Package ‘smam’

July 11, 2021

Title Statistical Modeling of Animal Movements
Version 0.6.0
Date 2021-07-10

Depends R (>= 3.3.0)
License GPL (>= 3.0)
Encoding UTF-8
LazyData true
Imports nlmintr, Matrix, stats, Rcpp, RcppParallel, doParallel, foreach, parallel, doSNOW, methods, numDeriv, EnvStats
Suggests R.rsp
LinkingTo Rcpp, RcppGSL, RcppParallel
SystemRequirements GNU GSL, GNU make, C++11
VignetteBuilder R.rsp
BugReports https://github.com/ChaoranHu/smam/issues
URL https://github.com/ChaoranHu/smam
RoxxygenNote 7.1.1
NeedsCompilation yes
Author Chaoran Hu [aut, cre], Vladimir Pozdnyakov [aut], Jun Yan [aut]
Maintainer Chaoran Hu <chaoran.hu@uconn.edu>
Repository CRAN
Date/Publication 2021-07-11 07:40:02 UTC
R topics documented:

approxNormalOrder .. 2
dtm ... 3
estVarMRME_Godambe .. 4
f109 ... 6
fitBMME ... 7
fitMM ... 9
fitMR ... 10
fitMRH ... 12
fitMRME .. 14
fitStateMR ... 16
fitStateMRH ... 18
integr.control .. 20
rBMME .. 20
rMM ... 21
rMR ... 22
rMRH .. 24
seasonFilter ... 25
smam ... 26
transfData ... 26

Index .. 28

| approxNormalOrder | Auxiliary for Preparing Discrete Distribution used to approximating Standard Normal Distribution |

Description

Auxiliary for preparing discrete distribution used to approximate standard normal. This function generates order statistics of standard normal with same probability assigned. Then, the discrete distribution is standardized to variance one and mean zero.

Usage

approxNormalOrder(m)

approxNormalOrder2(m, width)

Arguments

m int, the number of order statistics used
width the width between two consecutive grid points.

Details

This function use EnvStats::evNormOrdStats to get the order statistics of standard normal distribution. The same probability is assigned for each order statistic.
Value
A numeric matrix with first column is support of discrete distribution and second column is corresponding p.m.f..

Author(s)
Chaoran Hu

See Also
EnvStats::evNormOrdStats for order statistics of standard normal. fitMRMEapprox for fit MRME with approximated measurement error.

dtm
Density for Time Spent in Moving or Resting

Description
Density for time spent in moving or resting in a time interval, unconditional or conditional on the initial state.

Usage
```r
dtm(w, t, lamM, lamR, s0 = NULL)
dtr(w, t, lamM, lamR, s0 = NULL)
```

Arguments
- `w`: time points at which the density is to be evaluated
- `t`: length of the time interval
- `lamM`: rate parameter of the exponentially distributed duration in moving
- `lamR`: rate parameter of the exponentially distributed duration in resting
- `s0`: initial state. If NULL, the unconditional density is returned; otherwise, it is one of "m" or "s", standing for moving and resting, respectively, and the conditional density is returned given the initial state.

Details
dtm returns the density for time in moving; dtr returns the density for time in resting.

Value
a vector of the density evaluated at w.
Functions

- dtr: Density of time spent in resting

References

Examples

```r
lamM <- 1
lamR <- c(1/2, 1, 2)
lr <- length(lamR)
totalT <- 10
old.par <- par(no.readonly=TRUE)
par(mfrow=c(1, 2), mar=c(2.5, 2.5, 1.1, 0.1), mgp=c(1.5, 0.5, 0), las=1)
curve(dtm(x, totalT, 1, 1/2, "m"), 0, totalT, lty=1, ylim=c(0, 0.34),
      xlab="M(10)", ylab="density")
curve(dtm(x, totalT, 1, 1, "m"), 0, totalT, lty=2, add=TRUE)
curve(dtm(x, totalT, 1, 2, "m"), 0, totalT, lty=3, add=TRUE)
mtext(expression("S(0) = 1"))
legend("topleft", legend = expression(lambda[r] == 1/2, lambda[r] == 1,
                                       lambda[r] == 2), lty = 1:lr)
curve(dtm(x, totalT, 1, 1/2, "r"), 0, totalT, lty=1, ylim=c(0, 0.34),
      xlab="M(10)", ylab="density")
curve(dtm(x, totalT, 1, 1, "r"), 0, totalT, lty=2, add=TRUE)
curve(dtm(x, totalT, 1, 2, "r"), 0, totalT, lty=3, add=TRUE)
mtext(expression("S(0) = 0"))
legend("topleft", legend = expression(lambda[r] == 1/2, lambda[r] == 1,
                                       lambda[r] == 2), lty = 1:lr)
par(old.par)
```

estVarMRME_Godambe

Variance matrix of estimators from moving-resting process with measurement error

Description

'estVarMRME_Godambe' uses Godambe information matrix to obtain variance matrix of estimators from 'fitMRME'. 'estVarMRME_pBootstrap' uses parametric bootstrap to obtain variance matrix of estimators from 'fitMRME'. 'estVarMRMEnaive_Godambe' use Godambe information matrix to obtain variance matrix of estimators from 'fitMRME_naive'. 'estVarMRMEnaive_pBootstrap' uses parametric bootstrap to obtain variance matrix of estimators from 'fitMRME_naive'.
Usage

estVarMRME_Godambe(
est_theta,
data,
nBS,
numThreads = 1,
gradMethod = "simple",
integrControl = integr.control()
)
estVarMRME_pBootstrap(
est_theta,
data,
nBS,
detailBS = FALSE,
numThreads = 1,
integrControl = integr.control()
)
estVarMRMEnaive_Godambe(
est_theta,
data,
nBS,
numThreads = 1,
gradMethod = "simple",
integrControl = integr.control()
)
estVarMRMEnaive_pBootstrap(
est_theta,
data,
nBS,
detailBS = FALSE,
numThreads = 1,
integrControl = integr.control()
)

Arguments

est_theta estimators of MRME model
data data used to process estimation
nBS number of bootstrap.
numThreads the number of threads for parallel computation. If its value is greater than 1, then parallel computation will be processed. Otherwise, serial computation will be processed.
gradMethod method used for numeric gradient (numDeriv::grad).
integrControl a list of control parameters for the integrate function: rel.tol, abs.tol, subdivision.
detailBS whether or not output estimation results during bootstrap, which can be used to generate bootstrap CI.

Value

variance-covariance matrix of estimators

Author(s)

Chaoran Hu

Examples

Not run:
time consuming example
tgrid <- seq(0, 10*100, length=100)
set.seed(123)
dat <- rMRME(tgrid, 1, 0.5, 1, 0.01, "m")
estVarMRME_Godambe(c(1, 0.5, 1, 0.01), dat, nBS = 10)
estVarMRME_pBootstrap(c(1, 0.5, 1, 0.01), dat, nBS = 10)
estVarMRMEnaive_Godambe(c(1, 0.5, 1, 0.01), dat, nBS = 10)
estVarMRMEnaive_pBootstrap(c(1, 0.5, 1, 0.01), dat, nBS = 10)
estVarMRME_Godambe(c(1, 0.5, 1, 0.01), dat, nBS = 10, numThreads = 6)
estVarMRME_pBootstrap(c(1, 0.5, 1, 0.01), dat, nBS = 10, numThreads = 6)
estVarMRMEnaive_Godambe(c(1, 0.5, 1, 0.01), dat, nBS = 10, numThreads = 6)
estVarMRMEnaive_pBootstrap(c(1, 0.5, 1, 0.01), dat, nBS = 10, numThreads = 6)
estVarMRMEnaive_pBootstrap(c(1, 0.5, 1, 0.01), dat, nBS = 10, numThreads = 6)

End(Not run)

f109 GPS data of f109

Description

A dataset of GPS coordinates of a mature female mountain lion living in the Gros Ventre Mountain Range near Jackson, Wyoming. The data were collected by a code-only GPS wildlife tracking collar from 2019 to 2012.

Usage

f109
fitBMME

Format
A data frame with 3917 rows and 3 variables:

- **t**: time when the GPS coordinates were collected (unit: year)
- **dE**: UTM easting (unit: meter)
- **dN**: UTM northing (unit: meter)

fitBMME

Fit a Brownian Motion with Measurement Error

Description
Given discretely observed animal movement locations, fit a Brownian motion model with measurement errors. Using segment to fit part of observations to the model. A practical application of this feature is seasonal analysis.

Usage

```r
fitBMME(
  data, 
  start = NULL, 
  segment = NULL, 
  method = "Nelder-Mead", 
  optim.control = list()
)
```

```r
fitBmme(data, start = NULL, method = "Nelder-Mead", optim.control = list())
```

Arguments

data
- **data**: a data.frame whose first column is the observation time, and other columns are location coordinates. If segment is not **NULL**, additional column with the same name given by **segment** should be included. This additional column is used to indicate which part of observations should be used to fit model. The value of this column can be any integer with 0 means discarding this observation and non-0 means using this observation. Using different non-zero numbers indicate different segments. (See vignette for more details.)

start
- **start**: starting value of the model, a vector of two component, one for sigma (sd of BM) and the other for delta (sd for measurement error). If unspecified (**NULL**), a moment estimator will be used assuming equal sigma and delta.

segment
- **segment**: character variable, name of the column which indicates segments, in the given data.frame. The default value, **NULL**, means using whole dataset to fit the model.

method
- **method**: the method argument to feed `optim`.

optim.control
- **optim.control**: a list of control that is passed down to `optim`.
Details

The joint density of the increment data is multivariate normal with a sparse (tri-diagonal) covariance matrix. Sparse matrix operation from package Matrix is used for computing efficiency in handling large data.

Value

A list of the following components:

- `estimate`: the estimated parameter vector
- `var.est`: variance matrix of the estimator
- `loglik`: loglikelihood evaluated at the estimate
- `convergence`: convergence code from optim

References

See Also

- `fitMR`

Examples

```r
set.seed(123)
tgrid <- seq(0, 500, by = 1)
dat <- rBMME(tgrid, sigma = 1, delta = 0.5)

## using whole dataset to fit BMME
fit <- fitBMME(dat)
fit

## using part of dataset to fit BMME
batch <- c(rep(0, 100), rep(1, 200), rep(0, 50), rep(2, 100), rep(0, 51))
dat.segment <- cbind(dat, batch)
fit.segment <- fitBMME(dat.segment, segment = "batch")
head(dat.segment)
fit.segment
```
Description

Fit a Moving-Moving Model with 2 Embedded Brownian Motion with animal movement data at discretely observation times by maximizing a full likelihood constructed from the marginal density of increment. ‘estVarMM’ uses parametric bootstrap to obtain variance matrix of estimators from ‘fitMM’.

Usage

```r
fitMM(
  data,
  start,
  logtr = FALSE,
  method = "Nelder-Mead",
  optim.control = list(),
  integrControl = integr.control()
)

estVarMM(
  est_theta,
  data,
  nBS,
  detailBS = FALSE,
  numThreads = 1,
  integrControl = integr.control()
)
```

Arguments

- `data`: data used to process estimation
- `start`: starting value of the model, a vector of four components in the order of rate for moving1, rate for moving2, and volatility1(larger), volatility2(smaller).
- `logtr`: logical, if TRUE parameters are estimated on the log scale.
- `method`: the method argument to feed `optim`.
- `optim.control`: a list of control to be passed to `optim`.
- `integrControl`: a list of control parameters for the `integrate` function: rel.tol, abs.tol, subdivision.
- `est_theta`: estimators of MRME model
- `nBS`: number of bootstrap.
- `detailBS`: whether or not output estimation results during bootstrap, which can be used to generate bootstrap CI.
numThreads the number of threads for parallel computation. If its value is greater than 1, then parallel computation will be processed. Otherwise, serial computation will be processed.

Value

a list of the following components:

- estimate the estimated parameter vector
- loglik maximized loglikelihood or composite loglikelihood evaluated at the estimate
- convergence convergence code from optim

References

Examples

```r
## Not run:
## time consuming example
tgrid <- seq(0, 100, length=100)
set.seed(123)
dat <- rMM(tgrid, 1, 0.1, 1, 0.1, "m1")

## fit whole dataset to the MR model
fit <- fitMM(dat, start=c(1, 0.1, 1, 0.1))
fit

var <- estVarMM(fit$estimate, dat, nBS = 10, numThreads = 6)
var

## End(Not run)
```

fitMR

Fit a Moving-Resting Model with Embedded Brownian Motion

Description

Fit a Moving-Resting Model with Embedded Brownian Motion with animal movement data at discretely observation times by maximizing a composite likelihood constructed from the marginal density of increment. Using `segment` to fit part of observations to the model. A practical application of this feature is seasonal analysis.
Usage

fitMR(
 data,
 start,
 segment = NULL,
 likelihood = c("full", "composite"),
 logtr = FALSE,
 method = "Nelder-Mead",
 optim.control = list(),
 integrControl = integr.control()
)

fitMovRes(
 data,
 start,
 likelihood = c("full", "composite"),
 logtr = FALSE,
 method = "Nelder-Mead",
 optim.control = list(),
 integrControl = integr.control()
)

Arguments

data a data.frame whose first column is the observation time, and other columns are location coordinates. If segment is not NULL, additional column with the same name given by segment should be included. This additional column is used to indicate which part of observations should be used to fit model. The value of this column can be any integer with 0 means discarding this observation and non-0 means using this observation. Using different non-zero numbers indicate different segments. (See vignette for more details.)

start starting value of the model, a vector of three components in the order of rate for moving, rate for resting, and volatility.

segment character variable, name of the column which indicates segments, in the given data.frame. The default value, NULL, means using whole dataset to fit the model.

likelihood a character string specifying the likelihood type to maximize in estimation. This can be "full" for full likelihood or "composite" for composite likelihood.

logtr logical, if TRUE parameters are estimated on the log scale.

method the method argument to feed optim.

optim.control a list of control to be passed to optim.

integrControl a list of control parameters for the integrate function: rel.tol, abs.tol, subdivision.

Value

a list of the following components:
estimate the estimated parameter vector
loglik maximized loglikelihood or composite loglikelihood evaluated at the estimate
convergence convergence code from optim
likelihood likelihood type (full or composite) from the input

References

Examples

```r
## Not run:
## time consuming example
tgrid <- seq(0, 10, length=500)
set.seed(123)
## make it irregularly spaced
tgrid <- sort(sample(tgrid, 30)) # change to 400 for a larger sample
dat <- rMR(tgrid, 1, 2, 25, "m")

## fit whole dataset to the MR model
fit.fl <- fitMR(dat, start=c(2, 2, 20), likelihood = "full")
fit.fl

fit.cl <- fitMR(dat, start=c(2, 2, 20), likelihood = "composite")
fit.cl

## fit part of dataset to the MR model
batch <- c(rep(0, 5), rep(1, 7), rep(0, 4), rep(2, 10), rep(0, 4))
dat.segment <- cbind(dat, batch)
fit.segment <- fitMR(dat.segment, start = c(2, 2, 20), segment = "batch",
                       likelihood = "full")
head(dat.segment)
fit.segment

## End(Not run)
```

fitMRH
Fit a Moving-Resting-Handling Model with Embedded Brownian Motion

Description

Fit a Moving-Resting-Handling Model with Embedded Brownian Motion with animal movement data at discretely observation times by maximizing a full likelihood. Using segment to fit part of observations to the model. A practical application of this feature is seasonal analysis.
Usage

```r
fitMRH(
  data,
  start,
  segment = NULL,
  numThreads = RcppParallel::defaultNumThreads() * 3/4,
  lower = c(0.001, 0.001, 0.001, 0.001, 0.001),
  upper = c(10, 10, 10, 10, 0.999),
  integrControl = integr.control()
)
```

Arguments

- **data**: a data.frame whose first column is the observation time, and other columns are location coordinates. If `segment` is not `NULL`, additional column with the same name given by `segment` should be included. This additional column is used to indicate which part of observations should be used to fit model. The value of this column can be any integer with 0 means discarding this observation and non-0 means using this observation. Using different non-zero numbers indicate different segments. (See vignette for more details.)
- **start**: The initial value for optimization, in the order of rate of moving, rate of resting, rate of handling, volatility and switching probability.
- **segment**: character variable, name of the column which indicates segments, in the given data.frame. The default value, NULL, means using whole dataset to fit the model.
- **numThreads**: int, the number of threads allocated for parallel computation. The default setup is 3/4 available threads. If this parameter is less or equal to 1, the serial computation will be processed.
- **lower, upper**: Lower and upper bound for optimization.
- **integrControl**: Integration control vector includes rel.tol, abs.tol, and subdivisions.

Value

A list of estimation result with following components:

- **estimate**: the estimated parameter vector
- **loglik**: maximized loglikelihood or composite loglikelihood evaluated at the estimate
- **convergence**: convergence code from nloptr

Author(s)

Chaoran Hu

References

See Also

rMRH for simulation.

Examples

Not run:
time consuming example
set.seed(06269)
tgrid <- seq(0, 400, by = 8)
dat <- rMRH(tgrid, 4, 0.5, 0.1, 5, 0.8, 'm')
fitMRH(dat, c(4, 0.5, 0.1, 5, 0.8)) ## parallel process
fitMRH(dat, c(4, 0.5, 0.1, 5, 0.8), numThreads = -1) ## serial process

fit part of dataset to the MRH model
batch <- c(rep(0, 10), rep(1, 7), rep(0, 10), rep(2, 10), rep(0, 14))
dat.segment <- cbind(dat, batch)
fit.segment <- fitMRH(dat.segment, start = c(4, 0.5, 0.1, 5, 0.8), segment = "batch")
head(dat.segment)
fit.segment

End(Not run)

fitMRME

Fit a Moving-Resting Model with Measurement Error

Description

'fitMRME' fits a Moving-Resting Model with Measurement Error. The measurement error is modeled by Gaussian noise. Using `segment` to fit part of observations to the model. A practical application of this feature is seasonal analysis.

Usage

```r
fitMRME(
data,
start,
segment = NULL,
lower = c(1e-06, 1e-06, 1e-06, 1e-06),
upper = c(10, 10, 10, 10),
integrControl = integr.control()
)
```

```r
fitMRME_naive(
data,
start,
segment = NULL,
lower = c(1e-06, 1e-06, 1e-06, 1e-06),
```
`fitMRME`

```r
upper = c(10, 10, 10, 10),
integrControl = integr.control()
)

fitMRMEapprox(
  data,
  start,
  segment = NULL,
  approx_norm_even = approxNormalOrder(5),
  approx_norm_odd = approxNormalOrder(6),
  method = "Nelder-Mead",
  optim.control = list(),
  integrControl = integr.control()
)
```

Arguments

- **data**: a data.frame whose first column is the observation time, and other columns are location coordinates. If `segment` is not `NULL`, additional column with the same name given by `segment` should be included. This additional column is used to indicate which part of observations should be used to fit model. The value of this column can be any integer with 0 means discarding this observation and non-0 means using this observation. Using different non-zero numbers indicate different segments. (See vignette for more details.)
- **start**: starting value of the model, a vector of four components in the order of rate for moving, rate for resting, volatility, and s.d. of Gaussian measurement error.
- **segment**: character variable, name of the column which indicates segments, in the given data.frame. The default value, `NULL`, means using whole dataset to fit the model.
- **lower, upper**: Lower and upper bound for optimization.
- **integrControl**: a list of control parameters for the `integrate` function: `rel.tol`, `abs.tol`, `subdivision`.
- **approx_norm_even, approx_norm_odd**: numeric matrices specify the discrete distributions used to approximate standard normal distribution. The first column is support of discrete distribution and the second column is probability mass function. `approx_norm_even` is used to approximate even step error and `approx_norm_odd` is used to approximate odd step error. We mention that the supports of these two discrete distributions should not have any common elements.
- **method**: the method argument to feed `optim`.
- **optim.control**: a list of control to be passed to `optim`.

Value

A list of the following components:

- **estimate**: the estimated parameter vector
loglik maximized loglikelihood or composite loglikelihood evaluated at the estimate
convergence convergence code from optim

Author(s)
Chaoran Hu

References
Hu, C., Pozdnyakov, V., and Yan, J. Moving-resting model with measurement error. In process.

Examples
time consuming example
#tgrid <- seq(0, 10*100, length=100)
#set.seed(123)
#dat <- rMRME(tgrid, 1, 0.5, 1, 0.01, "m")

fit whole dataset to the MRME model
#fit <- fitMRME(dat, start=c(1, 0.5, 1, 0.01))
#fit

fit whole dataset to the MRME model with naive composite likelihood
#fit.naive <- fitMRME_naive(dat, start=c(1, 0.5, 1, 0.01))
#fit.naive

fit whole dataset to the MRME model with approximate error
#fit.approx <- fitMRMEapprox(dat, start=c(1, 0.5, 1, 0.01))
#fit.approx

fit part of dataset to the MR model
#batch <- c(rep(0, 5), rep(1, 17), rep(0, 4), rep(2, 30), rep(0, 4), rep(3, 40))
#dat.segment <- cbind(dat, batch)
#fit.segment <- fitMRME(dat.segment, start = c(1, 0.5, 1, 0.01), segment = "batch")
#fit.segment.approx <- fitMRMEapprox(dat.segment, start = c(1, 0.5, 1, 0.01), segment = "batch")
#head(dat.segment)
#fit.segment

fitStateMR Estimation of states at each time point with Moving-Resting Process

Description
Estimate the state at each time point under the Moving-Resting process with Embedded Brownian Motion with animal movement data at discretely time points. See the difference between fitStateMR and fitViterbiMR in detail part. Using fitPartialViterbiMR to estimate the state within a small piece of time interval.
Usage

```r
fitStateMR(data, theta, cutoff = 0.5, integrControl = integr.control())
fitViterbiMR(data, theta, cutoff = 0.5, integrControl = integr.control())
fitPartialViterbiMR(
  data, theta, cutoff = 0.5, startpoint, pathlength, integrControl = integr.control())
```

Arguments

- **data**: a `data.frame` whose first column is the observation time, and other columns are location coordinates.
- **theta**: the parameters for Moving-Resting model, in the order of rate of moving, rate of resting, volatility.
- **cutoff**: the cut-off point for prediction.
- **integrControl**: Integration control vector includes rel.tol, abs.tol, and subdivisions.
- **startpoint**: Start time point of interested time interval.
- **pathlength**: the length of interested time interval.

Details

fitStateMR estimates the most likely state by maximizing the probability of $Pr(S(t = t_k) = s_k|X)$, where X is the whole data and s_k is the possible state at t_k (moving, resting).

fitViterbiMR estimates the most likely state path by maximizing $Pr(S(t = t_0) = s_0, S(t = t_1) = s_1, ..., S(t = t_n) = s_n|X)$, where X is the whole data and $s_0, s_1, ..., s_n$ is the possible state path.

fitPartialViterbiMR estimates the most likely state path of a small piece of time interval, by maximizing the probability of $Pr(S(t = t_k) = s_k, ..., S(t = t_{k+q-1}) = s_{k+q-1}|X)$, where k is the start time point and q is the length of interested time interval.

Value

A `data.frame` contains estimated results, with elements:

- original data be estimated.
- conditional probability of moving, resting (p.m, p.r), which is $Pr(S(t = t_k) = s_k|X)$ for `fitStateMR`; $log - Pr(s_0, ..., s_k|X_k)$ for `fitViterbiMR`, where X_k is $(X_0, ..., X_k)$; and $log - Pr(s_k, ..., s_{k+q-1}|X)$ for `fitPartialViterbiMR`.
- estimated states with 1-moving, 0-resting.
fitStateMRH

Estimation of states at each time point with Moving-Resting-Handling Process

Description

Estimate the state at each time point under the Moving-Resting-Handling process with Embedded Brownian Motion with animal movement data at discretely time points. See the difference between fitStateMRH and fitViterbiMRH in detail part. Using fitPartialViterbiMRH to estimate the state during a small piece of time interval.

Usage

fitStateMRH(data, theta, integrControl = integr.control())

fitViterbiMRH(data, theta, integrControl = integr.control())

fitPartialViterbiMRH(
 data,
 theta,
 startpoint,
 pathlength,
 integrControl = integr.control()
)

Arguments

data a data.frame whose first column is the observation time, and other columns are location coordinates.

theta the parameters for Moving-Resting-Handling model, in the order of rate of moving, rate of resting, rate of handling, volatility and switching probability.
fitStateMRH

integrControl Integration control vector includes rel.tol, abs.tol, and subdivisions.
startpoint Start time point of interested time interval.
pathlength the length of interested time interval.

Details

fitStateMRH estimates the most likely state by maximizing the probability of \(Pr(S(t = t_k) = s_k | X) \), where \(X \) is the whole data and \(s_k \) is the possible state at \(t_k \) (moving, resting or handling).

fitViterbiMRH estimates the most likely state path by maximizing \(Pr(S(t = t_0) = s_0, S(t = t_1) = s_1, ..., S(t = t_n) = s_n | X) \), where \(X \) is the whole data and \(s_0, s_1, ..., s_n \) is the possible state path.

fitPartialViterbiMRH estimates the most likely state path of a small piece of time interval, by maximizing the probability of \(Pr(S(t = t_k) = s_k, ..., S(t = t_{k+q-1}) = s_{k+q-1} | X) \), where \(k \) is the start time point and \(q \) is the length of interested time interval.

Value

A data.frame contains estimated results, with elements:

- original data be estimated.
- conditional probability of moving, resting, handling (p.m, p.r, p.h), which is \(Pr(S(t = t_k) = s_k | X) \) for fitStateMRH; \(\log - Pr(s_0, ..., s_k | X_k) \) for fitViterbiMRH, where \(X_k \) is \((X_0, ..., X_k) \); and \(\log - Pr(s_k, ..., s_{k+q-1} | X) \) for fitPartialViterbiMRH.
- estimated states with 0-moving, 1-resting, 2-handling.

Author(s)

Chaoran Hu

References

See Also

rMRH for simulation. fitMRH for estimation of parameters.

Examples

```r
## Not run:
## time consuming example
set.seed(06269)
tgrid <- seq(0, 400, by = 8)
dat <- rMRH(tgrid, 4, 0.5, 0.1, 5, 0.8, 'm')
fitStateMRH(dat, c(4, 0.5, 0.1, 5, 0.8))
fitViterbiMRH(dat, c(4, 0.5, 0.1, 5, 0.8))
fitPartialViterbiMRH(dat, c(4, 0.5, 0.1, 5, 0.8), 20, 10)
```
integr.control Auxiliary for Controlling Numerical Integration

Description
Auxiliary function for the numerical integration used in the likelihood and composite likelihood functions. Typically only used internally by 'fitMR' and 'fitMRH'.

Usage
integr.control(
 rel.tol = .Machine$double.eps^0.25,
 abs.tol = rel.tol,
 subdivisions = 100L
)

Arguments
 rel.tol relative accuracy requested.
 abs.tol absolute accuracy requested.
 subdivisions the maximum number of subintervals.

Details
The arguments are the same as integrate, but passed down to the C API of Rdqags used by integrate.

Value
A list with components named as the arguments.

rBMME Sampling from Brown Motion with Measurement Error

Description
Given the volatility parameters of a Brownian motion and normally distributed measurement errors, generate the process at discretely observed time points of a given dimension.

Usage
rBMME(time, dim = 2, sigma = 1, delta = 1)
rBmme(time, dim = 2, sigma = 1, delta = 1)
Arguments

time vector of time points at which observations are to be sampled
dim (integer) dimension of the Brownian motion
sigma volatility parameter (sd) of the Brownian motion
delta sd parameter of measurement error

Value

A data.frame whose first column is the time points and whose other columns are coordinates of the locations.

References

Examples

tgrid <- seq(0, 10, length = 1001)
make it irregularly spaced
tgrid <- sort(sample(tgrid, 800))
dat <- rBMME(tgrid, 1, 1)
plot(dat[,1], dat[,2], xlab="t", ylab="X(t)", type="l")

rMM

Sampling from a Moving-Moving Process with 2 Embedded Brownian Motion

Description

A moving-moving process consists of two states: moving (large) and moving (small). The transition between the two states is modeled by an alternating renewal process, with exponentially distributed duration. An animal moves according to two Brownian motions with different volatility parameters.

Usage

rMM(time, lamM1, lamM2, sigma1, sigma2, s0, dim = 2)

Arguments

time time points at which observations are to be simulated
lamM1 rate parameter of the exponential duration while moving1
lamM2 rate parameter of the exponential duration while moving2
sigma1 volatility parameter of the Brownian motion while moving1
sigma2 volatility parameter of the Brownian motion while moving2
s0 the state at time 0, must be one of "m1" or "m2", for moving1 and moving2, respectively

`dim` (integer) dimension of the Brownian motion

Value

A `data.frame` whose first column is the time points and whose other columns are coordinates of the locations.

References

Examples

tgrid <- seq(0, 100, length=100)

dat <- rMR(tgrid, 1, 0.1, 1, 0.1, "m1")
plot(dat[,1], dat[,2], xlab="t", ylab="X(t)", type='l')
Arguments

time time points at which observations are to be simulated
lamM rate parameter of the exponential duration while moving
lamR rate parameter of the exponential duration while resting
sigma volatility parameter of the Brownian motion while moving
s0 the state at time 0, must be one of "m" or "r", for moving and resting, respectively
dim (integer) dimension of the Brownian motion
state indicates whether the simulation show the states at given time points.
sig_err s.d. of Gaussian white noise

Value

A data.frame whose first column is the time points and whose other columns are coordinates of the locations.

References

Examples

tgrid <- seq(0, 10, length=1001)
make it irregularly spaced
tgrid <- sort(sample(tgrid, 800))
dat <- rMR(tgrid, 1, 1, 1, "m")
plot(dat[,1], dat[,2], xlab="t", ylab="X(t)", type='l')

dat2 <- rMR(tgrid, 1, 1, 1, "m", state = TRUE)
head(dat2)

dat3 <- rMRME(tgrid, 1, 1, 1, 0.01, "m", state = TRUE)
head(dat3)
plot(dat3[,1], dat3[,3], xlab="t", ylab="Z(t)=X(t)+GWN(0.01)", type='l')
Sampling from a Moving-Resting-Handling Process with Embedded Brownian Motion

Description

A moving-resting-handling process consists of three states: moving, resting and handling. The transition between the three states is modeled by an alternating renewal process, with exponentially distributed duration. An animal stays at the same location while resting and handling (the choice of resting and handling depends on Bernoulli distribution), and moves according to a Brownian motion while moving state. The sequence of states is moving, resting or staying, moving, resting or staying ... or versus

Usage

rMRH(time, lamM, lamR, lamH, sigma, p, s0, dim = 2, state = FALSE)

Arguments

time time points at which observations are to be simulated
lamM rate parameter of the exponential duration while moving
lamR rate parameter of the exponential duration while resting
lamH rate parameter of the exponential duration while handling
sigma volatility parameter of the Brownian motion while moving
p probability of choosing resting, and 1-p is probability of choosing handling
s0 the state at time 0, must be one of "m" (moving), "r" (resting) or "h" (handling).
dim (integer) dimension of the Brownian motion
state indicates whether the simulation show the states at given time points.

Value

A data.frame whose first column is the time points and whose other columns are coordinates of the locations. If state is TRUE, the second column will be the simulation state.

Author(s)

Chaoran Hu

References

See Also

fitMRH for fitting model.
Examples

```r
set.seed(06269)
tgrid <- seq(0, 8000, length.out=1001)
dat <- rMRH(time=tgrid, lamM=4, lamR=0.04, lamH=0.2,
            sigma=1000, p=0.5, s0="m", dim=2)
plot(dat$time, dat$X1, type='l')
plot(dat$time, dat$X2, type='l')
plot(dat$X1, dat$X2, type='l')

set.seed(06269) ## show the usage of state
dat2 <- rMRH(time=tgrid, lamM=4, lamR=0.04, lamH=0.2,
             sigma=1000, p=0.5, s0="m", dim=2, state=TRUE)
head(dat)
head(dat2)
```

seasonFilter

Subsetting data during given season for each year (seasonal analysis toolbox)

Description

Return subsets of data from each year, which is in given time interval between `startDate` and `endDate`.

Usage

```r
seasonFilter(data, startDate, endDate)
```

Arguments

- `data`: The data be filtered, which has the same format as the output from `transfData`
- `startDate, endDate`: Start point and end point of time interval during a year, which has the format "MM-DD".

Value

A `data.frame` with inputted data and additional column 'BATCH' indicates which subset of inputted data is located within given time interval. In column 'BATCH', different integers stands for different segments and 0 stands for outside given time interval.

Author(s)

Chaoran Hu
smam

smam: Statistical Modeling of Animal Movements

Description

Animal movement models including moving-resting process with embedded Brownian motion, Brownian motion with measurement error, and moving-resting-handling process with embedded Brownian motion.

Author(s)

- *maintainer, author* Chaoran Hu <chaoran.hu@uconn.edu>
- *author* Vladimir Pozdnyakov <vladimir.pozdnyakov@uconn.edu>
- *author* Jun Yan <jun.yan@uconn.edu>

transfData

Transfer raw dataset to the standard dataset (seasonal analysis toolbox)

Description

Transfer the raw location dataset of animal to the standard dataset, which is acceptable in this packages. The raw dataset contains at least four components: 1. t1: data information. 2. dt..hr.: the difference of time between two sample points. 3. e1: the GPS coordinate of east-west. 4. n1: the GPS coordinate of north-south. (These weird variable names are from the original GPS data. We will change them in later version.)

Usage

transfData(data, dateFormat, roundValue = NULL, lengthUnit = "km")

Arguments

data
The raw dataset.
dateFormat
Character string indicates the format of date variable.
roundValue
Round GPS coordinate to roundValue with unit meter. If NULL (default), no rounding will be processed.
lengthUnit
Character string indicates the length unit of GPS coordinate, which can be "m" or "km" (default). Usually, we recommend not change the default setup of this parameter. Otherwise, numerical computation problem will happen.
transfData

Value

A `data.frame` containing the following components, which is standard format of dataset in this package:

- **date**: tells us the date of collecting this sample point.
- **cumTime**: cumulative time line. The collection of this data starts from time 0 in this time line. (Time unit is hours.)
- **centerE**: the centered east-west GPS coordinate with the center is the starting point (when `cumTime[1]`).
- **centerN**: the centered north-south GPS coordinate with the center is the starting point (when `cumTime[1]`).

Author(s)

Chaoran Hu

See Also

`as.Date` has parameter `format`, which is the same as the parameter `dateFormat` in this function.
Index

* datasets
 f109, 6
 approxNormalOrder, 2
 approxNormalOrder2 (approxNormalOrder), 2
 as.Date, 27
 dtm, 3
 dtr (dtm), 3
 estVarMM (fitMM), 9
 estVarMRMEnaive_Godambe, 4
 estVarMRMEnaive_pBootstrap
 (estVarMRMEnaive_Godambe), 4
 estVarMRME_Godambe, 4
 estVarMRME_pBootstrap
 (estVarMRME_Godambe), 4
 f109, 6
 fitBMME, 7
 fitBmme (fitBMME), 7
 fitMM, 9
 fitMovRes (fitMR), 10
 fitMR, 8, 10, 18
 fitMRH, 12, 19, 24
 fitMRME, 14
 fitMRMEnaive (fitMRME), 14
 fitMRMEnaive_pBootstrap
 (estVarMRME_Godambe), 4
 integr.control, 20
 rBMME, 20
 rBmme (rBMME), 20
 rMM, 21
 rMovRes (rMR), 22
 rMR, 18, 22
 rMRH, 14, 19, 24
 rMRME (rMR), 22
 seasonFilter, 25
 smam, 26
 transfData, 25, 26