Package ‘sovereign’

January 4, 2022

Title State-Dependent Empirical Analysis

Version 1.2.1

Description A set of tools for state-dependent empirical analysis through both VAR- and local projection-based state-dependent forecasts, impulse response functions, historical decompositions, and forecast error variance decompositions.

License GPL-3

URL https://github.com/tylerJPike/sovereign,
https://tylerjpike.github.io/sovereign/

BugReports https://github.com/tylerJPike/sovereign/issues

Encoding UTF-8

RoxygenNote 7.1.1

Imports broom, dplyr, future, furrr, ggplot2, gridExtra, lmtest, lubridate, magrittr, mclust, purrr, randomForest, sandwich, stats, stringr, strucchange, tidyr, xts, zoo

Suggests testthat, knitr, rmarkdown, quantmod, covr

VignetteBuilder knitr

NeedsCompilation no

Author Tyler J. Pike [aut, cre]

Maintainer Tyler J. Pike <tjpike7@gmail.com>

Repository CRAN

Date/Publication 2022-01-04 17:20:01 UTC

R topics documented:

covid_volatility_correction .. 2
FEVD ... 3
HD ... 5
IRF ... 6
LP ... 8
Implement the deterministic volatility correction method of Lenza, Michele and Giorgio Primiceri "How to Estimate a VAR after March 2020" (2020) [NBER Working Paper]. Correction factors are estimated via maximum likelihood.

Usage

\[
covid_volatility_correction(var, theta_initial = c(5, 2, 1.5, 0.8))
\]

Arguments

<table>
<thead>
<tr>
<th>var</th>
<th>VAR object</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta_initial</td>
<td>double: four element vector with scaling parameters, theta in Lenza and Primiceri (2020)</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>var</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>object</td>
</tr>
</tbody>
</table>
FEVD

See Also

- VAR()
- var_irf()
- var_fevd()
- var_hd()

Examples

```r
# simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2018-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

# estimate VAR
var = sovereign::VAR(
  data = Data,
  horizon = 10,
  freq = 'month',
  lag.ic = 'BIC',
  lag.max = 4)

# correct VAR for COVID shock
var = sovereign::covid_volatility_correction(var)

# impulse response functions
var.irf = sovereign::var_irf(var)

# forecast error variance decomposition
var.fevd = sovereign::var_fevd(var)

# historical shock decomposition
var.hd = sovereign::var_hd(var)
```

FEVD

Estimate forecast error variance decomposition

Description

Estimate the forecast error variance decomposition for VARs with either short or 'IV-short' structural errors. See VAR and RVAR documentation for details regarding structural errors.
Usage

FEVD(model, horizon = 10, scale = TRUE)

Arguments

model: VAR or RVAR class object
horizon: int: number of periods
scale: boolean: scale variable contribution as percent of total error

Value

long-form data.frame

See Also

VAR()
var_fevd()
RVAR()
rvar_fevd()

Examples

simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

estimate VAR
var =
 sovereign::VAR(
 data = Data,
 horizon = 10,
 freq = 'month',
 lag.ic = 'BIC',
 lag.max = 4)

impulse response functions
var.irf = sovereign::IRF(var)

forecast error variance decomposition
var.fevd = sovereign::FEVD(var)

historical shock decomposition
var.hd = sovereign::HD(var)
Description

Estimate the historical decomposition for VARs with either 'short' or 'IV-short' structural errors. See VAR and RVAR documentation for details regarding structural errors.

Usage

HD(model)

Arguments

model VAR or RVAR class object

Value

long-from data.frame

See Also

VAR()
var_hd()
RVAR()
rvar_hd()

Examples

simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date("2000-01-01"), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

estimate VAR
var =
 sovereign::VAR(
 data = Data,
 horizon = 10,
 freq = 'month',
 lag.ic = 'BIC',
 lag.max = 4)
impulse response functions
var.irf = sovereign::IRF(var)

forecast error variance decomposition
var.fevd = sovereign::FEVD(var)

historical shock decomposition
var.hd = sovereign::HD(var)

IRF

| Estimate impulse response functions |

Description
See VAR, RVAR, LP, and RLP documentation for details regarding models and structural errors.

Usage

```r
IRF(
    model,
    horizon = 10,
    CI = c(0.1, 0.9),
    bootstrap.type = "auto",
    bootstrap.num = 100,
    bootstrap.parallel = FALSE,
    bootstrap.cores = -1
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>model</code></td>
<td>VAR, RVAR, LP, or RLP class object</td>
</tr>
<tr>
<td><code>horizon</code></td>
<td>int: number of periods</td>
</tr>
<tr>
<td><code>CI</code></td>
<td>numeric vector: c(lower ci bound, upper ci bound)</td>
</tr>
<tr>
<td><code>bootstrap.type</code></td>
<td>string: bootstrapping technique to use ('auto', 'standard', or 'wild'); if auto then wild is used for IV or IV-short, else standard is used</td>
</tr>
<tr>
<td><code>bootstrap.num</code></td>
<td>int: number of bootstraps</td>
</tr>
<tr>
<td><code>bootstrap.parallel</code></td>
<td>boolean: create IRF draws in parallel</td>
</tr>
<tr>
<td><code>bootstrap.cores</code></td>
<td>int: number of cores to use in parallel processing; -1 detects and uses half the available cores</td>
</tr>
</tbody>
</table>
Value

data frame with columns `target`, `shock`, `horizon`, `response.lower`, `response`, `response.upper`;
regime-based models return a list with a data frame per regime.

See Also

`var_irf()`
`rvar_irf()`
`lp_irf()`
`rlp_irf()`

Examples

```r
# simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date("2000-01-01"), by = "month", length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

# estimate VAR
var = 
  sovereign::VAR(
    data = Data,
    horizon = 10,
    freq = "month",
    lag.ic = "BIC",
    lag.max = 4

# impulse response function
var.irf = sovereign::IRF(var)

# local projection forecasts
lp = 
  sovereign::LP(
    data = Data,
    horizon = c(1:10),
    lag.ic = "AIC",
    lag.max = 4,
    type = "both",
    freq = "month")

# LP impulse response function
lp.irf = sovereign::IRF(lp)
```
Estimate local projections

Usage

LP(
 data,
 horizons = 1,
 freq = "month",
 type = "const",
 p = 1,
 lag.ic = NULL,
 lag.max = NULL,
 NW = FALSE,
 NW_lags = NULL,
 NW_prewhite = NULL
)

Arguments

data data.frame, matrix, ts, xts, zoo: Endogenous regressors
horizons int: forecast horizons
freq string: frequency of data ("day", "week", "month", "quarter", or "year")
type string: type of deterministic terms to add ("none", "const", "trend", or "both")
p int: lags
lag.ic string: information criterion to choose the optimal number of lags ("AIC" or "BIC")
lag.max int: maximum number of lags to test in lag selection
NW boolean: Newey-West correction on variance-covariance matrix
NW_lags int: number of lags to use in Newey-West correction
NW_prewhite boolean: TRUE prewhite option for Newey-West correction (see sandwich::NeweyWest)

Value

list object with elements data, model, forecasts, residuals; if there is more than one forecast horizon estimated, then model, forecasts, residuals will each be a list where each element corresponds to a single horizon

References

See Also

LP()
lp_irf()
RLP()
rlp_irf()

Examples

simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

local projection forecasts
lp =
 sovereign::LP(
 data = Data,
 horizon = c(1:10),
 lag.ic = 'AIC',
 lag.max = 4,
 type = 'both',
 freq = 'month')

impulse response function
irf = sovereign::lp_irf(lp)

lp_irf

Estimate impulse response functions

Description

Estimate impulse response functions

Usage

lp_irf(lp, CI = c(0.1, 0.9), regime = NULL)

Arguments

lp
 LP output

CI
 numeric vector: c(lower ci bound, upper ci bound)

regime
 string: indicates regime index column of data
Value

long-form data.frame with one row per target-shock-horizon identifier

See Also

LP()
lp_irf()
RLP()
rlp_irf()

Examples

simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

local projection forecasts
lp =
 sovereign::LP(
 data = Data,
 horizon = c(1:10),
 lag.ic = 'AIC',
 lag.max = 4,
 type = 'both',
 freq = 'month')

impulse response function
irf = sovereign::lp_irf(lp)

Description

Chart residuals

Usage

plot_error(residuals, series = NULL, verticle = FALSE)
plot_fevd

Arguments
- residuals: data.frame: sovereign residuals object
- series: string: series to plot (default to all series)
- verticle: boolean: If true then stack all plots into one column

Value
grid of ggplot2 graphs

Description
Chart FEVDs

Usage
plot_fevd(fevd, responses = NULL, verticle = FALSE)

Arguments
- fevd: fevd object
- responses: string vector: responses to plot
- verticle: boolean: If true then stack all plots into one column

Value
grid of ggplot2 graphs

plot_forecast

Chart forecasts

Description
Chart forecasts

Usage
plot_forecast(forecasts, series = NULL, verticle = FALSE)
plot_individual_error

Arguments

forecasts data.frame: sovereign forecast object
series string: series to plot (default to all series)
verticle boolean: If true then stack all plots into one column

Value

grid of ggplot2 graphs

plot_hd

Chart HDs

Description

Chart HDs

Usage

plot_hd(hd, verticle = FALSE)

Arguments

hd hd object
verticle boolean: If true then stack all plots into one column

Value

grid of ggplot2 graphs

plot_individual_error

Chart individual residuals

Description

Chart individual residuals

Usage

plot_individual_error(
 data,
 target,
 title = NULL,
 ylab = NULL,
 freq = NULL,
 zeroline = FALSE
)
plot_individual_fevd

Arguments

data
 data.frame: sovereign residuals object

target
 string: series to plot

title
 string: chart title

ylab
 string: y-axis label

defreq
 string: frequency (acts as sub-title)

zeroline
 boolean: if TRUE then add a horizontal line at zero

Value

ggplot2 chart

Description

Plot an individual FEVD

Usage

plot_individual_fevd(fevd, response.var, title, ylab)

Arguments

fevd
 fevd object

response.var
 string: name of variable to treat as the response

title
 string: title of the chart

ylab
 string: y-axis label

Value

ggplot2 graph
plot_individual_forecast

Chart individual forecast

Description

Chart individual forecast

Usage

```r
plot_individual_forecast(
  data,
  target,
  title = NULL,
  ylab = NULL,
  freq = NULL,
  zeroline = FALSE
)
```

Arguments

- `data`: data.frame: sovereign model forecast
- `target`: string: series to plot
- `title`: string: chart title
- `ylab`: string: y-axis label
- `freq`: string: frequency (acts as sub-title)
- `zeroline`: boolean: if TRUE then add a horizontal line at zero

Value

ggplot2 chart

plot_individual_hd

Plot an individual HD

Description

Plot an individual HD

Usage

```r
plot_individual_hd(hd, target.var, title)
```
plot_individual_irf

Arguments

- `hd`: hd object
- `target.var`: string: name of variable to decompose into shocks
- `title`: string: title of the chart

Value

- ggplot2 graph

plot_individual_irf
Plot an individual IRF

Description

Plot an individual IRF

Usage

```r
plot_individual_irf(irf, shock.var, response.var, title, ylab)
```

Arguments

- `irf`: irf object
- `shock.var`: string: name of variable to treat as the shock
- `response.var`: string: name of variable to treat as the response
- `title`: string: title of the chart
- `ylab`: string: y-axis label

Value

- ggplot2 graph
plot.irf

Chart IRFs

Description

Chart IRFs

Usage

plot_irf(irf, shocks = NULL, responses = NULL, verticle = FALSE)

Arguments

- `irf` : irf object
- `shocks` : string vector: shocks to plot
- `responses` : string vector: responses to plot
- `verticle` : boolean: If true then stack all plots into one column

Value

grid of ggplot2 graphs

regimes

Identify regimes via unsupervised ML algorithms

Description

Usage

regimes(data, method = "rf", regime.n = NULL)

Arguments

- `data` : data.frame, matrix, ts, xts, zoo: Endogenous regressors
- `method` : string: regime assignment technique ("rf", "kmeans", "EM", or "BP")
- `regime.n` : int: number of regimes to estimate (applies to kmeans and EM)

Value

data as a data.frame with a regime column assigning rows to mutually exclusive regimes
Examples

```r
# simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

# estimate regime
regime =
  sovereign::regimes(
    data = Data,
    method = 'kmeans',
    regime.n = 3)
```

RLP

Estimate regime-dependent local projections

Description

Estimate a regime-dependent local projection (i.e. a state-dependent LP), with an exogenous state indicator, of the specification:

\[
Y_{t+h} = X_t \beta_s + \epsilon_t
\]

where \(t \) is the time index, and \(s \) is a mutually exclusive state of the world observed at time \(t \). When the regime vector is not supplied by the user, then a two-state regime series is estimated via random forest.

Usage

```r
RLP(
  data,
  horizons = 1,
  freq = "month",
  type = "const",
  p = 1,
  lag.ic = NULL,
  lag.max = NULL,
  NW = FALSE,
  NW_lags = NULL,
  NW_prewhite = NULL,
  regime = NULL,
  regime.method = "rf",
  regime.n = 2
)
```
Arguments

- `data` : data.frame, matrix, ts, xts, zoo: Endogenous regressors
- `horizons` : int: forecast horizons
- `freq` : string: frequency of data ('day', 'week', 'month', 'quarter', or 'year')
- `type` : string: type of deterministic terms to add ('none', 'const', 'trend', or 'both')
- `p` : int: lags
- `lag.ic` : string: information criterion to choose the optimal number of lags ('AIC' or 'BIC')
- `lag.max` : int: maximum number of lags to test in lag selection
- `NW` : boolean: Newey-West correction on variance-covariance matrix
- `NW_lags` : int: number of lags to use in Newey-West correction
- `NW_prewhite` : boolean: TRUE prewhite option for Newey-West correction (see sandwich::NeweyWest)
- `regime` : string: name or regime assignment vector in the design matrix (data)
- `regime.method` : string: regime assignment technique ('rf', 'kmeans', 'EM', 'BP')
- `regime.n` : int: number of regimes to estimate (applies to kmeans and EM)

Value

- list of lists, one list per regime, each regime with objects with elements `data`, `model`, `forecasts`, `residuals`; if there is more than one forecast horizon estimated, then `model`, `forecasts`, `residuals` will each be a list where each element corresponds to a single horizon

References

See Also

- `LP()`
- `lp_irf()`
- `RLP()`
- `rlp_irf()`

Examples

```r
# simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)
# add regime
Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))
```
local projection forecasts
rlp = sovereign::RLP(
data = Data,
regime = 'reg',
horizon = c(1:10),
freq = 'month',
p = 1,
type = 'const',
NW = TRUE,
NW_lags = 1,
NW_prewhite = FALSE)

impulse response function
rirf = sovereign::rlp_irf(rlp)

rlp_irf

Estimate regime-dependent impulse response functions

Description

Estimate regime-dependent impulse response functions

Usage

`rlp_irf(rlp, CI = c(0.1, 0.9))`

Arguments

- **rlp** RLP output
- **CI** numeric vector: c(lower ci bound, upper ci bound)

Value

list of long-form data.frame with one row per target-shock-horizon identifier

See Also

LP()
lp_irf()
RLP()
rlp_irf()
Examples

```r
# simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)
# add regime
Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))

# local projection forecasts
rlp =
  sovereign::RLP(
    data = Data,
    regime = 'reg',
    horizon = c(1:10),
    freq = 'month',
    p = 1,
    type = 'const',
    NW = TRUE,
    NW_lags = 1,
    NW_prewhte = FALSE)

# impulse response function
rirf = sovereign::rlp_irf(rlp)
```

RVAR

Estimate regime-dependent VAR, SVAR, or Proxy-SVAR

Description

Estimate a regime-dependent VAR (i.e. a state-dependent VAR), with an exogenous state indicator, of the specification:

\[Y_{t+1} = X_t \beta_s + \epsilon_t \]

where \(t \) is the time index, \(Y \) is the set of outcome vectors, \(X \) the design matrix (of \(p \) lagged values of \(Y \)), and \(s \) is a mutually exclusive state of the world observed at time \(t \). When the regime vector is not supplied by the user, then a two-state regime series is estimated via random forest.

Usage

```r
RVAR(
  data,  
  horizon = 10,  
  freq = "month",
```
type = "const",
 p = 1,
 lag.ic = NULL,
 lag.max = NULL,
 regime = NULL,
 regime.method = "rf",
 regime.n = 2,
 structure = "short",
 instrument = NULL,
 instrumented = NULL
)

Arguments

data data.frame, matrix, ts, xts, zoo: Endogenous regressors
horizon int: forecast horizons
freq string: frequency of data ('day', 'week', 'month', 'quarter', or 'year')
type string: type of deterministic terms to add ('none', 'const', 'trend', or 'both')
p int: lags
lag.ic string: information criterion to choose the optimal number of lags ('AIC' or 'BIC')
lag.max int: maximum number of lags to test in lag selection
regime string: name or regime assignment vector in the design matrix (data)
regime.method string: regime assignment technique ('rf', 'kmeans', 'EM', or 'BP')
regime.n int: number of regimes to estimate (applies to kmeans and EM)
structure string: type of structural identification strategy to use in model analysis (NA, 'short', 'IV', or 'IV-short')
instrument string: name of instrumental variable contained in the data matrix
instrumented string: name of variable to be instrumented in IV and IV-short procedure; default is the first non-date variable in data

Details

The regime-dependent VAR is a generalization of the popular threshold VAR - which trades off estimating a threshold value for an endogenous variable for accepting an exogenous regime that can be based on information from inside or outside of the system, with or without parametric assumptions, and with or without timing restrictions. Moreover, the RVAR may be extended to include structural shocks, including the use of instrumental variables.

State dependence. The RVAR augments the traditional VAR by allowing state-dependence in the coefficient matrix. The RVAR differs from the more common threshold VAR (TVAR), due to the fact that states are exogenously determined. As a result, the states (i.e. regimes) do not need to be based on information inside the model, moreover, regimes can be determined by any process the user determines best fits their needs. For example, regimes based on NBER dated recessions and expansions are based on a judgmental process considering hundreds of series, potentially none of
which are in the VAR being modeled. Alternatively, a user may use unsupervised machine learning to assign regimes - this is the process the `sovereign::regimes` function facilitates.

Structural shocks. See Sims (1980) for details regarding the baseline vector-autoregression (VAR) model. The VAR may be augmented to become a structural VAR (SVAR) with one of three different structural identification strategies:

1. short-term impact restrictions via Cholesky decomposition, see Christiano et al (1999) for details (`structure = 'short'`)
2. external instrument identification, i.e. a Proxy-SVAR strategy, see Mertens and Ravn (2013) for details (`structure = 'IV'`)
3. or a combination of short-term and IV identification via Lunsford (2015) (`structure = 'IV-short'`)

Note that including structure does not change the estimation of model coefficients or forecasts, but does change impulse response functions, forecast error variance decomposition, and historical decompositions. Historical decompositions will not be available for models using the 'IV' structure. Additionally note that only one instrument may be used in this estimation routine.

Value

List of lists, where each regime is a list with items:

1. data: data.frame with endogenous variables and 'date' column.
2. model: list with data.frame of model coefficients (in psuedo-companion form), data.frame of coefficient standard errors, integer of lags p, integer of horizons, string of frequency, string of deterministic term type, numeric of log-likelihood, regime indicator
3. forecasts: list of data.frames per horizon; data.frame with column for date (day the forecast was made), forecast.date (the date being forecasted), target (variable forecasted), and forecast
4. residuals: list of data.frames per horizon; data.frame of residuals
5. structure: string denoting which structural identification strategy will be used in analysis (or NA)
6. instrument: data.frame with 'date' column and 'instrument' column (or NULL)
7. instrumented: string denoting which column will be instrumted in 'IV' and 'IV-short' strategies (or NULL)

References

2. Lunsford, Kurt "Identifying Structural VARs with a Proxy Variable and a Test for a Weak Proxy" 2015.
See Also

VAR()
RVAR()
IRF()
FEVD()
HD()

Examples

```r
# simple time series
AA <- c(1:100) + rnorm(100)
BB <- c(1:100) + rnorm(100)
CC <- AA + BB + rnorm(100)
date <- seq.Date(from = as.Date("2000-01-01"), by = "month", length.out = 100)
Data <- data.frame(date = date, AA, BB, CC)
Data <- dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))

# estimate regime-dependent VAR
rvar =
  sovereign::RVAR(
    data = Data,
    horizon = 10,
    freq = "month",
    regime.method = "rf",
    regime.n = 2,
    lag.ic = "BIC",
    lag.max = 4)

# impulse response functions
rvar.irf = sovereign::rvar_irf(rvar)

# forecast error variance decomposition
rvar.fevd = sovereign::rvar_fevd(rvar)

# historical shock decomposition
rvar.hd = sovereign::rvar_hd(rvar)
```

rvar_fevd Estimate regime-dependent forecast error variance decomposition

Description

Estimate forecast error variance decomposition for RVARs with either short or 'IV-short' structural errors.
Usage

```r
rvar_fevd(rvar, horizon = 10, scale = TRUE)
```

Arguments

- `rvar` (RVAR output)
- `horizon` (int: number of periods)
- `scale` (boolean: scale variable contribution as percent of total error)

Value

- list, each regime returns its own long-form data.frame

See Also

`VAR()`
`var_irf()`
`var_fevd()`
`var_hd()`
`RVAR()`
`rvar_irf()`
`rvar_fevd()`
`rvar_hd()`

Examples

```r
# simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date("2000-01-01"), by = "month", length.out = 100)
Data = data.frame(date = date, AA, BB, CC)
Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))

# estimate VAR
rvar =
  sovereign::RVAR(
    data = Data,
    horizon = 10,
    freq = "month",
    regime.method = "rf",
    regime.n = 2,
    lag.ic = "BIC",
    lag.max = 4)

# impulse response functions
```
\[rvar_{\text{hd}} = \text{sovereign}::\text{rvar}_{\text{hd}}(rvar) \]

\# forecast error variance decomposition
\[rvar_{\text{fevd}} = \text{sovereign}::\text{rvar}_{\text{fevd}}(rvar) \]

\# historical shock decomposition
\[rvar_{\text{hd}} = \text{sovereign}::\text{rvar}_{\text{hd}}(rvar) \]

\section*{rvar_{\text{hd}}}

\textit{Estimate regime-dependent historical decomposition}

\section*{Description}

Estimate historical decomposition for RVARs with either short or 'IV-short' structural errors.

\section*{Usage}

\[\text{rvar}_{\text{hd}}(rvar) \]

\section*{Arguments}

\begin{itemize}
 \item \texttt{rvar} \hspace{1em} RVAR output
\end{itemize}

\section*{Value}

long form data.frames

\section*{See Also}

\begin{itemize}
 \item \texttt{VAR()}
 \item \texttt{var_{\text{irf}}()}
 \item \texttt{var_{\text{fevd}}()}
 \item \texttt{var_{\text{hd}}()}
 \item \texttt{RVAR()}
 \item \texttt{rvar_{\text{irf}}()}
 \item \texttt{rvar_{\text{fevd}}()}
 \item \texttt{rvar_{\text{hd}}()}
\end{itemize}
rvar_irf

Estimate regime-dependent impulse response functions

Description

Estimate regime-dependent impulse response functions

Usage

```r
rvar_irf( 
  rvar, 
  horizon = 10, 
  CI = c(0.1, 0.9), 
  bootstrap.type = "auto", 
  bootstrap.num = 100, 
)```

**Examples**

```r
simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)
Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))

estimate VAR
rvar =
 sovereign::RVAR(
 data = Data,
 horizon = 10,
 freq = 'month',
 regime.method = 'rf',
 regime.n = 2,
 lag.ic = 'BIC',
 lag.max = 4)

impulse response functions
rvar.irf = sovereign::rvar_irf(rvar)

forecast error variance decomposition
rvar.fevd = sovereign::rvar_fevd(rvar)

historical shock decomposition
rvar.hd = sovereign::rvar_hd(rvar)
```
### Arguments

- **rvar**: RVAR output
- **horizon**: int: number of periods
- **CI**: numeric vector: c(lower ci bound, upper ci bound)
- **bootstrap.type**: string: bootstrapping technique to use ('auto', 'standard', or 'wild'); if auto then wild is used for IV or IV-short, else standard is used
- **bootstrap.num**: int: number of bootstraps
- **bootstrap.parallel**: boolean: create IRF draws in parallel
- **bootstrap.cores**: int: number of cores to use in parallel processing; -1 detects and uses half the available cores

### Value

list of regimes, each with data.frame of columns target, shock, horizon, response.lower, response, response.upper

### See Also

- `VAR()`
- `var_irf()`
- `var_fevd()`
- `RVAR()`
- `rvar_irf()`
- `rvar_fevd()`

### Examples

```r
simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)
Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0))

estimate VAR
rvar = sovereign::RVAR(
 bootstrap.parallel = FALSE,
 bootstrap.cores = -1
)```
data = Data,
horizon = 10,
freq = 'month',
regime.method = 'rf',
regime.n = 2,
lag.ic = 'BIC',
lag.max = 4)

impulse response functions
rvar.irf = sovereign::rvar_irf(rvar)

forecast error variance decomposition
rvar.fevd = sovereign::rvar_fevd(rvar)

historical shock decomposition
rvar.hd = sovereign::rvar_hd(rvar)

VAR Estimate VAR, SVAR, or Proxy-SVAR

Description

Estimate VAR, SVAR, or Proxy-SVAR

Usage

```r
VAR(
  data, 
  horizon = 10,
  freq = "month",
  type = "const",
  p = 1,
  lag.ic = NULL,
  lag.max = NULL,
  structure = "short",
  instrument = NULL,
  instrumented = NULL
)
```

Arguments

- **data**: data.frame, matrix, ts, xts, zoo: Endogenous regressors
- **horizon**: int: forecast horizons
- **freq**: string: frequency of data (‘day’, ‘week’, ‘month’, ‘quarter’, or ‘year’)
- **type**: string: type of deterministic terms to add (‘none’, ‘const’, ‘trend’, or ‘both’)

\[p \quad \text{int: lags} \]
\[\text{lag.ic} \quad \text{string: information criterion to choose the optimal number of lags ('AIC' or 'BIC')} \]
\[\text{lag.max} \quad \text{int: maximum number of lags to test in lag selection} \]
\[\text{structure} \quad \text{string: type of structural identification strategy to use in model analysis (NA, 'short', 'IV', or 'IV-short')} \]
\[\text{instrument} \quad \text{string: name of instrumental variable contained in the data matrix} \]
\[\text{instrumented} \quad \text{string: name of variable to be instrumented in IV and IV-short procedure; default is the first non-date variable in data} \]

Details

See Sims (1980) for details regarding the baseline vector-autoregression (VAR) model. The VAR may be augmented to become a structural VAR (SVAR) with one of three different structural identification strategies:

1. short-term impact restrictions via Cholesky decomposition, see Christiano et al (1999) for details (\text{structure} = 'short')
2. external instrument identification, i.e. a Proxy-SVAR strategy, see Mertens and Ravn (2013) for details (\text{structure} = 'IV')
3. or a combination of short-term and IV identification via Lunsford (2015) (\text{structure} = 'IV-short')

Note that including structure does not change the estimation of model coefficients or forecasts, but does change impulse response functions, forecast error variance decomposition, and historical decompositions. Historical decompositions will not be available for models using the 'IV' structure. Additionally note that only one instrument may be used in this estimation routine.

Value

1. data: data.frame with endogenous variables and 'date' column.
2. model: list with data.frame of model coefficients (in pseudo-companion form), data.frame of coefficient standard errors, integer of lags p, integer of horizons, string of frequency, string of deterministic term type, numeric of log-likelihood
3. forecasts: list of data.frames per horizon; data.frame with column for date (day the forecast was made), forecast.date (the date being forecasted), target (variable forecasted), and forecast
4. residuals: list of data.frames per horizon; data.frame of residuals
5. structure: string denoting which structural identification strategy will be used in analysis (or NA)
6. instrument: data.frame with 'date' column and 'instrument' column (or NULL)
7. instrumented: string denoting which column will be instrumented in 'IV' and 'IV-short' strategies (or NA)
References

2. Lunsford, Kurt "Identifying Structural VARs with a Proxy Variable and a Test for a Weak Proxy" 2015.

See Also

VAR()
var_irf()
var_fevd()
var_hd()

Examples

simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date("2000-01-01"), by = "month", length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

estimate VAR
var = sovereign::VAR(
 data = Data,
 horizon = 10,
 freq = 'month',
 lag.ic = 'BIC',
 lag.max = 4)

impulse response functions
var.irf = sovereign::var_irf(var)

forecast error variance decomposition
var.fevd = sovereign::var_fevd(var)

historical shock decomposition
var.hd = sovereign::var_hd(var)
Estimate forecast error variance decomposition

Description

Estimate forecast error variance decomposition for VARs with either short or 'IV-short' structural errors.

Usage

```r
var_fevd(var, horizon = 10, scale = TRUE)
```

Arguments

- `var`: VAR output
- `horizon`: int: number of periods
- `scale`: boolean: scale variable contribution as percent of total error

Value

long-form data.frame

See Also

- `VAR()`
- `var_irf()`
- `var_fevd()`
- `var_hd()`
- `RVAR()`
- `rvar_irf()`
- `rvar_fevd()`
- `rvar_hd()`

Examples

```r
# simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

# estimate VAR
var =
```
sovereign::VAR(
 data = Data,
 horizon = 10,
 freq = 'month',
 lag.ic = 'BIC',
 lag.max = 4)

impulse response functions
var.irf = sovereign::var_irf(var)

forecast error variance decomposition
var.fevd = sovereign::var_fevd(var)

historical shock decomposition
var.hd = sovereign::var_hd(var)

var_hd | Estimate historical decomposition

Description

Estimate historical decomposition for VARs with either short or 'IV-short' structural errors.

Usage

```
var_hd(var)
```

Arguments

- `var` : VAR output

Value

long-from data.frame

See Also

- VAR()
- var_irf()
- var_fevd()
- var_hd()
- RVAR()
- rvar_irf()
- rvar_fevd()
- rvar_hd()
Examples

simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

estimate VAR
var =
 sovereign::VAR(
 data = Data,
 horizon = 10,
 freq = 'month',
 lag.ic = 'BIC',
 lag.max = 4)

impulse response functions
var.irf = sovereign::var_irf(var)

forecast error variance decomposition
var.fevd = sovereign::var_fevd(var)

historical shock decomposition
var.hd = sovereign::var_hd(var)

var_irf

Estimate impulse response functions

Description

Estimate impulse response functions

Usage

```
var_irf(
  var,
  horizon = 10,
  CI = c(0.1, 0.9),
  bootstrap.type = "auto",
  bootstrap.num = 100,
  bootstrap.parallel = FALSE,
  bootstrap.cores = -1
)
```
Arguments

- **var**: VAR output
- **horizon**: int: number of periods
- **CI**: numeric vector: c(lower ci bound, upper ci bound)
- **bootstrap.type**: string: bootstrapping technique to use (‘auto’, ‘standard’, or ‘wild’); if auto then wild is used for IV or IV-short, else standard is used
- **bootstrap.num**: int: number of bootstraps
- **bootstrap.parallel**: boolean: create IRF draws in parallel
- **bootstrap.cores**: int: number of cores to use in parallel processing: -1 detects and uses half the available cores

Value
data.frame with columns target, shock, horizon, response.lower, response, response.upper

See Also

- VAR()
- var_irf()
- var_fevd()
- var_hd()
- RVAR()
- rvar_irf()
- rvar_fevd()
- rvar_hd()

Examples

```r
# simple time series
AA = c(1:100) + rnorm(100)
BB = c(1:100) + rnorm(100)
CC = AA + BB + rnorm(100)
date = seq.Date(from = as.Date("2000-01-01"), by = "month", length.out = 100)
Data = data.frame(date = date, AA, BB, CC)

# estimate VAR
var = sovereign::VAR(
    data = Data,
    horizon = 10,
    freq = "month",
    lag.ic = "BIC",
```
lag.max = 4)

impulse response functions
var.irf = sovereign::var_irf(var)

forecast error variance decomposition
var.fevd = sovereign::var_fevd(var)

historical shock decomposition
var.hd = sovereign::var_hd(var)
Index

covid_volatility_correction, 2
FEVD, 3
FEVD(), 23
HD, 5
HD(), 23
IRF, 6
IRF(), 23
LP, 8
LP(), 9, 10, 18, 19
lp_irf, 9
lp_irf(), 7, 9, 10, 18, 19
plot_error, 10
plot_fevd, 11
plot_forecast, 11
plot_hd, 12
plot_individual_error, 12
plot_individual_fevd, 13
plot_individual_forecast, 14
plot_individual_hd, 14
plot_individual_irf, 15
plot_irf, 16
regimes, 16
RLP, 17
RLP(), 9, 10, 18, 19
rlp_irf, 19
rlp_irf(), 7, 9, 10, 18, 19
RVAR, 20
RVAR(), 4, 5, 23–25, 27, 31, 32, 34
rvar_fevd, 23
rvar_fevd(), 4, 24, 25, 27, 31, 32, 34
rvar_hd, 25
rvar_hd(), 5, 24, 25, 31, 32, 34
rvar_irf, 26
rvar_irf(), 7, 24, 25, 27, 31, 32, 34
VAR, 28
VAR(), 3–5, 23–25, 27, 30–32, 34
var_fevd, 31
var_fevd(), 3, 4, 24, 25, 27, 30–32, 34
var_hd, 32
var_hd(), 3, 5, 24, 25, 30–32, 34
var_irf, 33
var_irf(), 3, 7, 24, 25, 27, 30–32, 34