Package ‘slgf’

February 17, 2021

Type Package
Title Bayesian Model Selection with Suspected Latent Grouping Factors
Version 0.1.0
Date 2021-02-15
Author Thomas A. Metzger and Christopher T. Franck
Maintainer Thomas A. Metzger <metzger.181@osu.edu>
Description Implements the Bayesian model selection method with suspected latent
grouping factor methodology of Metzger and Franck (2020),
<doi:10.1080/00401706.2020.1739561>. SLGF detects latent
heteroscedasticity or group-based regression effects based on the levels of a
user-specified categorical predictor. We encourage you to review examples in
vignette(“slgf_vignette”, “slgf”).
License GPL (>= 2)
Encoding UTF-8
Imports Rdpack, numDeriv, utils
RdMacros Rdpack
LazyData true
Depends R (>= 3.5.0)
Suggests knitr, captioner, formatR, rcrossref, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-02-17 18:50:02 UTC

R topics documented:

chips ... 2
column_centerer .. 3
extract.hats ... 3
Usage

data(chips)

Format

A data frame with 49 rows and 3 variables:

strength the response, the breaking strength.

film the chip’s film thickness, measured in 10^-4 inches.

starch the chip’s starch component: canna, corn, or potato

References

column_centerer

Column centerer for a design matrix.

Description

column_centerer Centers the columns of a matrix by the column mean.

Usage

column_centerer(mm)

Arguments

mm a model matrix.

Value

column_centerer centers the columns of a design matrix by each column’s mean.

Examples

set.seed(314159)
test.data <- data.frame("y"=c(rnorm(10,0,1), rnorm(10,3,1), rnorm(10,5,3)),
"x1"=c(rep("A",10), rep("B",10), rep("C",10)),
"x2"=rnorm(30,0,1))
m <- lm(y~x1+x2, data=test.data)
mm <- model.matrix(m)
column_centerer(mm)

extract.hats

Obtain the concentrated maximum likelihood estimators from a specified model.

Description

extract.hats Returns the concentrated maximum likelihood estimators from a specified model.

Usage

extract.hats(slgf.obj, model.index = NULL)

Arguments

slgf.obj output from ms.slgf
model.index the model index of the model for which estimates are desired.
Value

extract.hats returns a list with the following elements:
1) model, the model desired
2) scheme, the scheme associated with the model desired
3) coef, the regression coefficients associated with the model desired
4) sigsq, the error variance(s) associated with the model desired
5) g, the g estimate, if prior="zs"

Examples

Obtain the concentrated maximum likelihood estimates
for the second-most probable model.

library(numDeriv)

set.seed(314159)
test.data <- data.frame("y"=c(rnorm(10,0,1), rnorm(10,3,1), rnorm(10,5,3)),
 "x"=c(rep("A",10), rep("B",10), rep("C",10)))
test.models <- list("y-1", "y-x", "y-group")
test.models
test.out <- ms.slgf(dataf=test.data, response="y", lgf="x",
 usermodels=test.models,
 prior="flat", het=c(1,1,1), min.levels=1)
exttract.hats(test.out, 2)

groupings Groupings finder for two-way layouts.

Description

groupings Computes the possible grouping schemes for a two-way layout with r rows and c columns.

Usage

groupings(data_matrix)

Arguments

data_matrix an r by c data matrix.

Value

groupings returns the unique possible row-wise groupings of the input two-way layout.
Examples

Determine the possible row-wise groupings for an 8 by 5 matrix.
groupings(matrix(NA, nrow=8, ncol=5))

labeler

Labels observations according to group membership.

Description

labeler Returns a Boolean indicator for each observation’s group membership for a two-way layout.

Usage

labeler(nrows, ncols, combo.iteration)

Arguments

nrows the number of rows in the data matrix.
ncols the number of columns in the data matrix.
combo.iteration the index of the grouping scheme under consideration.

Value

labeler returns a vector of 1s and 0s corresponding to the input vector’s group membership by index.

locknut

Locknut data on torque required to tighten a fixture by plating method

Description

Meek and Ozgur (1991) analyzes the torque required to strengthen a fixture (bolt or mandrel) as a function of the fixture’s plating method (cadmium and wax, heat treating, and phosphate and oil, denoted CW, HT, and PO, respectively).

Usage

data(locknut)
Format

A data frame with 60 rows and 3 variables:

- **Torque** the response, the torque required to tighten the fixture.
- **Fixture** the type of fixture, bolt or mandrel.
- **Plating** the plating treatment, CW, HT, or PO.

References


```
lymphoma
```

* Lymphoma data on genomic hybridization signal from six dogs with normal and tumor tissue samples taken.

Description

Franck et. al. (2013) analyzes the genomic hybridization signal measured from normal and tumor tissue samples taken from six dogs.

Usage

data(lymphoma)

Format

A data frame with 6 rows and 2 variables:

- **V1** the signals from the normal tissue samples.
- **V2** the signals from the tumor tissue samples.

References

maketall

Converts a two-way layout into tall format with row and column index labels.

Description

`maketall` Converts a two-way layout into tall format with row and column index labels.

Usage

`maketall(data_matrix)`

Arguments

- `data_matrix`: an r by c data matrix.

Value

`maketall` returns a data frame containing the original observations, row labels, and column labels.

Examples

```r
library(slgf)
maketall(lymphoma)
```

ms.slgf

Bayesian Model Selection with Latent Group-Based Regression Effects and Heteroscedasticity

Description

`ms.slgf` Implements the model selection method proposed by (Metzger and Franck 2019).

Usage

```r
ms.slgf(
  dataf,
  response,
  lgf = NA,
  usermodels,
  prior = "flat",
  het = rep(0, length(usermodels)),
  min.levels = 1
)
```
Arguments

dataf
A data frame containing a continuous response, at least one categorical predictor, and any other covariates of interest. This data frame should not contain column names with the character string `group`.

$response$
A character string indicating the column of dataf that contains the response.

lgf
A character string indicating the column of `dataf` that contains the suspected latent grouping factor (SLGF).

$usermodels$
A list of length M where each element contains a string of *R* class formula or character indicating the models to consider. The term `group` should be used to replace the name of the slgf in models with group-based regression effects. This list must contain at least one model with group-based regression effects.

$prior$
A character string "flat" or "zs" indicating whether to implement the flat or Zellner-Siow mixture g-prior on regression effects, respectively. Defaults to "flat".

het
A vector of 0s and 1s of length M. If the mth element of het is 0, then the mth model of usermodels is considered in a homoscedastic context only; if the mth element of het is 1, the mth model of usermodels is considered in both homoscedastic and heteroscedastic contexts.

$\min.levels$
A numeric value indicating the minimum number of levels of the SLGF that can comprise a group. Defaults to 1.

Value

ms.slgf returns a list of six elements:

1) results, an M by 11 matrix where columns contain the model selection results and information for each model, including:
 - Model, the formula associated with each model;
 - Scheme, the grouping scheme associated with each model;
 - Variance, a label of whether each model is homoscedastic or heteroscedastic;
 - logFlik, the fractional log-likelihood associated with each model;
 - Mod.Prior, the prior assigned to each model;
 - Fmodprob, the fractional posterior probability associated with each model;
 - Cumulative, the cumulative fractional posterior probability associated with a given model and the previous models;
 - dataf.Index, an index indicating which element of group.datafs contains the corresponding group dataframe;
 - mle.index, an index indicating which element of coefficients, variances, and gs contains the corresponding estimates;
 - Model.Index, an index indicating where the model ranks in its posterior model probability;
 - Class, a label of the model with its group variance specification;

2) group.datafs, a list containing dataframes associated with each model class containing the appropriate effects, including group effects;

3) scheme.Probs, a data.frame containing the total posterior probability for each grouping scheme considered;

4) class.Probs, a data.frame containing the total posterior probability for each model class considered;
5) coefficients, MLEs for each model’s regression effects;
6) variances, MLEs based on concentrated likelihood for each model’s variance(s);
7) gs, MLEs based on concentrated likelihood for each model’s g; only included if prior="zs".

Author(s)

Thomas A. Metzger and Christopher T. Franck

References

Examples

```r
# Fit a heteroscedastic ANOVA example with distinct means by level of the LGF.
library(numDeriv)

set.seed(314159)
test.data <- data.frame("y"=c(rnorm(10,0,1), rnorm(10,3,1), rnorm(10,5,3)),
                          "x"=c(rep("A",10), rep("B",10), rep("C",10)))
test.models <- list("y~1", "y~x", "y~group")
test.out <- ms.slgf(dataf=test.data, response="y", lgf="x",
                   usermodels=test.models,
                   prior="flat", het=c(1,1,1), min.levels=1)
test.out$results[1:3,c(1:4,6,7)]
```

Description

Davies (1954) analyzes the wear on four tires, where each tire comprises three distinct compounds.

Usage

data(roadwear)

Format

A data frame with 12 rows and 3 variables:

- **abrasion** the measurement of abrasion.
- **compound** the compound from which each measurement was taken, either A, B, C, or D.
- **tire** the tire from which each measurement was taken, either 1, 2, 3, or 4.
References

Description

O’Brien and Heft (1995) studied the University of Pennsylvania Smell Identification Test (UPSIT). 180 subjects of different age groups were asked to describe 40 different odors. Olfactory index was quantified by the Freeman-Tukey modified arcsine transformation on the proportion of correctly identified odors. Subjects were divided into five age groups: group 1 if age 2 or younger; group 2 if between ages 26 and 40; group 3 if between ages 41 and 55; group 4 if between ages 56 and 70; and group 5 if older than 75.

Usage

data(smell)

Format

A data frame with 180 rows and 2 variables:

- agecat age category, from 1 to 5.
- olf olfactory function, measured as the Freeman-Tukey modified arcsine transformation on the proportion of correctly identified odors.

Source

SAS/STAT 15.2 User’s Guide

References

Index

* datasets
 chips, 2
 locknut, 5
 lymphoma, 6
 roadwear, 9
 smell, 10

 chips, 2
 column_centerer, 3

 extract.hats, 3

 groupings, 4

 labeler, 5
 locknut, 5
 lymphoma, 6

 maketall, 7
 ms.slgf, 7

 roadwear, 9

 smell, 10