Package ‘sparseLTSEigen’

October 14, 2020

Type Package
Title RcppEigen back end for sparse least trimmed squares regression
Version 0.2.0.1
Date 2013-11-13
Depends robustHD (>= 0.4.0)
Imports Rcpp (>= 0.9.10), RcppEigen (>= 0.2.0)
Suggests mvtnorm
LinkingTo Rcpp, RcppEigen
Description Use RcppEigen to fit least trimmed squares regression models with an L1 penalty in order to obtain sparse models.
License GPL (>= 2)
LazyLoad yes
Author Andreas Alfons [aut, cre]
Maintainer Andreas Alfons <alfons@ese.eur.nl>
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-10-14 16:34:51 UTC

R topics documented:
sparseLTSEigen-package ... 2

Index 4
Description

Use RcppEigen to fit least trimmed squares regression models with an L1 penalty in order to obtain sparse models.

Details

Package: sparseLTSEigen
Type: Package
Version: 0.2.0
Date: 2013-11-13
Depends: robustHD (>= 0.4.0)
Imports: Rcpp (>= 0.9.10), RcppEigen (>= 0.2.0)
Suggests: mvtnorm
LinkingTo: Rcpp, RcppEigen
License: GPL (>= 2)
LazyLoad: yes

Note

Package **sparseLTSEigen** provides an alternative back end for sparse least trimmed squares regression from package **robustHD**. The back end built into **robustHD** uses the C++ library Armadillo, whereas this back end uses the C++ library Eigen. The latter is faster, but currently does not work on 32-bit R for Windows.

When **sparseLTSEigen** is loaded, its back end is used automatically for sparse least trimmed squares regression, except on 32-bit R for Windows.

Author(s)

Andreas Alfons [aut, cre]
Maintainer: Andreas Alfons <alfons@ese.eur.nl>

Examples

example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

fit sparse LTS model
since package sparseLTSEigen is loaded, its back end based on
the C++ library Eigen is used rather than the back end built
into package robustHD, except on 32-bit R for Windows
fit <- sparseLTS(x, y, lambda = 0.05, mode = "fraction")
coef(fit, zeros = FALSE)
Index

* package
 sparseLTSEigen-package, 2
 .CallSparseLTSEigen
 (sparseLTSEigen-package), 2

sparseLTSEigen
 (sparseLTSEigen-package), 2
sparseLTSEigen-package, 2