Package ‘spectrolab’

Type Package

Title Class and Methods for Hyperspectral Data

Version 0.0.9

Date 2020-06-05

Description Input/Output, processing and visualization of spectra taken with different spectrometers, including SVC (Spectra Vista), ASD and PSR (Spectral Evolution). Implements an S3 class 'spectra' that other packages can build on. Provides methods to access, plot, manipulate, splice sensor overlap, vector normalize and smooth spectra.

License GPL-3

URL https://CRAN.R-project.org/package=spectrolab

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Depends R (>= 3.4), stats

Suggests knitr (>= 1.16), rmarkdown (>= 1.5), testthat (>= 1.0.2)

VignetteBuilder knitr

Imports prospectr, grDevices, parallel, RColorBrewer, shiny, shinyjs, devtools, usethis

NeedsCompilation no

Author Jose Eduardo Meireles [aut, cre], Anna K. Schweiger [aut], Jeannine Cavender-Bares [aut]

Maintainer Jose Eduardo Meireles <jemeireles@gmail.com>

Repository CRAN

Date/Publication 2020-06-09 13:20:03 UTC
R topics documented:

- aggregate.spectra .. 3
- apply_by_band ... 4
- as.data.frame.spectra ... 5
- as.matrix.spectra ... 6
- as.spectra .. 6
- as.spectra.data.frame .. 7
- as.spectra.matrix ... 8
- bands ... 8
- bands<- .. 9
- combine ... 10
- default_spec_regions ... 11
- dim.spectra .. 11
- is_spectra ... 12
- match_sensors ... 13
- max.spectra .. 14
- mean.spectra .. 15
- median.spectra .. 15
- meta ... 16
- meta<- ... 17
- min.spectra .. 18
- names.spectra ... 18
- names<-.spectra ... 19
- normalize ... 20
- Ops.spectra .. 21
- plot.spectra .. 21
- plot_interactive ... 22
- plot_quantile .. 23
- plot_regions .. 24
- print.spectra .. 26
- quantile.spectra .. 26
- range.spectra ... 27
- ratio ... 28
- read_spectra ... 29
- resample ... 30
- sd ... 31
- sd.default .. 31
- sd.spectra ... 32
- smooth ... 33
- smooth.default ... 33
- smooth.spectra ... 34
- spectra .. 34
- specrolab .. 35
- spec_matrix_example .. 36
- split.spectra ... 36
- str.spectra .. 37
- subset_by .. 38
aggregate.spectra

Summary

- summary.spectra
- t.spectra
- try_keep_txt
- value
- value<-
- var
- var.default
- var.spectra
- [.spectra
- [<-.spectra

Description

Applies FUN (and FUN_meta) over spectra aggregating by factor 'by'.

Usage

```r
## S3 method for class 'spectra'
aggregate(x, by, FUN, FUN_meta = NULL, ...)
```

Arguments

- `x`: spectra object
- `by`: vector of factors to guide the aggregation
- `FUN`: function to be applied to refl (and meta if FUN_meta is NULL)
- `FUN_meta`: function to be applied to metadata. If NULL (default), same FUN applied to value is used.
- `...`: extra args to FUN

Details

Argument `FUN_meta` is useful if you want to apply a different function to metadata and value. If you want to aggregate spectra and metadata using `mean`, `sd`, `median` etc. but try to keep the text values, wrap your function in `try_keep_txt(f)`.

Value

spectra object

Author(s)

Jose Eduardo Meireles
Examples

```
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
spec_mean = aggregate(spec, by = names(spec), mean, try_keep_txt(mean))
```

Description

`apply_by_band` is conceptually similar to `apply(as.matrix(x), 2, fun)`, but returns a spectra object while dealing with metadata and attributes. Applying a function that does not act on numeric values may crash the function or render all value values NA.

Usage

```
apply_by_band(x, fun, na.rm = TRUE, keep_txt_meta = TRUE, name = NULL, ...)
```

S3 method for class 'spectra'
apply_by_band(x, fun, na.rm = TRUE, keep_txt_meta = TRUE, name = NULL, ...)

Arguments

- **x**: spectra
- **fun**: numeric function to be applied to each band.
- **na.rm**: boolean. remove NAs?
- **keep_txt_meta**: boolean. try to keep text in the metadata?
- **name**: name for each sample in the output spectra. The default (NULL) will give samples sequential numeric names. Recycled if necessary.
- **...**: extra arguments passed to fun

Value

spectra

Methods (by class)

- spectra: Apply a numeric function by band

Author(s)

Jose Eduardo Meireles
Jose Eduardo Meireles
Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
spec_mean = apply_by_band(spec, mean)
```

as.data.frame.spectra *Convert spectra to data.frame*

Description

Returns a data.frame that includes sample names, metadata (if present) and value data. One advantage over as.matrix, is that the metadata are returned.

Usage

```r
## S3 method for class 'spectra'
as.data.frame(
  x,
  row.names = NULL,
  optional = FALSE,
  fix_names = "none",
  metadata = TRUE,
  ...
)
```

Arguments

- `x`
 spectra object
- `row.names`
 does nothing. Here for compatibility with S3 generics
- `optional`
 does nothing. Here for compatibility with S3 generics
- `fix_names`
 Use make.names to normalize names? Pick one: "none" "row" "col" "both".
- `metadata`
 boolean. Include spectral metadata? Defaults to TRUE
- `...`
 extra parameters passed to the generic as.spectra

Value

data.frame with: sample_name, metadata (if any) and value.

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
df = as.data.frame(spec, fix_names = "none")
```
as.matrix.spectra
Convert spectra to matrix

Description

Convert spectra to matrix

Usage

```r
## S3 method for class 'spectra'
as.matrix(x, fix_names = "none", ...)
```

Arguments

- `x`: spectra object
- `fix_names`: Use make.names to normalize names? Pick one: "none" "row" "col" "both".
- `...`: does nothing. Here for compatibility with S3 generics

Value

matrix of spectral value. columns are bands and rows are samples

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
mat = as.matrix(spec)
```

as.spectra
Convert matrix or data frame to spectra

Description

Convert matrix or data frame to spectra

Usage

```r
as.spectra(x, name_idx = NULL, meta_ids = NULL)
```
as.spectra.data.frame

Arguments

- **x**: matrix or dataframe. Samples are in rows and bands in columns. Any data that are not the spectra themselves (labels or metadata) must have their column index included in 'name_idx' or 'meta_idxs'.

- **name_idx**: column index with sample names. Defaults to NULL. If NULL or 0, row-names(x) or a sequence of integers will be assigned as names.

- **meta_idxs**: column indices with metadata (not name and not value). Defaults to NULL.

Value

spectra object

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
as.spectra(spec_matrix_example, name_idx = 1)
```

as.spectra.data.frame Convert data.frame to spectra

Description

Convert data.frame to spectra

Usage

```r
## S3 method for class 'data.frame'
as.spectra(x, name_idx = NULL, meta_idxs = NULL)
```

Arguments

- **x**: data.frame

- **name_idx**: column index with sample names. Defaults to NULL.

- **meta_idxs**: column indices with metadata (not name and not value). Defaults to NULL

Value

spectra object

Author(s)

Jose Eduardo Meireles
as.spectra.matrix \textit{Convert matrix to spectra}

\textbf{Description}

Convert matrix to spectra

\textbf{Usage}

\begin{verbatim}
S3 method for class 'matrix'
as.spectra(x, name_idx = NULL, meta_idxs = NULL)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} matrix
 \item \texttt{name_idx} \hspace{1cm} column index with sample names. Defaults to NULL
 \item \texttt{meta_idxs} \hspace{1cm} column indices with metadata (not name and not value). Defaults to NULL
\end{itemize}

\textbf{Value}

spectra object

\textbf{Author(s)}

Jose Eduardo Meireles

\textbf{bands} \textit{Get spectra band labels}

\textbf{Description}

\textit{bands} returns a vector of band labels from spectra

\textbf{Usage}

\begin{verbatim}
bands(x, min = NULL, max = NULL, return_num = TRUE)
\end{verbatim}

\begin{verbatim}
S3 method for class 'spectra'
bands(x, min = NULL, max = NULL, return_num = TRUE)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} spectra object
 \item \texttt{min} \hspace{1cm} = NULL
 \item \texttt{max} \hspace{1cm} = NULL
 \item \texttt{return_num} \hspace{1cm} boolean. return vector of numeric values (default). otherwise, a vector of strings is returned
\end{itemize}
Value

vector of bands. numeric if `return_num` = TRUE (default).

Methods (by class)

- spectra: Get spectra band labels

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
head(bands(spec))
```

Description

`bands` sets band labels of `lhs` to the `rhs` values

Usage

```r
bands(x, unsafe = FALSE) <- value
```

Arguments

- `x`: spectra object (lhs)
- `unsafe`: boolean. Skip length safety check? Defaults to FALSE
- `value`: rhs

Value

nothing. called for its side effect.

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
bands(spec) = bands(spec) / 1000
```
combine

Combine spectral datasets

Description

combine binds two spectral datasets. Both spectra must have the very same band labels, but different metadata are acceptable.

Usage

combine(s1, s2)

S3 method for class 'spectra'
combine(s1, s2)

Arguments

s1 spectra object 1
s2 spectra object 2

Value

combined spectra object

Methods (by class)

- spectra: Combines two spectral datasets

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)

Create dummy spectra datasets. Pretend that these are all different...
s1 = as.spectra(spec_matrix_example, name_idx = 1)
s2 = as.spectra(spec_matrix_example, name_idx = 1)
s3 = as.spectra(spec_matrix_example, name_idx = 1)

combine 2 spectra objects
s_1and2 = combine(s1, s2)

combine n spectra objects using the 'Reduce' function
s_n = Reduce(combine, list(s1, s2, s3))
default_spec_regions

Return default spectral regions matrix

Usage

default_spec_regions()

Value

matrix with default_spec_regions

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
matrix that defines regions on the spectra
Useful for plotting w/ plot_regions()

dim.spectra

Get dimension of spectra

Description

dim returns a vector with number of samples and bands (bands)

Usage

S3 method for class 'spectra'

dim(x)

Arguments

x

spectra object

Value

tuple of integers: c("n_samples", "n_bands")
is_spectra

Author(s)
Jose Eduardo Meireles

Examples
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
dim(spec)

is_spectra Is it a spectra object?

Description
is_spectra tests if the argument is a spectra class object

Usage
is_spectra(x)

Arguments
x any object

Value
boolean

Author(s)
Jose Eduardo Meireles

Examples
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
spec1 = unclass(spec)
is_spectra(spec)
is_spectra(spec1)
match_sensors

Match spectra at sensor transitions

Description

match_sensors scales value values of sensors 1 (vis) and 3 (swir2)

Usage

match_sensors(
 x,
 splice_at,
 fixed_sensor = 2,
 interpolate_wvl = 5,
 factor_range = c(0.5, 3)
)

S3 method for class 'spectra'
match_sensors(
 x,
 splice_at,
 fixed_sensor = 2,
 interpolate_wvl = 5,
 factor_range = c(0.5, 3)
)

Arguments

x spectra object
splice_at bands that serve as splice points, i.e the beginnings of the rightmost sensor. Must
 be length 1 or 2 (max 3 sensors)
fixed_sensor sensor to keep fixed. Can be 1 or 2 if matching 2 sensors. If matching 3 sensors,
 'fixed_sensor' must be 2 (default).
interpolate_wvl extent around splice_at values over which the splicing factors will be calculated.
 Defaults to 5
factor_range range of acceptable correction factors (min, max). Defaults to c(0.5, 3)

Details

Splice_at has no default because sensor transition points vary between vendors and individual
instruments. It is an important parameter though, so you should visually inspect your spectra before
assigning it. Typical values in our own individual instruments were: SVC ~ c(990, 1900), ASD ~
c(1001, 1801).

If the factors used to match spectra are unreasonable, match_sensors will throw. Unreasonable
factors (f) are defined as 0.5 > f > 3 or NaN, which happens when the value value for the right
sensor is 0.
Value
spectra object

Methods (by class)
- `spectra`: Match sensor overlap regions

Author(s)
Jose Eduardo Meireles and Anna Schweiger

Description
`max` Returns the maximum value value in a spectra object

Usage
```r
## S3 method for class 'spectra'
max(..., na.rm = FALSE)
```

Arguments
- `...`: spectra object
- `na.rm`: boolean, remove NAs? Defaults to FALSE

Value
single numeric value

Author(s)
Jose Eduardo Meireles

Examples
```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
max(spec)
```
mean.spectra

Mean spectrum

Description

mean computes the arithmetic mean spectrum.

Usage

```r
## S3 method for class 'spectra'
mean(x, na.rm = TRUE, keep_txt_meta = TRUE, ...)
```

Arguments

- `x`: spectra
- `na.rm`: boolean. remove NAs? Defaults to TRUE
- `keep_txt_meta`: try to keep text in the metadata
- `...`: nothing

Value

single spectrum

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
mean(spec)
```

median.spectra

Median spectrum

Description

median computes the median spectrum.

Usage

```r
## S3 method for class 'spectra'
median(x, na.rm = TRUE, keep_txt_meta = TRUE, ...)
```

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
m = median(spec)
```
Arguments

- **x**
 - spectra

- **na.rm**
 - boolean. remove NAs? Defaults to TRUE

- **keep_txt_meta**
 - try to keep text in the metadata

- **...**
 - nothing

Value

- single spectrum

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
median(spec)
```

Get metadata

Description

`meta` returns metadata of spectra

Usage

```r
meta(x, label, sample, simplify = FALSE, quiet = TRUE)
```

S3 method for class 'spectra'
```r
meta(x, label = NULL, sample = NULL, simplify = FALSE, quiet = TRUE)
```

Arguments

- **x**
 - spectra object

- **label**
 - metadata column index or label

- **sample**
 - sample index or name

- **simplify**
 - boolean. defaults to FALSE

- **quiet**
 - boolean. warn about non-existent metadata? defaults to TRUE

Value

- data frame or vector
Methods (by class)

• spectra: get metadata

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
spec = normalize(spec)
meta(spec, "normalization_magnitude")

meta<-

Description

meta sets metadata

Usage

meta(x, label, sample) <- value

Arguments

x spectra object (lhs)
label metadata column label
sample sample name
value rhs. TODO

Value

nothing. called for its side effect

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
meta(spec, "random") = rnorm(nrow(spec), mean(10), sd = 2)
min.spectra

Description

`min` Returns the minimum value value in a spectra object.

Usage

```r
## S3 method for class 'spectra'
min(..., na.rm = FALSE)
```

Arguments

- `...`: spectra object
- `na.rm`: boolean. remove NAs? Defaults to FALSE.

Value

single numeric value

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
min(spec)
```

names.spectra

Description

names returns a vector of sample names.

Usage

```r
## S3 method for class 'spectra'
names(x)
```

Arguments

- `x`: spectra object
names<-.spectra

Value

vector of sample names

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
names(spec)

names<-.spectra Set spectra sample names

Description

names assigns sample names to lhs

Usage

S3 replacement method for class 'spectra'
names(x) <- value

Arguments

x spectra object (lhs)
value values to be assigned (rhs)

Details

Sample names must not be coercible to numeric. That is, names such as "1" and "153.44" are invalid even if they are encoded as character. names will add the prefix "spec_" to any element of value that is coercible to numeric.

Value

nothing. called for its side effect.

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
names(spec) = toupper(names(spec))
normalize Vector normalize spectra

Description

normalize returns a spectra obj with vector normalized values

Usage

normalize(x, quiet = FALSE, ...)

S3 method for class 'spectra'
normalize(x, quiet = FALSE, ...)

Arguments

x spectra object. bands must be strictly increasing
quiet boolean. Warn about change in y value units? Defaults to FALSE
... nothing

Value

spectra object with normalized spectra

Methods (by class)

• spectra: Vector normalize spectra

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
spec = normalize(spec)
Description

Overloads arithmetic operators for spectra using 'Ops.'

Usage

```r
## S3 method for class 'spectra'
Ops(e1, e2)
```

Arguments

- `e1`: lhs
- `e2`: rhs

Value

Depends on the operator. math operators will return spectra and logical or comparison operators will return boolean matrices

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec <- as.spectra(spec_matrix_example, name_idx = 1)
spec1 <- spec * 2
spec2 <- spec + spec
all(spec1 == spec2)
```

Description

`plot` plots spectra.

Usage

```r
## S3 method for class 'spectra'
plot(x, ylab = "value", xlab = "band", col = "black", lty = 1, type = "l", ...)```
Arguments

- `x`: spectra object
- `ylab`: label for y axis. Defaults to "value".
- `xlab`: label for x axis. Defaults to "band".
- `col`: line color. Defaults to "black".
- `lty`: line type. Defaults to 1.
- `type`: type of plot. Meant to take either line "l" or no plotting "n".
- `...`: other arguments passed to matplot.

Value

nothing. Called for side effect.

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
plot(spec, lwd = 1.2)
```

Description

Interactively plots spectra with a shiny app. Useful to inspect large datasets.

Usage

```r
plot_interactive(
 spec,
 colpalette = function(n) RColorBrewer::brewer.pal(n, "Dark2"),
 ...
)
```

Arguments

- `spec`: spectra object
- `colpalette`: a color palette function, e.g. rainbow, terrain.colors, or a function returned by colorRampPalette() or colorRamps package
- `...`: Other arguments passed to plot
plot_quantile

Details

plot_interact limits the number of spectra displayed at once to 600 for performance reasons. As of now, the function does not return anything and does not have side effects. This means that spectra can be selected and highlighted but not yet deleted or subset from the shiny app.

Value

interactive plot

Author(s)

Anna K. Schweiger and Jose Eduardo Meireles

Examples

## Not run:
# Create a spectra object
spec = as.spectra(spec_matrix_example, name_idx = 1)

# Start interactive plot
plot_interactive(spec)

## End(Not run)

plot_quantile

Plot spectra quantiles

Description

plot_quantile plots polygons for the quantiles of spectra per band.

Usage

plot_quantile(
    spec,
    total_prob = 0.95,
    col = rgb(0, 0, 0.1),
    border = TRUE,
    add = FALSE,
    na.rm = TRUE,
    ...
)
Arguments

- **spec**
  - spectra object

- **total_prob**
  - total probability mass to encompass. Single number between 0.0 and 1.0. Defaults to 0.95.

- **col**
  - polygon color

- **border**
  - boolean. Draw border?

- **add**
  - if add = FALSE (default), a new plot is created. Otherwise (add = TRUE), the quantile is added to the current plot.

- **na.rm**
  - boolean. remove NAs to compute quantiles? Defaults to TRUE

- **...**
  - other parameters passed to polygon() or to plot.

Value

nothing. Called for its side effect.

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
plot_quantile(spec, total_prob = 0.5)
```

Description

plot_regions plots polygons for default (VIS, NIR, SWIR 1, SWIR 2) or customized regions of the spectrum.

Usage

```r
plot_regions(
 spec,
 regions = default_spec_regions(),
 col = grDevices::rgb(0.7, 0.7, 0.7, 0.3),
 border = FALSE,
 add = TRUE,
 add_label = TRUE,
 cex_label = 1,
 ...
)
```
plot_regions

Arguments

spec  spectra object

regions  matrix with spectral regions in columns and only two rows named "begin" and "end". Values are the bands where a spectral regions begins and ends. See details for how the default regions are defined.

col  color for regions. Single value or vector of length ncol (regions).

border  color for region borders. Defaults to FALSE (no border).

add  boolean. If TRUE (default) adds polygons to current plot (if a plot exists) or throws an error if a plot does not exist. If FALSE, a new plot is created **without** any spectra.

add_label  boolean. Add region column names on top of the polygons?

cex_label  label scale

...  additional parameters passed to polygon().

Details

Default regions: spec_regions = cbind("VIS" = c(begin = 400, end = 700), "NIR" = c(begin = 800, end = 1300), "SWIR1" = c(begin = 1550, end = 1800), "SWIR2" = c(begin = 2000, end = 2400)).

Value

nothing. Called for its side effect.

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
plot_regions(spec, default_spec_regions())
plot(spec, add = TRUE)

# Alternatively, if you want to get fancy...
## Not run:
col_fun = colorRampPalette(c(rgb(1, 1, 0, 0.7),rgb(1, 0, 0, 0.7)), alpha = TRUE)
colors = col_fun(4)

plot_regions(spec,default_spec_regions(), col = colors)
plot(spec, add = TRUE)

## End(Not run)
print.spectra  \textit{Print spectra}

\textbf{Description}

\texttt{print} prints basic information about the \texttt{spectra} obj to the console

\textbf{Usage}

\begin{verbatim}
## S3 method for class 'spectra'
print(x, ...)  
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
\item \texttt{x} \hspace{1cm} spectra object
\item \texttt{...} \hspace{1cm} other arguments passed to \texttt{print}. not implemented for spectra
\end{itemize}

\textbf{Value}

nothing. called for side effect

\textbf{Author(s)}

Jose Eduardo Meireles

\textbf{Examples}

\begin{verbatim}
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
print(spec)
## or simply
spec
\end{verbatim}

\textbf{quantile.spectra  \textit{Compute spectra quantiles}}

\textbf{Description}

\texttt{quantile} computes quantiles by band and returns them as ‘spectra’
Usage

```r
S3 method for class 'spectra'
quantile(
 x,
 probs = c(0.025, 0.25, 0.5, 0.75, 0.975),
 na.rm = TRUE,
 names = NULL,
 ...
)
```

Arguments

- **x**: spectra object. Must have at least the same number of sample that `length(probs)` has.
- **probs**: Probabilities to compute quantiles. Must be a vector of numerics between 0.0 and 1.0. Defaults to `c(0.025, 0.25, 0.5, 0.75, 0.975)`.
- **na.rm**: remove NAs before computing quantiles? Defaults to `TRUE`.
- **names**: names for each quantile spectrum. If `NULL` (default), names are set to `probs`. A char vector should otherwise be given. Recycled.
- **...**: other arguments passed to `quantile`.

Value

spectra object with one spectrum for each prob

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
quantile(spec, probs = c(0.25, 0.75))
```

---

**range.spectra**

*Range of value values*

Description

`range` Returns the range of (min, max) value values in spectra

Usage

```r
S3 method for class 'spectra'
range(..., na.rm = FALSE)
```
ratio

Arguments

... spectra object
na.rm boolean. remove NAs? Defaults to FALSE

Value
tuple of numeric values (min, max)

Author(s)
Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
range(spec)

Description
ratio computes pairwise ratios between bands

Usage
ratio(x, simplify = FALSE)

## S3 method for class 'spectra'
ratio(x, simplify = FALSE)

Arguments

x spectra
simplify coerce to matrix or keep result as list

Value
list or matrix

Methods (by class)

- spectra: Compute pairwise value ratios
read_spectra

Author(s)
Jose Eduardo Meireles

Examples
library(spectrolab)

# Ratios of visible part of the spectrum
spec = as.spectra(spec_matrix_example, name_idx = 1)[, 400:700]
spec_ratio_mat = ratio(spec)

---

read_spectra  Read files from various formats into 'spectra'

Description
Read files from various formats into 'spectra'

Usage
read_spectra(
  path,
  format,
  type = "target_reflectance",
  recursive = FALSE,
  exclude_if_matches = NULL,
  ignore_extension = FALSE,
  ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>Path to directory or input files</td>
</tr>
<tr>
<td>format</td>
<td>file formats. &quot;asd&quot; (for ASD); &quot;sig&quot; or &quot;svc&quot; (for SVC); &quot;sed&quot; or &quot;psr&quot; (for SpecEvo PSR).</td>
</tr>
<tr>
<td>type</td>
<td>Data type to read. &quot;target_reflectance&quot;, &quot;target_radiance&quot;, or &quot;reference_radiance&quot;. Defaults to &quot;target_reflectance&quot;.</td>
</tr>
<tr>
<td>recursive</td>
<td>read files recursively</td>
</tr>
<tr>
<td>exclude_if_matches</td>
<td>excludes files that match this regular expression. Example: &quot;BAD&quot;</td>
</tr>
<tr>
<td>ignore_extension</td>
<td>boolean. If TRUE, the parser will try to read every file in path regardless of the expected extension.</td>
</tr>
<tr>
<td>...</td>
<td>nothing yet</td>
</tr>
</tbody>
</table>
Value

a single 'spectra' or a list of 'spectra' (in case files have incompatible band number or bands values)

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
dir_path = system.file("extdata", "Acer_example", package = "spectrolab")

# Relative reflectance is re
spec = read_spectra(path = dir_path, format = "sig")

Description

resample returns spectra resampled to new bands using smoothing. Possible to increase or decrease the spectral resolution.

Usage

resample(x, new_wvls, ...)

## S3 method for class 'spectra'
resample(x, new_wvls, ...)

Arguments

x spectra object. bands must be strictly increasing
new_wvls numeric vector of bands to sample from spectra
... additional parameters passed to the smooth.spline function.

Details

The function runs a couple basic checks when resampling, but they are not exhaustive, so look at the data before resampling. The implemented checks are: 1. Stop if trying to predict bands outside of the original range and, 2. Warn if a gap is found in bands. E.g. wvls are mostly at a 1nm resolution but go from 1530 to 1820 in the infrared. Does not check for NAs

Value

spectra object with resampled spectra
Methods (by class)

- spectra: Resample spectra

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
spec = resample(spec, new_wvl = seq(400, 2400, 0.5), parallel = FALSE)

sd

Standard deviation

Description

sd computes the standard deviation spectrum. Note that values will not reflect value anymore, but the sd of the value instead.

Usage

sd(x, na.rm = FALSE)

Arguments

- x: a numeric vector or an R object which is coercible to one by as.double(x)
- na.rm: logical. Should missing values be removed?

Value

standard deviation

sd.default

Default variance

Description

This function computes the standard deviation of the values in x. If na.rm is TRUE then missing values are removed before computation proceeds.

Usage

## Default S3 method:
sd(x, na.rm = FALSE)
Arguments

x a numeric vector or an R object but not a factor coercible to numeric by as.double(x).
na.rm logical. Should missing values be removed?

Details

Like var this uses denominator \( n - 1 \).
The standard deviation of a length-one or zero-length vector is NA.

See Also

var for its square, and mad, the most robust alternative.

Examples

sd(1:2) ^ 2

sd.spectra Standard deviation spectrum

Description

Forces keep_txt_meta = TRUE

Usage

## S3 method for class 'spectra'
sd(x, na.rm = TRUE)

Arguments

x spectra
na.rm boolean. remove NAs?

Value

single spectrum

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
sd(spec)
smooth

**Generic Smoothing function**

**Description**
Generic Smoothing function

**Usage**
smooth(x, ...)

**Arguments**
- x: data to smooth over
- ...: additional arguments

**Value**
smoothed data

---

smooth.default

**Default smoothing function**

**Description**
Default smoothing function

**Usage**
## Default S3 method:
smooth(x, ...)

**Arguments**
- x: data to smooth over
- ...: additional arguments

**Value**
smoothed data
smooth.spectra  

Smooth spectra

Description
smooth runs each spectrum by a smoothing and returns the spectra

Usage
## S3 method for class 'spectra'
smooth(x, method = "spline", ...)

Arguments
x  spectra object. bands must be strictly increasing
method  Choose smoothing method: "spline" (default) or "moving_average"
...  additional parameters passed to smooth.spline or parameters 'n' and 'save_wvls_to_meta'
for the moving average smoothing.

Value
a spectra object of with smoothed spectra

Author(s)
Jose Eduardo Meireles

Examples
library(spectrolab)

spec = as.spectra(spec_matrix_example, name_idx = 1)
spec = smooth(spec, parallel = FALSE)

spectra  

Spectra object constructor

Description
spectra "manually" creates a spectra object

Usage
spectra(value, bands, names, meta = NULL, ...)


Arguments

value N by M numeric matrix. N samples in rows and M bands in columns
bands band names in vector of length M
names sample names in vector of length N
meta spectra metadata. defaults to NULL. Must be either of length or nrow equals to the number of samples (nrow(value) or length(names))
... additional arguments to metadata creation. not implemented yet

Value

spectra object

Note

This function resorts to an ugly hack to deal with metadata assignment. Need to think a little harder to find a solution.

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
# 1. Create a value matrix.
# In this case, by removing the first column that holds the species name
rf = spec_matrix_example[, -1]

# (2) Create a vector with band labels that match
# the value matrix columns.
wl = colnames(rf)

# (3) Create a vector with sample labels that match
# the value matrix rows.
# In this case, use the first column of spec_matrix_example
sn = spec_matrix_example[, 1]

# Finally, construct the spectra object using the 'spectra' constructor
spec = spectra(value = rf, bands = wl, names = sn)

spectrolab Spectrolab

Description

Class and methods for hyperspectral data.
spec_matrix_example  

*Example spectral dataset*

**Description**

Simulated spectral dataset as a matrix. First column hold species names and the remaining ones the value values. band labels are given as column names.

**Usage**

```r
spec_matrix_example
```

**Format**

An object of class `matrix` (inherits from `array`) with 50 rows and 2102 columns.

**Author(s)**

Jose Eduardo Meireles

---

split.spectra  

*Split spectra*

**Description**

Split a spectra object into a list of spectra according to grouping f.

**Usage**

```r
S3 method for class 'spectra'
split(x, f, drop = FALSE, ...)
```

**Arguments**

- `x` spectra object
- `f` factor vector defining the grouping. Must have length `nrow(x)`
- `drop` NOT used
- `...` NOT used

**Value**

list of spectra

**Author(s)**

Jose Eduardo Meireles
Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
spec_list = split(spec, names(spec))
```

---

**str.spectra**

*Structure of the spectra object*

Description

Structure of the spectra object

Usage

```r
S3 method for class 'spectra'
str(object, ...)
```

Arguments

- `object`: spectra object
- `...`: additional args. not implemented

Value

prints to console

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
str(spec)
```
subset_by  Subset spectra by factor

Description

subset_by subsets spectra by a factor `by` ensuring that it appears at most `n_max` times **and** at least `n_min` times in the dataset.

Usage

```r
subset_by(x, by, n_min, n_max, random = TRUE)
```

## S3 method for class 'spectra'
subset_by(x, by, n_min, n_max, random = TRUE)

Arguments

- **x**  spectra object
- **by**  vector coercible to factor and of same length as nrow(x)
- **n_min**  int. only keep spectra with at least (inclusive) `n_min` number of samples per unique `by`.
- **n_max**  int. keep at most (incl) this number of spectra per unique `by`
- **random**  boolean. Sample randomly or keep first n_max? Defaults to TRUE

Details

Note that `subset_by` forces you to provide both a minimum and a maximum number of spectra to be kept for each unique value of `by`. In case you’re interested in subsetting only based on `n_min`, set `n_max` to `Inf`.

Value

- spectra

Methods (by class)

- spectra: Subset spectra by factor

Author(s)

Jose Eduardo Meireles
summary.spectra

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)

# remove spec of species with less than 4 samples
spec = subset_by(spec, by = names(spec), n_min = 4, n_max = Inf)

summarize.spectra

Summarize spectra

Description

Summarize spectra

Usage

## S3 method for class 'spectra'
summary(object, ...)

Arguments

object         spectra object
...            additional params to summary. not used yet

Value

nothing yet (just prints to console)

Author(s)

Jose Eduardo Meireles

Examples

library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
summary(spec)
t.spectra

Spectra Transpose

Description
spectra are not transposable. Transpose the value instead

Usage
## S3 method for class 'spectra'
t(x)

Arguments
x spectra

Value
nothing. operation not allowed

Author(s)
Jose Eduardo Meireles

Examples
library(spectrolab)
s = as.spectra(spec_matrix_example, name_idx = 1)

# This will throw an error
## Not run:
t(s)

## End(Not run)
# But these options should work
 t(value(s))
 t(as.matrix(s))

try_keep_txt

Wrap function to try to keep text

Description
Function operator returning a function f that tries to keep text.

Usage
try_keep_txt(f)
**Arguments**

- *f*: function to be applied

**Details**

`try_keep_txt` takes a function `f` as argument, typically a mathematical operation such as mean, median, etc. and returns a modified version of it that will try return a string of unique values in case function `f` emits a warning. Useful when aggregating over spectral metadata that has both numeric values (which you want to aggregate) and text values, which you want to keep.

**Value**

modified function `f (f')`.

**Author(s)**

Jose Eduardo Meireles

**Examples**

```r
library(spectrolab)
g = try_keep_txt(mean)
g(c(1, 2))
g(c("a", "b"))
```

---

**value**

*Get spectra value*

**Description**

value returns the value matrix from spectra

**Usage**

```r
value(x)
```

### S3 method for class 'spectra'

```r
value(x)
```

**Arguments**

- *x*: spectra object

**Value**

matrix with samples in rows and bands in columns
Methods (by class)

- spectra: Get spectra value

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
is.matrix(value(spec))
```

value<-  
Set spectra value

Description

value Assigns the rhs to the value of the lhs spectra obj

Usage

```r
value(x) <- value
```

Arguments

- `x`: spectra object
- `value`: value to be assigned to the lhs

Value

nothing. called for its side effect

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
scale all reflectance values by 2
value(spec) = value(spec) * 2
```
Description

var computes the variance spectrum. Note that values will not reflect value anymore, but the variance of the value instead.

Usage

\texttt{var(x, y = NULL, na.rm = FALSE, use)}

Arguments

- \texttt{x}: a numeric vector, matrix or data frame
- \texttt{y}: NULL (default) or a vector, matrix or data frame with compatible dimensions to \texttt{x}
- \texttt{na.rm}: logical. Should missing values be removed?
- \texttt{use}: an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"

Value

variance

Description

var computes the variance spectrum. Note that values will not reflect value anymore, but the variance of the value instead.

Usage

\texttt{## Default S3 method:}
\texttt{var(x, y = NULL, na.rm = FALSE, use)}
Arguments

- **x**: a numeric vector, matrix or data frame
- **y**: NULL (default) or a vector, matrix or data frame with compatible dimensions to `x`.
- **na.rm**: logical. Should missing values be removed?
- **use**: an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"

Value

- variance

---

**var.spectra**  
*Variance spectrum*

Description

Forces keep_txt_meta = TRUE

Usage

```r
S3 method for class 'spectra'
var(x, y = NULL, na.rm = TRUE, use)
```

Arguments

- **x**: spectra
- **y**: nothing
- **na.rm**: boolean. remove NAs?
- **use**: nothing

Value

- single spectrum

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
var(spec)
```
Description

`[' Subsets spectra by sample names (rows) or (and) bands (columns)

Usage

```r
S3 method for class 'spectra'
x[i, j, simplify = TRUE]
```

Arguments

- `x`: spectra object
- `i`: Sample names (preferred), index, or a logical vector of length nrow(x)
- `j`: band labels, as numeric or character or a logical vector of length ncol(x). Do not use indexes!
- `simplify`: Boolean. If TRUE (default), single band selections are returned as a named vector of value values

Details

Subset operations based on samples (first argument) will match sample names or indexes, in that order. The spectra constructor ensures that names are not numeric nor are coercible to numeric, such that `x[1:2, ]` will return the first and second samples in the 'spectra' object. Subsetting based on bands (second argument) matches the band labels, not indices! That is, `x[, 600]` will give you the value data for the 600nm band and not the 600th band. Boolean vectors of the appropriate length can be used to subset samples and bands.

Value

usually a spectra object, but see param 'simplify'

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
head(names(spec), n = 3)
by name
spec1 = spec["species_7" ,]
spec1
by band
spec2 = spec[, 400:700]
spec2
```
Assign value values to spectra

Description

`[<-` assigns the rhs values to spectra

Usage

```r
S3 replacement method for class 'spectra'
x[i, j] <- value
```

Arguments

- `x`: spectra object (lhs)
- `i`: Sample names (preferred), index, or a logical vector of length `nrow(x)`
- `j`: band labels, as numeric or character or a logical vector of length `ncol(x)`. Do not use indexes!
- `value`: value to be assigned (rhs). Must either data coercible to numeric or another 'spectra' obj

Value

nothing. modifies spectra as side effect

Author(s)

Jose Eduardo Meireles

Examples

```r
library(spectrolab)
spec = as.spectra(spec_matrix_example, name_idx = 1)
spec[, 400:500] = spec[, 400:500] * 1.2
spec
```
Index

+Topic datasets
  - spec_matrix_example, 36
  - [.spectra, 45
  - [<-.*spectra, 46

aggregate.spectra, 3
apply_by_band, 4
as.data.frame.spectra, 5
as.matrix.spectra, 6
as.spectra, 6
as.spectra.data.frame, 7
as.spectra.matrix, 8
bands, 8
bands<-, 9
combine, 10
default_spec_regions, 11
dim.spectra, 11
factor, 32
is_spectra, 12
mad, 32
match_sensors, 13
max.spectra, 14
mean.spectra, 15
median.spectra, 15
meta, 16
meta<-, 17
min.spectra, 18
names.spectra, 18
names<-.spectra, 19
normalize, 20

Ops.spectra, 21
plot.spectra, 21
plot_interactive, 22
plot_quantile, 23
plot_regions, 24
print.spectra, 26
quantile.spectra, 26
range.spectra, 27
ratio, 28
read_spectra, 29
resample, 30
sd, 31
sd.default, 31
sd.spectra, 32
smooth, 33
smooth.default, 33
smooth.spectra, 34
spec_matrix_example, 36
spectra, 34
spectrolab, 35
split.spectra, 36
str.spectra, 37
subset_by, 38
summary.spectra, 39
t.spectra, 40
try_keep_txt, 40
value, 41
value<-, 42
var, 32, 43
var.default, 43
var.spectra, 44

47