R:
```
install_sjSDM(version = c("gpu")) # or "cpu" if you do not have a proper 'gpu' device
```

Restart R try to run the example, if this doesn’t work:

- Restart RStudio
- Install manually 'PyTorch', see the following section

Linux - manual installation

We strongly advise to use a `conda` environment but a virtual env should also work. The only requirement is that it is named `r-sjsdm`

Download and install the latest `conda` version:

- Install the latest `conda` version
- Open your terminal

Run in your terminal:

```bash
$ conda create --name r-sjsdm python=3.7
$ conda activate r-sjsdm
$ conda install pytorch torchvision cpuonly -c pytorch # cpu
$ conda install pytorch torchvision cudatoolkit=11.3 -c pytorch #gpu
$ python -m pip install pyro-ppl torch_optimizer madgrad
```

Restart R try to run the example, if this doesn’t work:

- Restart RStudio
- See the 'Help and bugs' section
**MacOS - automatic installation**

Run in R:
```
install_sjSDM(version = c("cpu"))
```
Restart R try to run the example, if this doesn’t work:
- Restart RStudio
- Install manually ‘PyTorch’, see the following section

**MacOS - manual installation**

Download and install the latest ‘conda’ version:
- Install the latest `conda` version
- Open your terminal

Run in your terminal:
```
$ conda create --name r-sjsdm python=3.7
$ conda activate r-sjsdm
$ python -m pip install torch torchvision torchaudio
$ python -m pip install pyro-ppl torch_optimizer madgrad
```
Restart R try to run the example from, if this doesn’t work:
- Restart RStudio
- See the ‘Help and bugs’ section

**Help and bugs**

To report bugs or ask for help, post a reproducible example via the sjSDM issue tracker with a copy of the `install_diagnostic` output as a quote.

---

### `install_diagnostic`  
`install diagnostic`

**Description**

Print information about available conda environments, python configs, and pytorch versions.

**Usage**

```
install_diagnostic()
```

**Details**

If the trouble shooting guide `installation_help` did not help with the installation, please create an issue on issue tracker with the output of this function as a quote.

**Value**

No return value, called to extract dependency information.
install_sjSDM

Install sjSDM and its dependencies

Description
Install sjSDM and its dependencies

Usage
install_sjSDM(
  conda = "auto",
  version = c("cpu", "gpu"),
  restart_session = TRUE,
  ...
)

Arguments
conda path to conda
version version = "cpu" for CPU version, or "gpu" for GPU version. (note MacOS users have to install 'cuda' binaries by themselves)
restart_session Restart R session after installing (note this will only occur within RStudio).
... not supported

Value
No return value, called for side effects (installation of 'python' dependencies).

is_torch_available

Description
is_torch_available

Usage
is_torch_available()

Details
check whether torch is available

Value
Logical, is torch module available or not.
linear

Linear model of environmental response

Description
specify the model to be fitted

Usage
linear(data = NULL, formula = NULL, lambda = 0, alpha = 0.5)

Arguments
data matrix of environmental predictors
formula formula object for predictors
lambda lambda penalty, strength of regularization: $\lambda \ast (\text{lasso} + \text{ridge})$
alpha weighting between lasso and ridge: $(1-\alpha) ||\text{coefficients}|| + \alpha ||\text{coefficients}||^2$

Value
An S3 class of type 'linear' including the following components:

formula Model matrix formula
X Model matrix of covariates
data Raw data
l1_coef L1 regularization strength, can be -99 if lambda = 0.0
l2_coef L2 regularization strength, can be -99 if lambda = 0.0

Implemented S3 methods include print.linear

See Also
DNN, sjSDM

Examples
## Not run:
# Basic workflow:
## simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

## fit model:
model = sjSDM(Y = com$response, env = com$env_weights, iter = 50L)
# increase iter for your own data

coef(model)
summary(model)
getCov(model)

## plot results
species=c("sp1","sp2","sp3","sp4","sp5","sp6","sp7")
group=c("mammal","bird","fish","fish","mammal","amphibian","amphibian")
group = data.frame(species=species, group=group)
plot(model, group=group)

## calculate post-hoc p-values:
p = getSe(model)
summary(p)

## or turn on the option in the sjSDM function:
model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
family = binomial("probit"),
iter = 2L)
summary(model)

## fit model with interactions:
model = sjSDM(Y = com$response,
env = linear(data = com$env_weights, formula = ~X1:X2 + X3),
se = TRUE,
iter = 2L) # increase iter for your own data
summary(model)

## without intercept:
model = update(model, env_formula = ~0+X1:X2 + X3)
summary(model)

## predict with model:
preds = predict(model, newdata = com$env_weights)

## calculate R-squared:
R2 = Rsquared(model)
print(R2)

## With spatial terms:
## linear spatial model
XY = matrix(rnorm(200), 100, 2)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(XY, ~0+X1:X2),
iter = 50L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = XY)
R2 = Rsquared(model)
print(R2)

## Using spatial eigenvectors as predictors to account for spatial autocorrelation is a common approach:
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+., lambda = 0.1),
iter = 50L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)

## Visualize internal meta-community structure
an = anova(model)
plot(an, internal=TRUE)
## non-linear (deep neural network) model

```r
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = DNN(SPV, hidden = c(5L, 5L), ~0+.),
 iter = 2L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)
```

### Regularization

### lambda is the regularization strength

### alpha weights the lasso or ridge penalty:

- alpha = 0 --> pure lasso
- alpha = 1.0 --> pure ridge

```r
model = sjSDM(Y = com$response,
 env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),
 # we can do the same for the species-species associations
 biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
 iter = 2L) # increase iter for your own data
summary(model)
coef(model)
 getCov(model)
```

### Anova

```r
com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)
XY = matrix(rnorm(400), 200, 2)
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = linear(SPV, ~0+.),
 iter = 50L) # increase iter for your own data
result = anova(model)
print(result)
plot(result)
```

### visualize meta-community structure

```r
plot(result, internal=TRUE)
```

### Deep neural network

```r
we can fit also a deep neural network instead of a linear model:
model = sjSDM(Y = com$response,
 env = DNN(com$env_weights, hidden = c(10L, 10L, 10L)),
 iter = 2L) # increase iter for your own data
summary(model)
getCov(model)
pred = predict(model, newdata = com$env_weights)
```

### extract weights

```r
weights = getWeights(model)
```

### we can also assign weights:

```r
setWeights(model, weights)
```
## with regularization:
model = sjSDM(Y = com$response,
  # mix of lasso and ridge
  env = DNN(com$env_weights, lambda = 0.01, alpha = 0.5),
  # we can do the same for the species-species associations
  biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
  iter = 2L) # increase iter for your own data
getCov(model)
getWeights(model)

## End(Not run)

---

### logLik.sjSDM

*Extract negative-log-Likelihood from a fitted sjSDM model*

**Description**

Extract negative-log-Likelihood from a fitted sjSDM model

**Usage**

```r
S3 method for class 'sjSDM'
logLik(object, individual = FALSE, ...)
```

**Arguments**

- `object`: a model fitted by `sjSDM`
- `individual`: returns internal ll structure, mostly for internal usage
- `...`: optional arguments passed to internal logLik function (only used if `individual=TRUE`)

**Value**

Numeric value or numeric matrix if individual is true.

---

### madgrad

*Stochastic gradient descent optimizer*

**Description**

Stochastic gradient descent optimizer

**Usage**

```r
madgrad(momentum = 0.9, weight_decay = 0, eps = 1e-06)
```

**Arguments**

- `momentum`: strength of momentum
- `weight_decay`: L2 penalty on weights
- `eps`: epsilon
Value
Anonymous function that returns optimizer when called.

References

description

table

Usage
new_image(
  z,
  cols = (grDevices::colorRampPalette(c("white", "#24526E"), bias = 1.5))(10),
  range = c(0.5, 1)
)

Arguments
z       z matrix
cols    cols for gradient
range   rescale to range

plot.sjSDM

Description
Plotting coefficients returned by sjSDM model. This function only for model fitted by linear, fitted by DNN is not yet supported.

Usage
## S3 method for class 'sjSDM'
plot(x, ...)

Arguments
x       a model fitted by sjSDM
...     Additional arguments to pass to plotsjSDMcoef.
Value

ggplot2 object for linear sjSDM model and nothing for DNN sjSDM model.

Author(s)

CAI Wang

See Also

plotsjSDMcoef

Examples

## Not run:
library(sjSDM)
# simulate community:
com = simulate_SDM(env = 6L, species = 7L, sites = 100L)

# fit model:
model = sjSDM(Y = com$response, env = com$env_weights, iter = 2L, se = TRUE)

# create a group dataframe for plot
species=c("sp1","sp2","sp3","sp4","sp5","sp6","sp7")
group=c("mammal","bird","fish","fish","mammal","amphibian","amphibian")
group = data.frame(species=species, group=group)
plot(model, group=group)
## End(Not run)
## Examples

```r
Not run:
library(sjSDM)
simulate community:
com = simulate_SDM(env = 6L, species = 7L, sites = 100L)

fit model:
model = sjSDM(Y = com$response, env = com$env_weights, iter = 2L, se = TRUE)

create a group dataframe for plot
species=c("sp1","sp2","sp3","sp4","sp5","sp6","sp7")
group=c("mammal","bird","fish","fish","mammal","amphibian","amphibian")
group = data.frame(species=species, group=group)
plot(model, group=group)
End(Not run)
```

---

### Description

Plot anova results

### Usage

```r
S3 method for class 'sjSDManova'
plot(
 x,
 y,
 type = c("McFadden", "Deviance", "Nagelkerke"),
 internal = FALSE,
 add_shared = FALSE,
 cols = c("#7FC97F", "#BEAED4", "#FDC086"),
 alpha = 0.15,
 env_deviance = NULL,
 suppress_plotting = FALSE,
 ...
)
```

### Arguments

- `x`: anova object from `anova.sjSDM`
- `y`: unused argument
- `type`: deviance, Nagelkerke or McFadden R-squared
- `internal`: logical, plot internal or total structure
- `add_shared`: Add shared contributions when plotting the internal structure
- `cols`: colors for the groups
- `alpha`: alpha for colors
### Description

Plot importance

### Usage

```r
S3 method for class 'sjSDMimportance'
plot(x, y, col.points = "#24526e", cex.points = 1.2, ...)
```

### Arguments

- `x`: a model fitted by `importance`
- `y`: unused argument
- `col.points`: point color
- `cex.points`: point size
- `...`: Additional arguments to pass to `plot()`

### Value

The visualized matrix is silently returned.

---

**Value**

List with the following components:

- **plots**: ggplot objects for sites and species.
- **data**: List of data.frames with the shown results.

else:

- **VENN**: Matrix of shown results.

### References

Description

Plot elastic net tuning

Usage

```r
S3 method for class 'sjSDM_cv'
plot(x, y, perf = c("logLik", "AUC", "AUC_macro"), resolution = 6, k = 3, ...)
```

Arguments

- **x**: a model fitted by `sjSDM_cv`
- **y**: unused argument
- **perf**: performance measurement to plot
- **resolution**: resolution of grid
- **k**: number of knots for the gm
- **...**: Additional arguments to pass to `plot()`

Value

Named vector of optimized regularization parameters.

Without space:

- **lambda_cov**: Regularization strength in the `bioticStruct` object.
- **alpha_cov**: Weighting between L1 and L2 in the `bioticStruct` object.
- **lambda_coef**: Regularization strength in the `linear` or `DNN` object.
- **alpha_coef**: Weighting between L1 and L2 in the `linear` or `DNN` object.

With space:

- **lambda_cov**: Regularization strength in the `bioticStruct` object.
- **alpha_cov**: Weighting between L1 and L2 in the `bioticStruct` object.
- **lambda_coef**: Regularization strength in the `linear` or `DNN` object.
- **alpha_coef**: Weighting between L1 and L2 in the `linear` or `DNN` object.
- **lambda.spatial**: Regularization strength in the `linear` or `DNN` object for the spatial component.
- **alpha.spatial**: Weighting between L1 and L2 in the `linear` or `DNN` object for the spatial component.
plotInternalStructure  
Plot internal metacommunity structure

Description
Plot internal metacommunity structure

Usage
plotInternalStructure(
  object,
  Rsquared = c("McFadden", "Nagelkerke"),
  add_shared = FALSE,
  env_deviance = NULL,
  suppress_plotting = FALSE
)

Arguments

object  anova object from \texttt{anova.sjSDM}
Rsquared which R squared should be used, McFadden or Nagelkerke (McFadden is default)
add_shared split shared components, default is TRUE
env_deviance environmental deviance
suppress_plotting should the plots be suppressed or not.

Plots and returns the internal metacommunity structure of species and sites (see Leibold et al., 2022). Plots were heavily inspired by Leibold et al., 2022

Value
List with the following components:

plots  ggplot objects for sites and species.
data List of data.frames with the internal metacommunity structure.

References
Description
Plotting coefficients returned by sjSDM model. This function only for model fitted by linear, fitted by DNN is not yet supported.

Usage
plotsjSDMcoef(object, wrap_col = NULL, group = NULL, col = NULL, slist = NULL)

Arguments
- **object**: a model fitted by `sjSDM`
- **wrap_col**: Scales argument passed to `wrap_col`
- **group**: Define the taxonomic characteristics of a species, you need to provide a dataframe with column1 named “species” and column2 named “group”, default is NULL. For example, group[1,1] == "sp1", group[1,2] == "Mammal".
- **col**: Define colors for groups, default is NULL.
- **slist**: Select the species you want to plot, default is all, parameter is not supported yet.

Value
ggplot2 object

Author(s)
CAI Wang

Examples
```r
Not run:
library(sjSDM)
simulate community:
com = simulate_SDM(env = 6L, species = 7L, sites = 100L)

fit model:
model = sjSDM(Y = com$response, env = com$env_weights, iter = 2L, se = TRUE)

create a group dataframe for plot
species = c("sp1", "sp2", "sp3", "sp4", "sp5", "sp6", "sp7")
group = c("mammal", "bird", "fish", "fish", "mammal", "amphibian", "amphibian")

group = data.frame(species = species, group = group)

plot(model, group = group)
End(Not run)
```
predict.sjSDM  Predict from a fitted sjSDM model

Description
Predict from a fitted sjSDM model

Usage
## S3 method for class 'sjSDM'
predict(
or,         
newdata = NULL,  
SP = NULL,      
type = c("link", "raw"),  
dropout = FALSE,  
...            
)

Arguments
- object: a model fitted by sjSDM
- newdata: newdata for predictions
- SP: spatial predictors (e.g. X and Y coordinates)
- type: raw or link
- dropout: use dropout for predictions or not, only supported for DNNs
- ...: optional arguments for compatibility with the generic function, no function implemented

Value
Matrix of predictions (sites by species)

print.bioticStruct  Print a bioticStruct object

Description
Print a bioticStruct object

Usage
## S3 method for class 'bioticStruct'
print(x, ...)

Arguments
- x: object created by bioticStruct
- ...: optional arguments for compatibility with the generic function, no function implemented
print.DNN

Print a DNN object

Description

Print a DNN object

Usage

## S3 method for class 'DNN'
print(x, ...)

Arguments

x  
object created by DNN

...  
optional arguments for compatibility with the generic function, no function implemented

Value

Invisible formula object

print.linear

Print a linear object

Description

Print a linear object

Usage

## S3 method for class 'linear'
print(x, ...)

Arguments

x  
object created by linear

...  
optional arguments for compatibility with the generic function, no function implemented

Value

Invisible formula object
print.sjSDM  
*Print a fitted sjSDM model*

**Description**

Print a fitted sjSDM model

**Usage**

```r
S3 method for class 'sjSDM'
print(x, ...)
```

**Arguments**

- `x`: a model fitted by `sjSDM`
- `...`: optional arguments for compatibility with the generic function, no function implemented

**Value**

No return value

---

print.sjSDManova  
*Print sjSDM anova*

**Description**

Print sjSDM anova

**Usage**

```r
S3 method for class 'sjSDManova'
print(x, ...)
```

**Arguments**

- `x`: an object of `anova.sjSDM`
- `...`: optional arguments for compatibility with the generic function, no function implemented

**Value**

The above matrix is silently returned
### print.sjSDMimportance

Print importance

#### Description

Print importance

#### Usage

```r
S3 method for class 'sjSDMimportance'
print(x, ...)
```

#### Arguments

- `x`: an object of `importance`
- `...`: optional arguments for compatibility with the generic function, no function implemented

#### Value

The matrix above is silently returned.

---

### print.sjSDM_cv

Print a fitted sjSDM_cv model

#### Description

Print a fitted sjSDM_cv model

#### Usage

```r
S3 method for class 'sjSDM_cv'
print(x, ...)
```

#### Arguments

- `x`: a model fitted by `sjSDM_cv`
- `...`: optional arguments for compatibility with the generic function, no function implemented

#### Value

Above data frame is silently returned.
**RMSprop**

**Description**

RMSprop optimizer

**Usage**

```r
RMSprop(
 alpha = 0.99,
 eps = 1e-08,
 weight_decay = 1e-04,
 momentum = 0.1,
 centered = FALSE
)
```

**Arguments**

- **alpha**: decay factor
- **eps**: fuzz factor
- **weight_decay**: l2 penalty on weights
- **momentum**: momentum
- **centered**: centered or not

**Value**

Anonymous function that returns optimizer when called.

---

**R-squared**

**Description**

calculate R-squared following McFadden or Nagelkerke

**Usage**

```r
Rsquared(model, method = c("McFadden", "Nagelkerke"))
```

**Arguments**

- **model**: model
- **method**: McFadden or Nagelkerke
Details

Calculate R-squared following Nagelkerke or McFadden:

- Nagelkerke: \( R^2 = 1 - \exp\left(\frac{2}{N} \cdot (\log L_0 - \log L_1)\right) \)
- McFadden: \( R^2 = 1 - \frac{\log L_1}{\log L_0} \)

Value

R-squared as numeric value

Author(s)

Maximilian Pichler

---

**setWeights**  
*Set weights*

Description

set layer weights and sigma in sjSDM with DNN object

Usage

```r
setWeights(object, weights)
```

### S3 method for class 'sjSDM'

```r
setWeights(object, weights = NULL)
```

Arguments

- `object`  
oobject of class sjSDM with DNN object
- `weights`  
list of layer weights: list(env=list(matrix(...)), spatial=list(matrix(...)), sigma=matrix(...)), see getWeights

Value

No return value, weights are changed in place.
**SGD**

**Description**

stochastic gradient descent optimizer

**Usage**

```r
SGD(momentum = 0.5, dampening = 0, weight_decay = 0, nesterov = TRUE)
```

**Arguments**

- `momentum`: strength of momentum
- `dampening`: decay
- `weight_decay`: l2 penalty on weights
- `nesterov`: Nesterov momentum or not

**Value**

Anonymous function that returns optimizer when called.

---

**simulate.sjSDM**

*Generates simulations from sjSDM model*

**Description**

Simulate nsim responses from the fitted model following a multivariate probit model. So currently only supported for `family = stats::binomial("probit")`

**Usage**

```r
S3 method for class 'sjSDM'
simulate(object, nsim = 1, seed = NULL, ...)
```

**Arguments**

- `object`: a model fitted by `sjSDM`
- `nsim`: number of simulations
- `seed`: seed for random number generator
- `...`: optional arguments for compatibility with the generic function, no functionality implemented

**Value**

Array of simulated species occurrences of dimension order [nsim, sites, species]
**simulate_SDMSimulate joint Species Distribution Models**

**Description**
Simulate species distributions

**Usage**

```r
simulate_SDM(
 env = 5L,
 sites = 100L,
 species = 5L,
 correlation = TRUE,
 weight_range = c(-1, 1),
 link = "probit",
 response = "pa",
 sparse = NULL,
 tolerance = 0.05,
 iter = 20L,
 seed = NULL
)
```

**Arguments**

- `env` number of environment variables
- `sites` number of sites
- `species` number of species
- `correlation` correlated species TRUE or FALSE, can be also a function or a matrix
- `weight_range` sample true weights from uniform range, default -1,1
- `link` probit, logit or identical
- `response` pa (presence-absence) or count
- `sparse` sparse rate
- `tolerance` tolerance for sparsity check
- `iter` tries until sparse rate is achieved
- `seed` random seed. Default = 42

**Details**
Probit is not possible for abundance response (response = 'count')

**Value**
List of simulation results:

- `env` Number of environmental covariates
- `species` Number of species
- `sites` Number of sites
**link**  
Which link

**response_type**  
Which response type

**response**  
Species occurrence matrix

**correlation**  
Species covariance matrix

**species_weights**  
Species-environment coefficients

**env_weights**  
Environmental covariates

**corr_acc**  
Method to calculate sign accuracy

**Author(s)**

Maximilian Pichler

---

**sjSDM**  
*Fitting scalable joint Species Distribution Models (sjSDM)*

**Description**

sjSDM is used to fit joint Species Distribution models (jSDMs) using the central processing unit (CPU) or the graphical processing unit (GPU). The default is a multivariate probit model based on a Monte-Carlo approximation of the joint likelihood. sjSDM can be used to fit linear but also deep neural networks and supports the well known formula syntax.

**Usage**

```r
sjSDM(
 Y = NULL,
 env = NULL,
 biotic = bioticStruct(),
 spatial = NULL,
 family = stats::binomial("probit"),
 iter = 100L,
 step_size = NULL,
 learning_rate = 0.01,
 se = FALSE,
 sampling = 100L,
 parallel = 0L,
 control = sjSDMControl(),
 device = "cpu",
 dtype = "float32",
 seed = 758341678
)

sjSDM.tune(object)
```
Arguments

- **Y**
  matrix of species occurrences/responses in range
- **env**
  matrix of environmental predictors, object of type `linear` or `DNN`
- **biotic**
  defines biotic (species-species associations) structure, object of type `bioticStruct`
- **spatial**
  defines spatial structure, object of type `linear` or `DNN`
- **family**
  error distribution with link function, see details for supported distributions
- **iter**
  number of fitting iterations
- **step_size**
  batch size for stochastic gradient descent, if `NULL` then `step_size` is set to: `step_size = 0.1*nrow(X)`
- **learning_rate**
  learning rate for Adamax optimizer
- **se**
  calculate standard errors for environmental coefficients
- **sampling**
  number of sampling steps for Monte Carlo integration
- **parallel**
  number of cpu cores for the data loader, only necessary for large datasets
- **control**
  control parameters for optimizer, see `sjSDMControl`
- **device**
  which device to be used, "cpu" or "gpu"
- **dtype**
  which data type, most GPUs support only 32 bit floats.
- **seed**
  seed for random operations
- **object**
  object of type `sjSDM_cv`

Details

The function fits per default a multivariate probit model via Monte-Carlo integration (see Chen et al., 2018) of the joint likelihood for all species.

**Model description:**

The most common jSDM structure describes the site \((i = 1, ..., I)\) by species \((j = 1, ..., J)\) matrix \(Y_{ij}\) as a function of environmental covariates \(X_{in}(n = 1, ..., N)\) covariates), and the species-species covariance matrix \(\Sigma\) accounts for correlations in \(e_{ij}\):

\[
g(Z_{ij}) = \beta_{j0} + \sum_{n=1}^{N} X_{in} \beta_{nj} + e_{ij}
\]

with \(g(.)\) as link function. For the multivariate probit model, the link function is:

\[
Y_{ij} = 1(Z_{ij} > 0)
\]

The probability to observe the occurrence vector \(Y_i\) is:

\[
Pr(Y_i|X_i\beta, \Sigma) = \int_{A_{1j}} \ldots \int_{A_{1J}} \phi_d(Y_i^+; X_i\beta, \Sigma) dY_{11}^+ \ldots dY_{1J}^+
\]

in the interval \(A_{ij}\) with \((-\infty, 0]\) if \(Y_{ij} = 0\) and \([0, +\infty]\) if \(Y_{ij} = 1\).

and \(\phi\) being the density function of the multivariate normal distribution.

The probability of \(Y_i\) requires to integrate over \(Y_i^+\) which has no closed analytical expression for more than two species which makes the evaluation of the likelihood computationally costly and needs a numerical approximation. The previous equation can be expressed more generally as:

\[
L(\beta, \Sigma; Y_i, X_i) = \int_{\Omega} \prod_{j=1}^{J} Pr(Y_{ij}|X_i\beta + \zeta)Pr(\zeta|\Sigma)d\zeta
\]
sjSDM approximates this integral by $M$ Monte-Carlo samples from the multivariate normal species covariance. After integrating out the covariance term, the remaining part of the likelihood can be calculated as in an univariate case and the average of the $M$ samples are used to get an approximation of the integral:

$$L(\beta, \Sigma; Y_i, X_i) \approx \frac{1}{M} \sum_{m=1}^{M} \prod_{j=1}^{J} \Pr(Y_{ij}|X_i \beta + \zeta_m)$$

with $\zeta_m \sim MVN(0, \Sigma)$.

sjSDM uses 'PyTorch' to run optionally the model on the graphical processing unit (GPU). Python dependencies needs to be installed before being able to use the sjSDM function. We provide a function which installs automatically python and the python dependencies. See install_sjSDM, vignette("Dependencies", package = "sjSDM") See Pichler and Hartig, 2020 for benchmark results.

Supported distributions:
Currently supported distributions and link functions:
- **binomial**: "probit" or "logit"
- **poisson**: "log"
- "nbinom": "log"
- **gaussian**: "identity"

Space:
We can extend the model to account for spatial auto-correlation between the sites by:

$$g(Z_{ij}) = \beta_{j0} + \sum_{n=1}^{N} X_{in} \beta_{nj} + \sum_{m=1}^{M} S_{im} \alpha_{mj} + e_{ij}$$

There are two ways to generate spatial predictors $S$:
- trend surface model - using spatial coordinates in a polynomial:
  `linear(data=Coords, ~0+poly(X, Y, degree = 2))`
- eigenvector spatial filtering - using spatial eigenvectors. Spatial eigenvectors can be generated by the generateSpatialEV function:
  `SPV = generateSpatialEV(Coords)`
  Then we use, for example, the first 20 spatial eigenvectors:
  `linear(data=SPV[ ,1:20], ~0+.)`

It is important to set the intercept to 0 in the spatial term (e.g. via ~0+. ) because the intercept is already set in the environmental object.

Installation:
install_sjSDM should be theoretically able to install conda and 'PyTorch' automatically. If sjSDM still does not work after reloading RStudio, you can try to solve this on your following our trouble shooting guide installation_help. If the problem remains, please create an issue on issue tracker with a copy of the install_diagnostic output as a quote.

Value
An S3 class of type `sjSDM` including the following components:

c1 Model call
formula Formula object for environmental covariates.
**Names**

Names of environmental covariates.

**Species**

Names of species (can be `NULL` if columns of Y are not named).

**Get_model**

Method which builds and returns the underlying 'python' model.

**LogLik**

negative log-Likelihood of the model and the regularization loss.

**Model**

The actual model.

**Settings**

List of model settings, see arguments of `sjSDM`.

**Family**

Response family.

**Time**

Runtime.

**Data**

List of Y, X (and spatial) model matrices.

**SessionInfo**

Output of `sessionInfo`.

**Weights**

List of model coefficients (environmental (and spatial)).

**Sigma**

Lower triangular weight matrix for the covariance matrix.

**History**

History of iteration losses.

**Se**

Matrix of standard errors, if `se = FALSE` the field 'se' is `NULL`.

Implemented S3 methods include `summary.sjSDM`, `plot.sjSDM`, `print.sjSDM`, `predict.sjSDM`, and `coef.sjSDM`. For other methods, see section 'See Also'.

`sjSDM.tune` returns an S3 object of class 'sjSDM', see above for information about values.

**Author(s)**

Maximilian Pichler

**References**


**See Also**

`getCor`, `getCov`, `update.sjSDM`, `sjSDM_cv`, `DNN`, `plot.sjSDM`, `print.sjSDM`, `predict.sjSDM`, `coef.sjSDM`, `summary.sjSDM`, `simulate.sjSDM`, `getSe`, `anova.sjSDM`, `importance`

**Examples**

```r
Not run:
Basic workflow:
simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

fit model:
model = sjSDM(Y = com$response, env = com$env_weights, iter = 50L)
increase iter for your own data

coef(model)
summary(model)
```
getCov(model)

## plot results
species = c("sp1", "sp2", "sp3", "sp4", "sp5", "sp6", "sp7")
group = c("mammal", "bird", "fish", "fish", "mammal", "amphibian", "amphibian")
group = data.frame(species = species, group = group)
plot(model, group = group)

## calculate post-hoc p-values:
p = getSe(model)
summary(p)

## or turn on the option in the sjSDM function:
model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
               family = binomial("probit"),
               iter = 2L)
summary(model)

## fit model with interactions:
model = sjSDM(Y = com$response,
              env = linear(data = com$env_weights, formula = ~X1:X2 + X3),
              se = TRUE,
              iter = 2L) # increase iter for your own data
summary(model)

## without intercept:
model = update(model, env_formula = ~0+X1:X2 + X3)
summary(model)

## predict with model:
preds = predict(model, newdata = com$env_weights)

## calculate R-squared:
R2 = Rsquared(model)
print(R2)

# With spatial terms:
## linear spatial model
XY = matrix(rnorm(200), 100, 2)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
              spatial = linear(XY, ~0+X1:X2),
              iter = 50L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = XY)
R2 = Rsquared(model)
print(R2)

## Using spatial eigenvectors as predictors to account
## for spatial autocorrelation is a common approach:
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
              spatial = linear(SPV, ~0+.lamda = 0.1),
              iter = 50L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)
## Visualize internal meta-community structure

```r
an = anova(model)
plot(an, internal=TRUE)
```

## non-linear(deep neural network) model

```r
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = DNN(SPV, hidden = c(5L, 5L), ~0+.),
 iter = 2L) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)
```

# Regularization

## lambda is the regularization strength

## alpha weights the lasso or ridge penalty:

- alpha = 0 --> pure lasso
- alpha = 1.0 --> pure ridge

```r
model = sjSDM(Y = com$response,
 env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),
 # we can do the same for the species-species associations
 biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
 iter = 2L) # increase iter for your own data
summary(model)
coef(model)
getCov(model)
```

# Anova

```r
com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)
XY = matrix(rnorm(400), 200, 2)
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
 spatial = linear(SPV, ~0+.),
 iter = 50L) # increase iter for your own data
result = anova(model)
print(result)
plot(result)
```

## visualize meta-community structure

```r
plot(result, internal=TRUE)
```

# Deep neural network

## we can fit also a deep neural network instead of a linear model:

```r
model = sjSDM(Y = com$response,
 env = DNN(com$env_weights, hidden = c(10L, 10L, 10L)),
 iter = 2L) # increase iter for your own data
summary(model)
getCov(model)
pred = predict(model, newdata = com$env_weights)
```

## extract weights

```r
weights = getWeights(model)
```
## we can also assign weights:
```r
setWeights(model, weights)
```

## with regularization:
```r
model = sjSDM(Y = com$response,
 env = DNN(com$env_weights, lambda = 0.01, alpha = 0.5),
 # we can do the same for the species-species associations
 biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
 iter = 2L) # increase iter for your own data
```
```r
getCov(model)
getWeights(model)
```

## End(Not run)

---

**sjSDMControl**  
*sjSDM control object*

### Description

sjSDM control object

### Usage

```r
sjSDMControl(
 optimizer = RMSprop(),
 scheduler = 0,
 lr_reduce_factor = 0.99,
 early_stopping_training = 0,
 mixed = FALSE
)
```

### Arguments

- **optimizer**: object of type `RMSprop`, `Adamax`, `SGD`, `AccSGD`, `madgrad`, or `AdaBound`
- **scheduler**: reduce lr on plateau scheduler or not (0 means no scheduler, > 0 number of epochs before reducing learning rate)
- **lr_reduce_factor**: factor to reduce learning rate in scheduler
- **early_stopping_training**: number of epochs without decrease in training loss before invoking early stopping (0 means no early stopping).
- **mixed**: mixed (half-precision) training or not. Only recommended for GPUs > 2000 series

### Value

List with the following fields:

- **optimizer**: Function which returns an optimizer.
- **scheduler_boolean**: Logical, use scheduler or not.
Cross validation of elastic net tuning

### Description

Cross validation of elastic net tuning

### Usage

```r
sjSDM_cv(
 Y,
 env = NULL,
 biotic = bioticStruct(),
 spatial = NULL,
 tune = c("random", "grid"),
 CV = 5L,
 tune_steps = 20L,
 alpha_cov = seq(0, 1, 0.1),
 alpha_coef = seq(0, 1, 0.1),
 alpha_spatial = seq(0, 1, 0.1),
 lambda_cov = 2^seq(-10, -1, length.out = 20),
 lambda_coef = 2^seq(-10, -0.5, length.out = 20),
 lambda_spatial = 2^seq(-10, -0.5, length.out = 20),
 device = "cpu",
 n_cores = NULL,
 n_gpu = NULL,
 sampling = 5000L,
 blocks = 1L,
 ...
)
```

### Arguments

- **Y**: species occurrence matrix
- **env**: matrix of environmental predictors or object of type `linear`, or `DNN`
- **biotic**: defines biotic (species-species associations) structure, object of type `bioticStruct`. Alpha and lambda have no influence
- **spatial**: defines spatial structure, object of type `linear`, or `DNN`
- **tune**: tuning strategy, random or grid search
- **CV**: n-fold cross validation or list of test indices
- **tune_steps**: number of tuning steps

scheduler_patience

- Integer, number of epochs to wait before applying plateau scheduler.

lr_reduce_factor

- Numerical, learning rate reduce factor.

mixed

- Logical, use mixed training or not.

early_stopping_training

- Numerical, early stopping after n epochs.
alpha_cov weighting of l1 and l2 on covariances: 
\[(1 - \alpha) \cdot |cov| + \alpha \cdot ||cov||^2\]

alpha_coef weighting of l1 and l2 on coefficients: 
\[(1 - \alpha) \cdot |coef| + \alpha \cdot ||coef||^2\]

alpha_spatial weighting of l1 and l2 on spatial coefficients: 
\[(1 - \alpha) \cdot |coef_s|p + \alpha \cdot ||coef_s|p||^2\]

lambda_cov overall regularization strength on covariances

lambda_coef overall regularization strength on coefficients

lambda_spatial overall regularization strength on spatial coefficients

device device, default cpu

n_cores number of cores for parallelization

n_gpu number of GPUs

sampling number of sampling steps for Monte Carlo integration

blocks blocks of parallel tuning steps

... arguments passed to sjSDM, see sjSDM

Value

An S3 class of type `sjSDM_cv` including the following components:

tune_results Data frame with tuning results.

short_summary Data frame with averaged tuning results.

summary Data frame with summarized averaged results.

settings List of tuning settings, see the arguments in DNN.

data List of Y, env (and spatial) objects.

config List of sjSDM settings, see arguments of sjSDM.

spatial Logical, spatial model or not.

Implemented S3 methods include sjSDM.tune, plot.sjSDM_cv, print.sjSDM_cv, and summary.sjSDM_cv

See Also

plot.sjSDM_cv, print.sjSDM_cv, summary.sjSDM_cv, sjSDM.tune

Examples

```r
Not run:
simulate sparse community:
com = simulate_SDM(env = 5L, species = 25L, sites = 50L, sparse = 0.5)
tune regularization:
tune_results = sjSDM_cv(Y = com$response,
 env = com$env_weights,
 tune = "random", # random steps in tune-parameter space
 CV = 2L, # 3-fold cross validation
 tune_steps = 2L,
 alpha_cov = seq(0, 1, 0.1),
 alpha_coef = seq(0, 1, 0.1),
 lambda_cov = seq(0, 0.1, 0.001),
 lambda_coef = seq(0, 0.1, 0.001),
 n_cores = 2L,
 sampling = 100L,
 # small models can be also run in parallel on the GPU
```
iter = 2L # we can pass arguments to sjSDM via...

# print overall results:
tune_results

# summary (mean values over CV for each tuning step)
summary(tune_results)

# visualize tuning and best points:
# best = plot(tune_results, perf = "logLik")

# fit model with best regularization parameter:
model = sjSDM.tune(tune_results)

summary(model)

## End(Not run)
Arguments

object: a model fitted by sjSDM_cv
...
optional arguments for compatibility with the generic function, no functionality implemented

Value

Above data frame is silently returned.

update.sjSDM

Update and re-fit a model call

Description

Update and re-fit a model call

Usage

## S3 method for class 'sjSDM'
update(object, env_formula = NULL, spatial_formula = NULL, biotic = NULL, ...)

Arguments

object: of class 'sjSDM'
env_formula: new environmental formula
spatial_formula: new spatial formula
biotic: new biotic config
...
additional arguments

Value

An S3 class of type 'sjSDM'. See sjSDM for more information.
Index

AccSGD, 3, 48
AdaBound, 4, 48
Adamax, 4, 48
anova.sjSDM, 5, 29, 32, 36, 45
binominal, 44
bioticStruct, 6, 31, 34, 43, 49
check_module, 10
checkModel, 9
coeff.sjSDM, 10, 45
DiffGrad, 10
DNN, 11, 15–17, 23, 28, 31, 35, 39, 43, 45, 49, 50
gaussian, 44
generateSpatialEV, 14, 44
getCor, 15, 45
getcov, 16, 45
getImportance, 16
getcv, 17, 45
getWeights, 17, 39
importance, 18, 30, 37, 45
install_diagnostic, 21, 21, 44
install_sjSDM, 19, 22, 22, 44
installation_help, 19, 21, 22, 44
is_torch_available, 22
linear, 12, 23, 31, 35, 43, 49
logLik.sjSDM, 26
madgrad, 26, 48
new_image, 27
predict.sjSDM, 34, 45
print.bioticStruct, 6, 34
print.DNN, 12, 35
print.linear, 23, 35
print.sjSDM, 36, 45
print.sjSDM_cv, 37, 50
print.sjSDManova, 6, 36
print.sjSDMimportance, 18, 37
RMSprop, 38, 48
Rsquare, 38
sessionInfo, 45
setWeights, 39
SGD, 40, 48
simulate.sjSDM, 40, 45
simulate.sjSDM, 41
sjSDM, 5, 7, 10, 12, 15–18, 23, 26–28, 33, 34, 36, 39, 40, 42, 44, 45, 50–52
sjSDM_tune, 45, 50
sjSDM_cv, 31, 37, 43, 45, 49, 52
sjSDMControl, 43, 48
summary.sjSDM, 45, 51
summary.sjSDM_cv, 50, 51
update.sjSDM, 45, 52