Package `sjstats`

Type Package
Encoding UTF-8
Title Collection of Convenient Functions for Common Statistical Computations
Version 0.18.1
Maintainer Daniel Lüdecke <d.luedecke@uke.de>
Description Collection of convenient functions for common statistical computations, which are not directly provided by R's base or stats packages. This package aims at providing, first, shortcuts for statistical measures, which otherwise could only be calculated with additional effort (like Cramer's V, Phi, or effect size statistics like Eta or Omega squared), or for which currently no functions available. Second, another focus lies on weighted variants of common statistical measures and tests like weighted standard error, mean, t-test, correlation, and more.
License GPL-3
Depends R (>= 3.5), utils
Imports bayestestR, broom, dplyr, effectsize, emmeans, insight, lme4, magrittr, MASS, modelr, parameters, performance, purrr, rlang, sjlabelled, sjmisc, stats, tidyr
Suggests brms, car, coin, ggplot2, graphics, pscl, pwr, sjPlot, survey, rstan, testthat
URL https://strengejacke.github.io/sjstats/
BugReports https://github.com/strengejacke/sjstats/issues
RoxygenNote 7.1.1
Config/testthat-edition 3
Config/testthat/parallel true
NeedsCompilation no
Author Daniel Lüdecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>)
Repository CRAN
Date/Publication 2021-01-09 13:50:02 UTC
R topics documented:

anova_stats .. 2
auto_prior .. 3
bootstrap .. 5
boot_ci .. 7
chisq_gof ... 9
cramer ... 11
cv ... 14
cv_error ... 15
design_effect ... 16
efc ... 17
find_beta .. 17
gmd .. 19
inequ_trend .. 20
is_prime .. 21
means_by_group ... 22
mean_n .. 23
mwu .. 25
nhanes_sample .. 26
prop .. 27
r2 .. 29
samplesize_mixed .. 30
se_ybar ... 31
survey_median ... 32
svyglm.nb .. 35
svyglm.zip ... 37
table_values ... 38
var_pop .. 39
weight .. 40

Index 42

anova_stats Effect size statistics for anova

Description

Returns the (partial) eta-squared, (partial) omega-squared, epsilon-squared statistic or Cohen’s F for all terms in an anovas. anova_stats() returns a tidy summary, including all these statistics and power for each term.

Usage

anova_stats(model, digits = 3)
auto_prior

Arguments

model A fitted anova-model of class aov or anova. Other models are coerced to anova.
digits Amount of digits for returned values.

Value

A data frame with all statistics is returned (excluding confidence intervals).

References

Examples

load sample data
data(efc)

fit linear model
fit <- aov(
 c12hour ~ as.factor(e42dep) + as.factor(c172code) + c160age,
 data = efc
)
Not run:
anova_stats(car::Anova(fit, type = 2))
End(Not run)

auto_prior

Create default priors for brms-models

Description

This function creates default priors for brms-regression models, based on the same automatic prior-scale adjustment as in rstanarm.

Usage

auto_prior(formula, data, gaussian, locations = NULL)
Arguments

- **formula**: A formula describing the model, which just needs to contain the model terms, but no notation of interaction, splines etc. Usually, you want only those predictors in the formula, for which automatic priors should be generated. Add informative priors afterwards to the returned *brmsprior*-object.

- **data**: The data that will be used to fit the model.

- **gaussian**: Logical, if the outcome is gaussian or not.

- **locations**: A numeric vector with location values for the priors. If *locations = NULL*, 0 is used as location parameter.

Details

`auto_prior()` is a small, convenient function to create some default priors for *brms*-models with automatically adjusted prior scales, in a similar way like *rstanarm* does. The default scale for the intercept is 10, for coefficients 2.5. If the outcome is gaussian, both scales are multiplied with \(sd(y) \). Then, for categorical variables, nothing more is changed. For numeric variables, the scales are divided by the standard deviation of the related variable.

All prior distributions are normal distributions. `auto_prior()` is intended to quickly create default priors with feasible scales. If more precise definitions of priors is necessary, this needs to be done directly with *brms*-functions like `set_prior()`.

Value

A *brmsprior*-object.

Note

As `auto_prior()` also sets priors on the intercept, the model formula used in *brms::brm()* must be rewritten to something like `y ~ 0 + intercept ...`, see `set_prior()`.

Examples

```r
library(sjmisc)
data(efc)
efc$c172code <- as.factor(efc$c172code)
efc$c161sex <- to_label(efc$c161sex)

mf <- formula(neg_c_7 ~ c161sex + c160age + c172code)

if (requireNamespace("brms", quietly = TRUE))
  auto_prior(mf, efc, TRUE)

## compare to
# library(rstanarm)
# m <- stan_glm(mf, data = efc, chains = 2, iter = 200)
# ps <- prior_summary(m)
# ps$prior_intercept$adjusted_scale
# ps$prior$adjusted_scale
```
usage
ap <- auto_prior(mf, efc, TRUE)
brm(mf, data = efc, priors = ap)

add informative priors
mf <- formula(neg_c_7 ~ c161sex + c172code)

if (requireNamespace("brms", quietly = TRUE)) {
 auto_prior(mf, efc, TRUE) +
 brms::prior(normal(.1554, 40), class = "b", coef = "c160age")
}

example with binary response
efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1)
mf <- formula(neg_c_7d ~ c161sex + c160age + c172code + e17age)

if (requireNamespace("brms", quietly = TRUE))
 auto_prior(mf, efc, FALSE)

--

bootstrap

Generate nonparametric bootstrap replications

Description

Generates \(n\) bootstrap samples of data and returns the bootstrapped data frames as list-variable.

Usage

`bootstrap(data, n, size)`

Arguments

- `data`: A data frame.
- `n`: Number of bootstraps to be generated.
- `size`: Optional, size of the bootstrap samples. May either be a number between 1 and `nrow(data)` or a value between 0 and 1 to sample a proportion of observations from data (see 'Examples').

Details

By default, each bootstrap sample has the same number of observations as data. To generate bootstrap samples without resampling same observations (i.e. sampling without replacement), use `size` to get bootstrapped data with a specific number of observations. However, specifying the `size`-argument is much less memory-efficient than the bootstrap with replacement. Hence, it is recommended to ignore the `size`-argument, if it is not really needed.
Value

A data frame with one column: a list-variable `strap`, which contains resample-objects of class `sj_resample`. These resample-objects are lists with three elements:

1. the original data frame, `data`
2. the rownumbers `id`, i.e. rownumbers of `data`, indicating the resampled rows with replacement
3. the `resample.id`, indicating the index of the resample (i.e. the position of the `sj_resample`-object in the list `strap`)

Note

This function applies nonparametric bootstrapping, i.e. the function draws samples with replacement.

There is an `as.data.frame`- and a `print`-method to get or print the resampled data frames. See 'Examples'. The `as.data.frame`- method automatically applies whenever coercion is done because a data frame is required as input. See 'Examples' in `boot_ci`.

See Also

`boot_ci` to calculate confidence intervals from bootstrap samples.

Examples

data(efc)
bs <- bootstrap(efc, 5)

now run models for each bootstrapped sample
lapply(bs$strap, function(x) lm(neg_c_7 ~ e42dep + c161sex, data = x))

generate bootstrap samples with 600 observations for each sample
bs <- bootstrap(efc, 5, 600)

generate bootstrap samples with 70% observations of the original sample size
bs <- bootstrap(efc, 5, .7)

compute standard error for a simple vector from bootstraps
use the `as.data.frame()`-method to get the resampled
data frame
bs <- bootstrap(efc, 100)
bs$c12hour <- unlist(lapply(bs$strap, function(x) {
 mean(as.data.frame(x)$c12hour, na.rm = TRUE)
}))

or as tidyverse-approach
if (require("dplyr") && require("purrr")) {
 bs <- efc %>%
 bootstrap(100) %>%
 mutate("
boot_ci

```r
c12hour = map_dbl(strap, ~mean(as.data.frame(.x)$c12hour, na.rm = TRUE))

# bootstrapped standard error
boot_se(bs, c12hour)
```

boot_ci

Standard error and confidence intervals for bootstrapped estimates

Description

Compute nonparametric bootstrap estimate, standard error, confidence intervals and p-value for a vector of bootstrap replicate estimates.

Usage

```r
boot_ci(data, ..., method = c("dist", "quantile"), ci.lvl = 0.95)

boot_se(data, ...)

boot_p(data, ...)

boot_est(data, ...)
```

Arguments

- `data` A data frame that contains the vector with bootstrapped estimates, or directly the vector (see 'Examples').
- `...` Optional, unquoted names of variables with bootstrapped estimates. Required, if either `data` is a data frame (and no vector), and only selected variables from `data` should be processed. You may also use functions like: or tidyselect's `select_helpers()`.
- `method` Character vector, indicating if confidence intervals should be based on bootstrap standard error, multiplied by the value of the quantile function of the t-distribution (default), or on sample quantiles of the bootstrapped values. See 'Details' in `boot_ci()`. May be abbreviated.
- `ci.lvl` Numeric, the level of the confidence intervals.

Details

The methods require one or more vectors of bootstrap replicate estimates as input.

- `boot_est()` returns the bootstrapped estimate, simply by computing the mean value of all bootstrap estimates.
- `boot_se()` computes the nonparametric bootstrap standard error by calculating the standard deviation of the input vector.
• The mean value of the input vector and its standard error is used by `boot_ci()` to calculate the lower and upper confidence interval, assuming a t-distribution of bootstrap estimate replicates (for `method = "dist"`, the default, which is `mean(x) +/- qt(.975, df = length(x) - 1) * sd(x)`); for `method = "quantile"`, 95% sample quantiles are used to compute the confidence intervals (`quantile(x, probs = c(.025, .975))`). Use `ci.lvl` to change the level for the confidence interval.

• P-values from `boot_p()` are also based on t-statistics, assuming normal distribution.

Value

A data frame with either bootstrap estimate, standard error, the lower and upper confidence intervals or the p-value for all bootstrapped estimates.

References

See Also

`bootstrap` to generate nonparametric bootstrap samples.

Examples

```r
library(dplyr)
library(purrr)
data(efc)
bs <- bootstrap(efc, 100)

# now run models for each bootstrapped sample
bs$models <- map(bs$strap, ~lm(neg_c_7 ~ e42dep + c161sex, data = .x))

# extract coefficient "dependency" and "gender" from each model
bs$dependency <- map_dbl(bs$models, ~coef(.x)[2])
bs$gender <- map_dbl(bs$models, ~coef(.x)[3])

# get bootstrapped confidence intervals
boot_ci(bs$dependency)

# compare with model fit
fit <- lm(neg_c_7 ~ e42dep + c161sex, data = efc)
confint(fit)[2, ]

# alternative function calls.
boot_ci(bs$dependency)
boot_ci(bs, dependency)
boot_ci(bs, dependency, gender)
boot_ci(bs, dependency, gender, method = "q")

# compare coefficients
```
mean(bs$dependency)
boot_est(bs$dependency)
coef(fit)[2]

bootstrap() and boot_ci() work fine within pipe-chains
efc %>%
 bootstrap(100) %>%
 mutate(
 models = map(strap, ~lm(neg_c_7 ~ e42dep + c161sex, data = .x)),
 dependency = map_dbl(models, ~coef(.x)[2])
) %>%
 boot_ci(dependency)

check p-value
boot_p(bs$gender)
summary(fit)$coefficients[3,]

Not run:
'spread_coef()' from the 'sjmisc'-package makes it easy to generate
bootstrapped statistics like confidence intervals or p-values
library(dplyr)
library(sjmisc)
efc %>%
 # generate bootstrap replicates
 bootstrap(100) %>%
 # apply lm to all bootstrapped data sets
 mutate(
 models = map(strap, ~lm(neg_c_7 ~ e42dep + c161sex + c172code, data = .x))
) %>%
 # spread model coefficient for all 100 models
 spread_coef(models) %>%
 # compute the CI for all bootstrapped model coefficients
 boot_ci(e42dep, c161sex, c172code)

or...
efc %>%
 # generate bootstrap replicates
 bootstrap(100) %>%
 # apply lm to all bootstrapped data sets
 mutate(
 models = map(strap, ~lm(neg_c_7 ~ e42dep + c161sex + c172code, data = .x))
) %>%
 # spread model coefficient for all 100 models
 spread_coef(models, append = FALSE) %>%
 # compute the CI for all bootstrapped model coefficients
 boot_ci()

End(Not run)
chisq_gof

Compute model quality

Description
For logistic regression models, performs a Chi-squared goodness-of-fit-test.

Usage
chisq_gof(x, prob = NULL, weights = NULL)

Arguments
x
A numeric vector or a glm-object.

prob
Vector of probabilities (indicating the population probabilities) of the same length as x’s amount of categories / factor levels. Use nrow(table(x)) to determine the amount of necessary values for prob. Only used, when x is a vector, and not a glm-object.

weights
Vector with weights, used to weight x.

Details
For vectors, this function is a convenient function for the chisq.test(), performing goodness-of-fit test. For glm-objects, this function performs a goodness-of-fit test. A well-fitting model shows no significant difference between the model and the observed data, i.e. the reported p-values should be greater than 0.05.

Value
For vectors, returns the object of the computed chisq.test. For glm-objects, an object of class chisq_gof with following values: p.value, the p-value for the goodness-of-fit test; z.score, the standardized z-score for the goodness-of-fit test; rss, the residual sums of squares term and chisq, the pearson chi-squared statistic.

References

Examples
data(efc)
efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1)
m <- glm(
 neg_c_7d ~ c161sex + barthtot + c172code,
 data = efc,
 family = binomial(link = "logit")
)
goodness-of-fit test for logistic regression
chisq_gof(m)

goodness-of-fit test for vectors against probabilities
differing from population
chisq_gof(efc$e42dep, c(0.3, 0.2, 0.22, 0.28))

equal to population
chisq_gof(efc$e42dep, prop.table(table(efc$e42dep)))

cramer

Measures of association for contingency tables

Description

This function calculates various measure of association for contingency tables and returns the statistic and p-value. Supported measures are Cramer’s V, Phi, Spearman’s rho, Kendall’s tau and Pearson’s r.

Usage

cramer(tab, ...)

S3 method for class 'formula'
cramer(
 formula,
 data,
 ci.lvl = NULL,
 n = 1000,
 method = c("dist", "quantile"),
 ...
)

phi(tab, ...)

crosstable_statistics(
 data,
 x1 = NULL,
 x2 = NULL,
 statistics = c("auto", "cramer", "phi", "spearman", "kendall", "pearson", "fisher"),
 weights = NULL,
 ...
)

xtab_statistics(
 data,
 x1 = NULL,
\texttt{x2 = NULL,}
\texttt{statistics = c("auto", "cramer", "phi", "spearman", "kendall", "pearson", "fisher"),}
\texttt{weights = NULL,}
\texttt{...}
\texttt{)}

\textbf{Arguments}

\begin{itemize}
\item \texttt{tab} \hspace{3cm} A \texttt{table} or \texttt{ftable}. Tables of class \texttt{xtabs} and other will be coerced to \texttt{ftable} objects.
\item \texttt{...} \hspace{3cm} Other arguments, passed down to the statistic functions \texttt{chisq.test, fisher.test} or \texttt{cor.test}.
\item \texttt{formula} \hspace{3cm} A formula of the form \texttt{lhs \sim rhs} where \texttt{lhs} is a numeric variable giving the data values and \texttt{rhs} a factor giving the corresponding groups.
\item \texttt{data} \hspace{3cm} A data frame or a table object. If a table object, \texttt{x1} and \texttt{x2} will be ignored. For Kendall's \texttt{tau}, Spearman's \texttt{rho} or Pearson's product moment correlation coefficient, \texttt{data} needs to be a data frame. If \texttt{x1} and \texttt{x2} are not specified, the first two columns of the data frames are used as variables to compute the crosstab.
\item \texttt{ci.lvl} \hspace{3cm} Scalar between 0 and 1. If not \texttt{NULL}, returns a data frame including lower and upper confidence intervals.
\item \texttt{n} \hspace{3cm} Number of bootstraps to be generated.
\item \texttt{method} \hspace{3cm} Character vector, indicating if confidence intervals should be based on bootstrap standard error, multiplied by the value of the quantile function of the t-distribution (default), or on sample quantiles of the bootstrapped values. See 'Details' in \texttt{boot_ci()}. May be abbreviated.
\item \texttt{x1} \hspace{3cm} Name of first variable that should be used to compute the contingency table. If \texttt{data} is a table object, this argument will be ignored.
\item \texttt{x2} \hspace{3cm} Name of second variable that should be used to compute the contingency table. If \texttt{data} is a table object, this argument will be ignored.
\item \texttt{statistics} \hspace{3cm} Name of measure of association that should be computed. May be one of \texttt{"auto", "cramer", "phi", "spearman", "kendall", "pearson" or "fisher"}. See 'Details'.
\item \texttt{weights} \hspace{3cm} Name of variable in \texttt{x} that indicated the vector of weights that will be applied to weight all observations. Default is \texttt{NULL}, so no weights are used.
\end{itemize}

\textbf{Details}

The p-value for Cramer's V and the Phi coefficient are based on \texttt{chisq.test()}. If any expected value of a table cell is smaller than 5, or smaller than 10 and the df is 1, then \texttt{fisher.test()} is used to compute the p-value, unless \texttt{statistics = "fisher"}; in this case, the use of \texttt{fisher.test()} is forced to compute the p-value. The test statistic is calculated with \texttt{cramer()} resp. \texttt{phi()}.

Both test statistic and p-value for Spearman's rho, Kendall's tau and Pearson's r are calculated with \texttt{cor.test()}.

When \texttt{statistics = "auto"}, only Cramer's V or Phi are calculated, based on the dimension of the table (i.e. if the table has more than two rows or columns, Cramer's V is calculated, else Phi).
Value

For `phi()`, the table's Phi value. For `cramer()`, the table's Cramer's V.

For `crosstable_statistics()`, a list with following components:

- `estimate` the value of the estimated measure of association.
- `p.value` the p-value for the test.
- `statistic` the value of the test statistic.
- `stat.name` the name of the test statistic.
- `stat.html` if applicable, the name of the test statistic, in HTML-format.
- `df` the degrees of freedom for the contingency table.
- `method` character string indicating the name of the measure of association.
- `method.html` if applicable, the name of the measure of association, in HTML-format.
- `method.short` the short form of association measure, equals the `statistics`-argument.
- `fisher` logical, if Fisher's exact test was used to calculate the p-value.

Examples

```r
# Phi coefficient for 2x2 tables
tab <- table(sample(1:2, 30, TRUE), sample(1:2, 30, TRUE))
phi(tab)

# Cramer's V for nominal variables with more than 2 categories
tab <- table(sample(1:2, 30, TRUE), sample(1:3, 30, TRUE))
cramer(tab)

# formula notation
data(efc)
cramer(e16sex ~ c161sex, data = efc)

# bootstrapped confidence intervals
cramer(e16sex ~ c161sex, data = efc, ci.lvl = .95, n = 100)

# 2x2 table, compute Phi automatically
crosstable_statistics(efc, e16sex, c161sex)

# more dimensions than 2x2, compute Cramer's V automatically
crosstable_statistics(efc, c172code, c161sex)

# ordinal data, use Kendall's tau
crosstable_statistics(efc, e42dep, quol_5, statistics = "kendall")

# calculate Spearman's rho, with continuity correction
crosstable_statistics(efc, e42dep, quol_5, statistics = "spearman",
                   exact = FALSE)
```
cv

Description

Compute the coefficient of variation.

Usage

`cv(x, ...)`

Arguments

- `x`: Fitted linear model of class `lm`, `merMod` (lme4) or `lme` (nlme).
- `...`: More fitted model objects, to compute multiple coefficients of variation at once.

Details

The advantage of the `cv` is that it is unitless. This allows coefficient of variation to be compared to each other in ways that other measures, like standard deviations or root mean squared residuals, cannot be.

Value

Numeric, the coefficient of variation.

Examples

```r
data(efc)
fit <- lm(barthtot ~ c160age + c12hour, data = efc)
cv(fit)
```
cv_error

Test and training error from model cross-validation

Description

`cv_error()` computes the root mean squared error from a model fitted to kfold cross-validated test-training-data. `cv_compare()` does the same, for multiple formulas at once (by calling `cv_error()` for each formula).

Usage

```r
cv_error(data, formula, k = 5)
```

```r
cv_compare(data, formulas, k = 5)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>A data frame.</td>
</tr>
<tr>
<td>formula</td>
<td>The formula to fit the linear model for the test and training data.</td>
</tr>
<tr>
<td>k</td>
<td>The number of folds for the kfold-crossvalidation.</td>
</tr>
<tr>
<td>formulas</td>
<td>A list of formulas, to fit linear models for the test and training data.</td>
</tr>
</tbody>
</table>

Details

`cv_error()` first generates cross-validated test-training pairs, using `crossv_kfold` and then fits a linear model, which is described in `formula`, to the training data. Then, predictions for the test data are computed, based on the trained models. The training error is the mean value of the `rmse` for all trained models; the test error is the `rmse` based on all residuals from the test data.

Value

A data frame with the root mean squared errors for the training and test data.

Examples

```r
data(efc)
cv_error(efc, neg_c_7 ~ barthtot + c161sex)
```

```r
cv_compare(efc, formulas = list(
  neg_c_7 ~ barthtot + c161sex,
  neg_c_7 ~ barthtot + c161sex + e42dep,
  neg_c_7 ~ barthtot + c12hour))
```
design_effect

Description

Compute the design effect (also called Variance Inflation Factor) for mixed models with two-level design.

Usage

design_effect(n, icc = 0.05)

Arguments

- **n**: Average number of observations per grouping cluster (i.e. level-2 unit).
- **icc**: Assumed intraclass correlation coefficient for multilevel-model.

Details

The formula for the design effect is simply \((1 + (n -1) \times icc)\).

Value

The design effect (Variance Inflation Factor) for the two-level model.

References

Examples

```r
# Design effect for two-level model with 30 observations per
# cluster group (level-2 unit) and an assumed intraclass
# correlation coefficient of 0.05.
design_effect(n = 30)
```
efc

Sample dataset from the EUROFAMCARE project

Description

German data set from the European study on family care of older people.

References

find_beta

Determining distribution parameters

Description

find_beta(), find_normal() and find_cauchy() find the shape, mean and standard deviation resp. the location and scale parameters to describe the beta, normal or cauchy distribution, based on two percentiles. find_beta2() finds the shape parameters for a Beta distribution, based on a probability value and its standard error or confidence intervals.

Usage

find_beta(x1, p1, x2, p2)

find_beta2(x, se, ci, n)

find_cauchy(x1, p1, x2, p2)

find_normal(x1, p1, x2, p2)

Arguments

x1 Value for the first percentile.

p1 Probability of the first percentile.

x2 Value for the second percentile.

p2 Probability of the second percentile.
find_beta

- **x** Numeric, a probability value between 0 and 1. Typically indicates a prevalence rate of an outcome of interest; Or an integer value with the number of observed events. In this case, specify n to indicate the total number of observations.

- **se** The standard error of x. Either se or ci must be specified.

- **ci** The upper limit of the confidence interval of x. Either se or ci must be specified.

- **n** Numeric, number of total observations. Needs to be specified, if x is an integer (number of observed events), and no probability. See 'Examples'.

Details

These functions can be used to find parameter for various distributions, to define prior probabilities for Bayesian analyses. x1, p1, x2 and p2 are parameters that describe two quantiles. Given this knowledge, the distribution parameters are returned.

Use find_beta2(), if the known parameters are, e.g. a prevalence rate or similar probability, and its standard deviation or confidence interval. In this case, x should be a probability, for example a prevalence rate of a certain event. se then needs to be the standard error for this probability. Alternatively, ci can be specified, which should indicate the upper limit of the confidence interval of the probability (prevalence rate) x. If the number of events out of a total number of trials is known (e.g. 12 heads out of 30 coin tosses), x can also be the number of observed events, while n indicates the total amount of trials (in the above example, the function call would be: find_beta2(x = 12, n = 30)).

Value

A list of length two, with the two distribution parameters than can be used to define the distribution, which (best) describes the shape for the given input parameters.

References

Cook JD. Determining distribution parameters from quantiles. 2010: Department of Biostatistics, Texas (PDF)

Examples

```r
# example from blogpost:
# https://www.johndcook.com/blog/2010/01/31/parameters-from-percentiles/
# 10% of patients respond within 30 days of treatment
# and 80% respond within 90 days of treatment
find_normal(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
find_cauchy(x1 = 30, p1 = .1, x2 = 90, p2 = .8)

parms <- find_normal(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
curve(
  dnorm(x, mean = parms$mean, sd = parms$sd),
  from = 0, to = 200
)

parms <- find_cauchy(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
curve(
```

```r
```
gmd

dcauchy(x, location = parms$location, scale = parms$scale),
from = 0, to = 200
)

find_beta2(x = .25, ci = .5)

shapes <- find_beta2(x = .25, ci = .5)
curve(dbeta(x, shapes[[1]], shapes[[2]]))

find Beta distribution for 3 events out of 20 observations
find_beta2(x = 3, n = 20)

shapes <- find_beta2(x = 3, n = 20)
curve(dbeta(x, shapes[[1]], shapes[[2]]))

gmd Gini’s Mean Difference

Description

gmd() computes Gini’s mean difference for a numeric vector or for all numeric vectors in a data frame.

Usage

gmd(x, ...)

Arguments

x A vector or data frame.
... Optional, unquoted names of variables that should be selected for further processing. Required, if x is a data frame (and no vector) and only selected variables from x should be processed. You may also use functions like : tidyselect’s select_helpers().

Value

For numeric vectors, Gini’s mean difference. For non-numeric vectors or vectors of length < 2, returns NA.

Note

Gini’s mean difference is defined as the mean absolute difference between any two distinct elements of a vector. Missing values from x are silently removed.
References

David HA. Gini’s mean difference rediscovered. Biometrika 1968(55): 573-575

Examples

data(efc)
gmd(efc$e17age)
gmd(efc, e17age, c160age, c12hour)

inequ_trend Compute trends in status inequalities

Description

This method computes the proportional change of absolute (rate differences) and relative (rate ratios) inequalities of prevalence rates for two different status groups, as proposed by Mackenbach et al. (2015).

Usage

inequ_trend(data, prev.low, prev.hi)

Arguments

data A data frame that contains the variables with prevalence rates for both low and high status groups (see 'Examples').
prev.low The name of the variable with the prevalence rates for the low status groups.
prev.hi The name of the variable with the prevalence rates for the hi status groups.

Details

Given the time trend of prevalence rates of an outcome for two status groups (e.g. the mortality rates for people with lower and higher socioeconomic status over 40 years), this function computes the proportional change of absolute and relative inequalities, expressed in changes in rate differences and rate ratios. The function implements the algorithm proposed by Mackenbach et al. 2015.

Value

A data frame with the prevalence rates as well as the values for the proportional change in absolute (rd) and relative (rr) inequalities.

References

is_prime

Examples

This example reproduces Fig. 1 of Mackenbach et al. 2015, p.5

40 simulated time points, with an initial rate ratio of 2 and
a rate difference of 100 (i.e. low status group starts with a
prevalence rate of 200, the high status group with 100)

annual decline of prevalence is 1% for the low, and 3% for the
high status group

n <- 40
time <- seq(1, n, by = 1)
lo <- rep(200, times = n)
for (i in 2:n) lo[i] <- lo[i - 1] * .99

hi <- rep(100, times = n)
for (i in 2:n) hi[i] <- hi[i - 1] * .97

prev.data <- data.frame(lo, hi)

print values
inequ_trend(prev.data, lo, hi)

plot trends - here we see that the relative inequalities
are increasing over time, while the absolute inequalities
are first increasing as well, but later are decreasing
(while rel. inequ. are still increasing)
plot(inequ_trend(prev.data, lo, hi))

is_prime

Find prime numbers

Description

This functions checks whether a number is, or numbers in a vector are prime numbers.

Usage

`is_prime(x)`

Arguments

- `x` An integer, or a vector of integers.

Value

TRUE for each prime number in x, FALSE otherwise.
Examples

```r
is_prime(89)
is_prime(15)
is_prime(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
```
mean_n

digits Numeric, amount of digits after decimal point when rounding estimates and values.

out Character vector, indicating whether the results should be printed to console (out = "txt") or as HTML-table in the viewer-pane (out = "viewer") or browser (out = "browser"), or if the results should be plotted (out = "plot", only applies to certain functions). May be abbreviated.

encoding Character vector, indicating the charset encoding used for variable and value labels. Default is "UTF-8". Only used when out is not "txt".

file Destination file, if the output should be saved as file. Only used when out is not "txt".

Details

This function performs a One-Way-Anova with dv as dependent and grp as independent variable, by calling lm(count ~ as.factor(grp)). Then contrast is called to get p-values for each subgroup. P-values indicate whether each group-mean is significantly different from the total mean.

Value

For non-grouped data frames, means_by_group() returns a data frame with following columns: term, mean, N, std.dev, std.error and p.value. For grouped data frames, returns a list of such data frames.

Examples

data(efc)
means_by_group(efc, c12hour, e42dep)

data(iris)
means_by_group(iris, Sepal.Width, Species)

also works for grouped data frames
if (require("dplyr")) {
 efc %>%
 group_by(c172code) %>%
 means_by_group(c12hour, e42dep)
}

weighting
efc$weight <- abs(rnorm(n = nrow(efc), mean = 1, sd = .5))
means_by_group(efc, c12hour, e42dep, weights = weight)

mean_n

Row means with min amount of valid values

Description

This function is similar to the SPSS MEAN.n function and computes row means from a data.frame or matrix if at least n values of a row are valid (and not NA).
Usage

mean_n(dat, n, digits = 2)

Arguments

dat A data frame with at least two columns, where row means are applied.
n May either be
 • a numeric value that indicates the amount of valid values per row to calculate the row mean;
 • or a value between 0 and 1, indicating a proportion of valid values per row to calculate the row mean (see 'Details').
If a row’s sum of valid values is less than n, NA will be returned as row mean value.
digits Numeric value indicating the number of decimal places to be used for rounding mean value. Negative values are allowed (see 'Details').

Details

Rounding to a negative number of digits means rounding to a power of ten, so for example mean_n(df, 3, digits = -2) rounds to the nearest hundred.

For n, must be a numeric value from 0 to ncol(dat). If a row in dat has at least n non-missing values, the row mean is returned. If n is a non-integer value from 0 to 1, n is considered to indicate the proportion of necessary non-missing values per row. E.g., if n = .75, a row must have at least ncol(dat) * n non-missing values for the row mean to be calculated. See 'Examples'.

Value

A vector with row mean values of df for those rows with at least n valid values. Else, NA is returned.

References

r4stats.com

Examples

dat <- data.frame(c1 = c(1,2,NA,4),
c2 = c(NA,2,NA,5),
c3 = c(NA,4,NA,NA),
c4 = c(2,3,7,8))

needs at least 4 non-missing values per row
mean_n(dat, 4) # 1 valid return value

needs at least 3 non-missing values per row
mean_n(dat, 3) # 2 valid return values

needs at least 2 non-missing values per row
mean_n(dat, 2)
needs at least 1 non-missing value per row
mean_n(dat, 1) # all means are shown

needs at least 50% of non-missing values per row
mean_n(dat, .5) # 3 valid return values

needs at least 75% of non-missing values per row
mean_n(dat, .75) # 2 valid return values

Mann-Whitney-U-Test

Description

This function performs a Mann-Whitney-U-Test (or Wilcoxon rank sum test, see `wilcox.test` and `wilcox_test`) for x, for each group indicated by grp. If grp has more than two categories, a comparison between each combination of two groups is performed.

The function reports U, p and Z-values as well as effect size r and group-rank-means.

Usage

```r
mwu(
  data,
  x,
  grp,
  distribution = "asymptotic",
  out = c("txt", "viewer", "browser"),
  encoding = "UTF-8",
  file = NULL
)

mannwhitney(
  data,
  x,
  grp,
  distribution = "asymptotic",
  out = c("txt", "viewer", "browser"),
  encoding = "UTF-8",
  file = NULL
)
```

Arguments

- `data` A data frame.
- `x` Bare (unquoted) variable name, or a character vector with the variable name.
grp Bare (unquoted) name of the cross-classifying variable, where \(x \) is grouped into the categories represented by \(\text{grp} \), or a character vector with the variable name.

distribution Indicates how the null distribution of the test statistic should be computed. May be one of "exact", "approximate" or "asymptotic" (default). See \texttt{wilcox_test} for details.

out Character vector, indicating whether the results should be printed to console (\(\text{out} = \text{"txt"} \)) or as HTML-table in the viewer-pane (\(\text{out} = \text{"viewer"} \)) or browser (\(\text{out} = \text{"browser"} \)), or if the results should be plotted (\(\text{out} = \text{"plot"} \), only applies to certain functions). May be abbreviated.

encoding Character vector, indicating the charset encoding used for variable and value labels. Default is "UTF-8". Only used when \(\text{out} \) is not "txt".

file Destination file, if the output should be saved as file. Only used when \(\text{out} \) is not "txt".

Value

(Invisibly) returns a data frame with U, p and Z-values for each group-comparison as well as effect-size \(r \); additionally, group-labels and groups' n's are also included.

Note

This function calls the \texttt{wilcox_test} with formula. If \(\text{grp} \) has more than two groups, additionally a Kruskal-Wallis-Test (see \texttt{kruskal.test}) is performed.

Interpretation of effect sizes, as a rule-of-thumb:

- small effect \(\geq 0.1 \)
- medium effect \(\geq 0.3 \)
- large effect \(\geq 0.5 \)

Examples

```r
data(efc)
# Mann-Whitney-U-Tests for elder's age by elder's dependency.
mwu(efc, e17age, e42dep)
```

nhanes_sample Sample dataset from the National Health and Nutrition Examination Survey

Description

Selected variables from the National Health and Nutrition Examination Survey that are used in the example from Lumley (2010), Appendix E. See \texttt{svyglm.nb} for examples.
References

prop

Proportions of values in a vector

Description
prop() calculates the proportion of a value or category in a variable. props() does the same, but allows for multiple logical conditions in one statement. It is similar to mean() with logical predicates, however, both prop() and props() work with grouped data frames.

Usage
prop(data, ..., weights = NULL, na.rm = TRUE, digits = 4)
props(data, ..., na.rm = TRUE, digits = 4)

Arguments
data A data frame. May also be a grouped data frame (see ‘Examples’).
... One or more value pairs of comparisons (logical predicates). Put variable names the left-hand-side and values to match on the right hand side. Expressions may be quoted or unquoted. See ‘Examples’.
weights Vector of weights that will be applied to weight all observations. Must be a vector of same length as the input vector. Default is NULL, so no weights are used.
na.rm Logical, whether to remove NA values from the vector when the proportion is calculated. na.rm = FALSE gives you the raw percentage of a value in a vector, na.rm = TRUE the valid percentage.
digits Amount of digits for returned values.

Details
prop() only allows one logical statement per comparison, while props() allows multiple logical statements per comparison. However, prop() supports weighting of variables before calculating proportions, and comparisons may also be quoted. Hence, prop() also processes comparisons, which are passed as character vector (see ‘Examples’).

Value
For one condition, a numeric value with the proportion of the values inside a vector. For more than one condition, a data frame with one column of conditions and one column with proportions. For grouped data frames, returns a data frame with one column per group with grouping categories, followed by one column with proportions per condition.
Examples

data(efc)

proportion of value 1 in e42dep
prop(efc, e42dep == 1)

expression may also be completely quoted
prop(efc, "e42dep == 1")

use "props()" for multiple logical statements
props(efc, e17age > 70 & e17age < 80)

proportion of value 1 in e42dep, and all values greater
than 2 in e42dep, including missing values. will return a data frame
prop(efc, e42dep == 1, e42dep > 2, na.rm = FALSE)

for factors or character vectors, use quoted or unquoted values
library(sjmisc)
convert numeric to factor, using labels as factor levels
efc$e16sex <- to_label(efc$e16sex)
efc$n4pstu <- to_label(efc$n4pstu)

get proportion of female older persons
prop(efc, e16sex == female)

get proportion of male older persons
prop(efc, e16sex == "male")

"props()" needs quotes around non-numeric factor levels
props(efc,
e17age > 70 & e17age < 80,
n4pstu == 'Care Level 1' | n4pstu == 'Care Level 3'
)

also works with pipe-chains
library(dplyr)
efc %>% prop(e17age > 70)
efc %>% prop(e17age > 70, e16sex == 1)

and with group_by
efc %>%
 group_by(e16sex) %>%
 prop(e42dep > 2)

 efc %>%
 select(e42dep, c161sex, c172code, e16sex) %>%
 group_by(c161sex, c172code) %>%
 prop(e42dep > 2, e16sex == 1)

same for "props()"
efc %>%
 select(e42dep, c161sex, c172code, c12hour, n4pstu) %>%
group_by(c161sex, c172code) %>%
 props(
 e42dep > 2,
 c12hour > 20 & c12hour < 40,
 n4pstu == 'Care Level 1' | n4pstu == 'Care Level 3'
)

r2

Deprecated functions

Description

A list of deprecated functions.

Usage

r2(x)

icc(x)

p_value(x, ...)

se(x, ...)

cohens_f(x, ...)

eta_sq(x, ...)

epsilon_sq(x, ...)

omega_sq(x, ...)

scale_weights(x, ...)

tidy_stan(x, ...)

robust(x, ...)

mediation(x, ...)

Arguments

x
An object.

...
Currently not used.

Value

Nothing.
samplesize_mixed

Sample size for linear mixed models

Description

Compute an approximated sample size for linear mixed models (two-level-designs), based on power-calculation for standard design and adjusted for design effect for 2-level-designs.

Usage

```r
samplesize_mixed(
  eff.size,
  df.n = NULL,
  power = 0.8,
  sig.level = 0.05,
  k,
  n,
  icc = 0.05
)
```

```r
smpsize_lmm(
  eff.size,
  df.n = NULL,
  power = 0.8,
  sig.level = 0.05,
  k,
  n,
  icc = 0.05
)
```

Arguments

- `eff.size`: Effect size.
- `df.n`: Optional argument for the degrees of freedom for numerator. See 'Details'.
- `power`: Power of test (1 minus Type II error probability).
- `sig.level`: Significance level (Type I error probability).
- `k`: Number of cluster groups (level-2-unit) in multilevel-design.
- `n`: Optional, number of observations per cluster groups (level-2-unit) in multilevel-design.
- `icc`: Expected intraclass correlation coefficient for multilevel-model.

Details

The sample size calculation is based on a power-calculation for the standard design. If `df.n` is not specified, a power-calculation for an unpaired two-sample t-test will be computed (using
se_ybar

pwr.t.test of the **pwr**-package. If df.n is given, a power-calculation for general linear models will be computed (using **pwr.f2.test** of the **pwr**-package). The sample size of the standard design is then adjusted for the design effect of two-level-designs (see **design_effect**). Thus, the sample size calculation is appropriate in particular for two-level-designs (see Snijders 2005). Models that additionally include repeated measures (three-level-designs) may work as well, however, the computed sample size may be less accurate.

Value

A list with two values: The number of subjects per cluster, and the total sample size for the linear mixed model.

References

Examples

```r
# Sample size for multilevel model with 30 cluster groups and a small to medium effect size (Cohen's d) of 0.3. 27 subjects per cluster and hence a total sample size of about 802 observations is needed.
samplesize_mixed(eff.size = .3, k = 30)
```

```r
# Sample size for multilevel model with 20 cluster groups and a medium to large effect size for linear models of 0.2. Five subjects per cluster and hence a total sample size of about 107 observations is needed.
samplesize_mixed(eff.size = .2, df.n = 5, k = 20, power = .9)
```

se_ybar

Standard error of sample mean for mixed models

Description

Compute the standard error for the sample mean for mixed models, regarding the extent to which clustering affects the standard errors. May be used as part of the multilevel power calculation for cluster sampling (see Gelman and Hill 2007, 447ff).

Usage

```r
se_ybar(fit)
```
survey_median

Arguments

fit Fitted mixed effects model (merMod-class).

Value

The standard error of the sample mean of fit.

References

Examples

```r
if (require("lme4")) {
  fit <- lmer(Reaction ~ 1 + (1 | Subject), sleepstudy)
  se_ybar(fit)
}
```

Description

Weighted statistics for variables

weighted_sd(), weighted_se(), weighted_mean() and weighted_median() compute weighted standard deviation, standard error, mean or median for a variable or for all variables of a data frame. survey_median() computes the median for a variable in a survey-design (see svydesign). weighted_correlation() computes a weighted correlation for a two-sided alternative hypothesis.

Weighted tests

weighted_ttest() computes a weighted t-test, while weighted_mannwhitney() computes a weighted Mann-Whitney-U test or a Kruskal-Wallis test (for more than two groups). weighted_chisqtest() computes a weighted Chi-squared test for contingency tables.

Usage

```r
survey_median(x, design)
weighted_chisqtest(data, ...)  
## Default S3 method:  
weighted_chisqtest(data, x, y, weights, ...)
## S3 method for class 'formula'
```
weighted_chisqtest(formula, data, ...)

weighted_correlation(data, ...)

Default S3 method:
weighted_correlation(data, x, y, weights, ci.lvl = 0.95, ...)

S3 method for class 'formula'
weighted_correlation(formula, data, ci.lvl = 0.95, ...)

weighted_mean(x, weights = NULL)

weighted_median(x, weights = NULL)

weighted_mannwhitney(data, ...)

Default S3 method:
weighted_mannwhitney(data, x, grp, weights, ...)

S3 method for class 'formula'
weighted_mannwhitney(formula, data, ...)

weighted_sd(x, weights = NULL)

wtd_sd(x, weights = NULL)

weighted_se(x, weights = NULL)

weighted_ttest(data, ...)

Default S3 method:
weighted_ttest(
 data,
 x,
 y = NULL,
 weights,
 mu = 0,
 paired = FALSE,
 ci.lvl = 0.95,
 alternative = c("two.sided", "less", "greater"),
 ...
)

S3 method for class 'formula'
weighted_ttest(
 formula,
 data,
 mu = 0,
 ...
)
Arguments

x (Numeric) vector or a data frame. For survey_median(), weighted_ttest(), weighted_mannwhitney() and weighted_chisqtest() the bare (unquoted) variable name, or a character vector with the variable name.

design An object of class svydesign, providing a specification of the survey design.

data A data frame.

y Optional, bare (unquoted) variable name, or a character vector with the variable name.

weights Bare (unquoted) variable name, or a character vector with the variable name of the numeric vector of weights. If weights = NULL, unweighted statistic is reported.

formula A formula of the form lhs ~ rhs1 + rhs2 where lhs is a numeric variable giving the data values and rhs1 a factor with two levels giving the corresponding groups and rhs2 a variable with weights.

ci.lvl Confidence level of the interval.

grp Bare (unquoted) name of the cross-classifying variable, where x is grouped into the categories represented by grp, or a character vector with the variable name.

mu A number indicating the true value of the mean (or difference in means if you are performing a two sample test).

paired Logical, whether to compute a paired t-test.

alternative A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.

Value

The weighted (test) statistic.

Note

weighted_chisq() is a convenient wrapper for crosstable_statistics. For a weighted one-way Anova, use means_by_group() with weights-argument.

weighted_ttest() assumes unequal variance between the two groups.
svyglm.nb

Examples

weighted sd and se ----
weighted_sd(rnorm(n = 100, mean = 3), runif(n = 100))

data(efc)
weighted_sd(efc[, 1:3], runif(n = nrow(efc)))
weighted_sd(efc[, 1:3], runif(n = nrow(efc)))

survey_median ----
median for variables from weighted survey designs
if (require("survey")) {
 data(nhanes_sample)
 des <- svydesign(
 id = ~SDMVPSU,
 strat = ~SDMVSTRA,
 weights = ~WTINT2YR,
 nest = TRUE,
 data = nhanes_sample
)

 survey_median(total, des)
 survey_median("total", des)
}

weighted t-test ----
ecf$weight <- abs(rnorm(nrow(efc), 1, .3))
weighted_ttest(efc, e17age, weights = weight)
weighted_ttest(efc, e17age, c160age, weights = weight)
weighted_ttest(e17age ~ e16sex + weight, efc)

weighted Mann-Whitney-U-test ----
weighted_mannwhitney(c12hour ~ c161sex + weight, efc)

weighted Chi-squared-test ----
weighted_chisqtest(efc, c161sex, e16sex, weights = weight, correct = FALSE)
weighted_chisqtest(c172code ~ c161sex + weight, efc)

weighted Chi-squared-test for given probabilities ----
weighted_chisqtest(c172code ~ weight, efc, p = c(.33, .33, .34))

svyglm.nb

Survey-weighted negative binomial generalised linear model

Description

svyglm.nb() is an extension to the survey-package to fit survey-weighted negative binomial models. It uses svymle to fit sampling-weighted maximum likelihood estimates, based on starting values provided by glm.nb, as proposed by Lumley (2010, pp249).
Usage

svyglm.nb(formula, design, ...)

Arguments

formula An object of class formula, i.e. a symbolic description of the model to be fitted. See 'Details' in glm.

design An object of class svydesign, providing a specification of the survey design.

... Other arguments passed down to glm.nb.

Details

For details on the computation method, see Lumley (2010), Appendix E (especially 254ff.)

sjstats implements following S3-methods for svyglm.nb-objects: family(), model.frame(), formula(), print(), predict() and residuals(). However, these functions have some limitations:

• family() simply returns the family-object from the underlying glm.nb-model.
• The predict()-method just re-fits the svyglm.nb-model with glm.nb, overwrites the $coefficients from this model-object with the coefficients from the returned svymle-object and finally calls predict.glm to compute the predicted values.
• residuals() re-fits the svyglm.nb-model with glm.nb and then computes the Pearson-residuals from the glm.nb-object.

Value

An object of class svymle and svyglm.nb, with some additional information about the model.

References

Examples

--
This example reproduces the results from
Lumley 2010, figure E.7 (Appendix E, p256)
--
if (require("survey")) {
 data(nhanes_sample)

 # create survey design
des <- svydesign(
 id = ~SDMVPSU,
 strat = ~SDMVSTRA,
 weights = ~WTINT2YR,
 nest = TRUE,
 data = nhanes_sample
)
svyglm.zip

fit negative binomial regression
fit <- svyglm.nb(total ~ factor(RIAGENDR) * (log(age) + factor(RIDRETH1)), des)

print coefficients and standard errors
fit

svyglm.zip

Survey-weighted zero-inflated Poisson model

Description

svyglm.zip() is an extension to the survey-package to fit survey-weighted zero-inflated Poisson models. It uses svymle to fit sampling-weighted maximum likelihood estimates, based on starting values provided by zeroinfl.

Usage

svyglm.zip(formula, design, ...)

Arguments

formula An object of class formula, i.e. a symbolic description of the model to be fitted. See 'Details' in zeroinfl.
design An object of class svydesign, providing a specification of the survey design.
... Other arguments passed down to zeroinfl.

Details

Code modified from https://notstatschat.rbind.io/2015/05/26/zero-inflated-poisson-from-complex-samples/.

Value

An object of class svymle and svyglm.zip, with some additional information about the model.

Examples

if (require("survey")) {
 data(nhanes_sample)
 set.seed(123)
 nhanes_sample$malepartners <- rpois(nrow(nhanes_sample), 2)
 nhanes_sample$malepartners[sample(1:2992, 400)] <- 0

 # create survey design
 des <- svydesign(
 id = ~SDMVPSU,
strat = ~SDMVSTRAT,
weights = ~WTINT2YR,
nest = TRUE,
data = nhanes_sample
}

fit negative binomial regression
fit <- svyglm.zip(
 malepartners ~ age + factor(RIDRETH1) | age + factor(RIDRETH1),
des
)

print coefficients and standard errors
fit

table_values function

Description

This function calculates a table’s cell, row and column percentages as well as expected values and returns all results as lists of tables.

Usage

```r
table_values(tab, digits = 2)
```

Arguments

- `tab`: Simple `table` or `ftable` of which cell, row and column percentages as well as expected values are calculated. Tables of class `xtabs` and other will be coerced to `ftable` objects.
- `digits`: Amount of digits for the table percentage values.

Value

(Invisibly) returns a list with four tables:

1. `cell`: a table with cell percentages of `tab`
2. `row`: a table with row percentages of `tab`
3. `col`: a table with column percentages of `tab`
4. `expected`: a table with expected values of `tab`
Examples

```r
tab <- table(sample(1:2, 30, TRUE), sample(1:3, 30, TRUE))
# show expected values
table_values(tab)$expected
# show cell percentages
table_values(tab)$cell
```

var_pop

Calculate population variance and standard deviation

Description

Calculate the population variance or standard deviation of a vector.

Usage

```r
var_pop(x)
sd_pop(x)
```

Arguments

- `x` (Numeric) vector.

Details

Unlike `var`, which returns the sample variance, `var_pop()` returns the population variance. `sd_pop()` returns the standard deviation based on the population variance.

Value

The population variance or standard deviation of `x`.

Examples

```r
data(efc)
# sampling variance
var(efc$c12hour, na.rm = TRUE)
# population variance
var_pop(efc$c12hour)

# sampling sd
ds(efc$c12hour, na.rm = TRUE)
# population sd
ds_pop(efc$c12hour)
```
weight

Weight a variable

Description

These functions weight the variable \(x \) by a specific vector of \(\text{weights} \).

Usage

\[
\text{weight}(x, \text{weights}, \text{digits} = 0)
\]

\[
\text{weight2}(x, \text{weights})
\]

Arguments

\(x \)
(Unweighted) variable.

\(\text{weights} \)
Vector with same length as \(x \), which contains weight factors. Each value of \(x \) has a specific assigned weight in \(\text{weights} \).

\(\text{digits} \)
Numeric value indicating the number of decimal places to be used for rounding the weighted values. By default, this value is 0, i.e. the returned values are integer values.

Details

\text{weight2()} \) sums up all \(\text{weights} \) values of the associated categories of \(x \), whereas \text{weight()} \ uses a \texttt{xtabs} formula to weight cases. Thus, \text{weight()} \ may return a vector of different length than \(x \).

Value

The weighted \(x \).

Note

The values of the returned vector are in sorted order, whereas the values’ order of the original \(x \) may be spread randomly. Hence, \(x \) can’t be used, for instance, for further cross tabulation. In case you want to have weighted contingency tables or (grouped) box plots etc., use the \text{weightBy} argument of most functions.

Examples

\[
v <- \text{sample}(1:4, 20, \text{TRUE})
\]

\[
\text{table}(v)
\]

\[
w <- \text{abs(rnorm(20))}
\]

\[
\text{table}(\text{weight}(v, w))
\]

\[
\text{table}(\text{weight2}(v, w))
\]

\[
\text{set.seed(1)}
\]

\[
x <- \text{sample(letters[1:5], size = 20, replace = \text{TRUE})}
\]
w <- runif(n = 20)

table(x)
table(weight(x, w))
Index

* data
 efc, 17
 nhanes_sample, 26

anova, 3
anova_stats, 2
auto_prior, 3

boot.ci, 6, 7
boot_est (boot.ci), 7
boot_p (boot.ci), 7
boot_se (boot.ci), 7
bootstrap, 5, 8

chisq.test, 10, 12, 34
chisq_gof, 9
cohens_f (r2), 29
contrast, 23
cor.test, 12
cramer, 11
crosstable_statistics, 34
crosstable_statistics (cramer), 11
crossv_kfold, 15
cv, 14
cv_compare (cv_error), 15
cv_error, 15

design_effect, 16, 31
efc, 17
epsilon_sq (r2), 29
eta_sq (r2), 29

find_beta, 17
find_beta2 (find_beta), 17
find_cauchy (find_beta), 17
find_normal (find_beta), 17
fisher.test, 12
ftable, 12, 38

glm, 36
glm.nb, 35, 36
gmd, 19
grpmean (means_by_group), 22

icc (r2), 29
inequ_trend, 20
is_prime, 21

kruskal.test, 26

mannwhitney (mwu), 25
mean.n, 23
means_by_group, 22
mediation (r2), 29
merMod, 32

mwu, 25

nhanes_sample, 26

omega_sq (r2), 29

p_value (r2), 29
phi (cramer), 11
predict.glm, 36
prop, 27
props (prop), 27
pwr.f2.test, 31
pwr.t.test, 31

r2, 29
rmse, 15
robust (r2), 29

samplesize_mixed, 30
scale_weights (r2), 29
sd_pop (var_pop), 39
se (r2), 29
se_ybar, 31
set_prior, 4

samplesize_lmm (samplesize_mixed), 30
survey_median, 32
svydesign, 32, 34, 36, 37
svyglm.nb, 26, 35
svyglm.zip, 37
svymle, 35–37

table, 12, 38
table_values, 38
tidy_stan (r2), 29

var, 39
var_pop, 39

weight, 40
weight2 (weight), 40
weighted_chisqtest (survey_median), 32
weighted_correlation (survey_median), 32
weighted_mannwhitney (survey_median), 32
weighted_mean (survey_median), 32
weighted_median (survey_median), 32
weighted_sd (survey_median), 32
weighted_se (survey_median), 32
weighted_ttest (survey_median), 32
wilcox.test, 25
wilcox_test, 25, 26
wtd_sd (survey_median), 32

xtab_statistics (cramer), 11
xtabs, 12, 38, 40

zeroinfl, 37