Package ‘spruce’

February 21, 2022

Type Package

Title Spatial Random Effects Clustering of Single Cell Data

Version 0.99.1

Date 2022-02-17

Description Allows for identification of cell sub-populations within tissue samples using Bayesian multivariate mixture models with spatial random effects to account for a wide range of spatial gene expression patterns, as described in Allen et. al, 2021 <doi:10.1101/2021.06.23.449615>. Bayesian inference is conducted using efficient Gibbs sampling implemented using 'Rcpp'.

License GPL (>= 2)

Imports Rcpp, mvtnorm, BayesLogit, truncnorm, stats, igraph, MCMCpack, patchwork, tidyR, dplyr, ggplot2, tidyselect, Seurat, rlang

RoxygenNote 7.1.2

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

LazyData true

Depends R (>= 4.0)

NeedsCompilation yes

Author Carter Allen [aut, cre] (<https://orcid.org/0000-0001-6937-7234>), Dongjun Chung [aut]

Maintainer Carter Allen <carter.allen12@gmail.com>

Repository CRAN

Date/Publication 2022-02-21 08:50:02 UTC

R topics documented:

build_knn_graph .. 2
coords_df_sim ... 3
fit_msn ... 3
fit_msn_PG_smooth ... 4
build_knn_graph

Make KNN network

Description
Construct a binary adjacency matrix

Usage

```r
build_knn_graph(coords, k)
```

Arguments

- `coords` An n x 2 data frame or matrix of 2d spot coordinates
- `k` The number of neighbors

Value

an adjacency matrix

Examples

```r
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
A <- build_knn_graph(coords_df,k = 4)
```
coords_df_sim

| coords_df_sim | stx Mouse brain coordinates |

Description

A data frame with 3 columns. Columns 1-2 give spot coordinates. Column 3 gives simulated ground truth labels.

Usage

coords_df_sim

Format

A 2696 x 3 data frame

fit_msn

Multivariate skew-normal mixture model clustering

Description

Implement Gibbs sampling for MSN model with no spatial random effects

Usage

fit_msn(Y, K, nsim = 2000, burn = 1000, z_init = NULL)

Arguments

- **Y**

 An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.

- **K**

 The number of mixture components to fit.

- **nsim**

 Number of total MCMC iterations to run.

- **burn**

 Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.

- **z_init**

 Optional initialized allocation vector. Randomly initialized if NULL.

Value

a list of posterior samples
Examples

```r
# parameters
n <- 100
g <- 3  # number of features
K <- 3  # number of clusters (mixture components)
pi <- rep(1/K,K)  # cluster membership probability
z <- sample(1:K, size = n, replace = TRUE, prob = pi)  # cluster indicators
z <- remap_canonical2(z)
t_true <- trunctnorm::rtruncnorm(n,0,Inf,0,1)
t <- t_true

# Cluster Specific Parameters
# cluster specific means
Mu <- list(
  Mu1 = rnorm(g,-5,1),
  Mu2 = rnorm(g,0,1),
  Mu3 = rnorm(g,5,1)
)

# Cluster specific skewness
Xi <- list(
  Xi1 = rep(2,g),
  Xi2 = rep(0,g),
  Xi3 = rep(-3,g)
)

# Cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g)  # covariance matrix
diag(S) <- 1.5
Sig <- list(
  Sig1 = S,
  Sig2 = S,
  Sig3 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
  Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]] + t[i]*Xi[[z[i]]],sigma = Sig[[z[i]]])
}

# fit model
fit1 <- fit_msn(Y,3,10,0)
```

Description

Implement Gibbs sampling for MSN model with spatial smoothing prior. Includes fixed effects multinomial regression on cluster indicators using Polya-Gamma data augmentation.
Usage

```r
fit_msn_PG_smooth(
  Y,
  W,
  coords_df,
  K,
  r = 3,
  nsim = 2000,
  burn = 1000,
  z_init = NULL,
  verbose = FALSE
)
```

Arguments

- `Y`: An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
- `W`: An n x v matrix of covariates to predict cluster membership. Should include an intercept (i.e., first column is 1)
- `coords_df`: An n x 2 data frame or matrix of 2d spot coordinates.
- `K`: The number of mixture components to fit.
- `r`: Empirical spatial smoothing
- `nsim`: Number of total MCMC iterations to run.
- `burn`: Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
- `z_init`: Optional initialized allocation vector. Initialized with hierarchical clustering if NULL.
- `verbose`: Logical for printing cluster allocations at each iteration.

Value

- a list of posterior samples

Examples

```r
# parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
```
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

Cluster Specific Parameters
Mu <- list(
 Mu1 = rnorm(g,-5,1),
 Mu2 = rnorm(g,0,1),
 Mu3 = rnorm(g,5,1),
 Mu4 = rnorm(g,-2,3)
)

cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(
 Sig1 = S,
 Sig2 = S,
 Sig3 = S,
 Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
 Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}

fit model
in practice use more mcmc iterations
fit <- fit_msn_PG_smooth(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)

fit_msn_smooth

Spatial multivariate skew normal mixture model clustering

Description

Implement Gibbs sampling for MSN model with spatial smoothing

Usage

```r
fit_msn_smooth(
  Y, coords_df, K, r = 3, nsim = 2000, burn = 1000, z_init = NULL, verbose = FALSE
)
```
Arguments

- **Y**: An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
- **coords_df**: An n x 2 data frame or matrix of 2d spot coordinates.
- **K**: The number of mixture components to fit.
- **r**: Empirical spatial smoothing
- **nsim**: Number of total MCMC iterations to run.
- **burn**: Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
- **z_init**: Optional initialized allocation vector. Randomly initialized if NULL.
- **verbose**: Logical for printing cluster allocations at each iteration.

Value

A list of posterior samples

Examples

```r
# parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

# Cluster Specific Parameters
Mu <- list(
  Mu1 = rnorm(g,-5,1),
  Mu2 = rnorm(g,0,1),
  Mu3 = rnorm(g,5,1),
  Mu4 = rnorm(g,-2,3)
)

# cluster specific variance-covariance
Sig <- list(
  Sig1 = S,
  Sig2 = S,
  Sig3 = S,
  Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
  
  
}
```
```r
Y[i,] <- mvtnorm::rmvnorm(1, mean = Mu[[z[i]]], sigma = Sig[[z[i]]])
```

fit model
in practice use more mcmc iterations
fit <- fit_msn_smooth(Y = Y, coords_df = coords_df, K = K, nsim = 10, burn = 0)

fit_mvn

Multivariate normal mixture model clustering

Description

Implement Gibbs sampling for MVN model with no spatial random effects

Usage

```r
fit_mvn(Y, K, nsim = 2000, burn = 1000, z_init = NULL)
```

Arguments

- **Y**
 - An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
- **K**
 - The number of mixture components to fit.
- **nsim**
 - Number of total MCMC iterations to run.
- **burn**
 - Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
- **z_init**
 - Optional initialized allocation vector. Randomly initialized if NULL.

Value

A list of posterior samples

Examples

```r
n <- 100 # number of observations
g <- 3 # number of features
K <- 3 # number of clusters (mixture components)
p <- rep(1/K, K) # cluster membership probability
z <- sample(1:K, size = n, replace = TRUE, prob = p) # cluster indicators
z <- remap_canonical2(z)

# Cluster Specific Parameters
# cluster specific means
Mu <- list(
  Mu1 = rnorm(g, -5, 1),
  Mu2 = rnorm(g, 0, 1),
  Mu3 = rnorm(g, 5, 1)
)
```
```r
# cluster specific variance-covariance
S <- matrix(1, nrow = g, ncol = g)  # covariance matrix
diag(S) <- 1.5
Sig <- list(
    Sig1 = S,
    Sig2 = S,
    Sig3 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
    Y[i,] <- mvtnorm::rmvnorm(1, mean = Mu[[z[i]]], sigma = Sig[[z[i]]])
}

# fit model
fit1 <- fit_mvn(Y, 3, 10, 0)
```

fit_mvn_MCAR

Multivariate normal spatial mixture model clustering

Description

Implement Gibbs sampling for MVN model with MCAR spatial random effects

Usage

```r
fit_mvn_MCAR(Y, coords_df, K, nsim = 2000, burn = 1000, z_init = NULL)
```

Arguments

- **Y**: An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
- **coords_df**: An n x 2 data frame or matrix of 2d spot coordinates.
- **K**: The number of mixture components to fit.
- **nsim**: Number of total MCMC iterations to run.
- **burn**: Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
- **z_init**: Optional initialized allocation vector. Randomly initialized if NULL.

Value

a list of posterior samples
Examples

parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim[,2])
A <- build_knn_graph(as.matrix(coords_df), k = 4)

n <- nrow(coords_df) # number of observations
g <- 2 # number of features
K <- length(unique(z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

Cluster Specific Parameters
Mu <- list(Mu1 = rnorm(g, -5, 1), Mu2 = rnorm(g, 0, 1), Mu3 = rnorm(g, 5, 1), Mu4 = rnorm(g, -2, 3))
cluster specific variance-covariance
S <- matrix(1, nrow = g, ncol = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(Sig1 = S, Sig2 = S, Sig3 = S, Sig4 = S)

generate phi - not cluster specific
conditional covariance of phi_i given phi_noti
m <- colSums(A)
M <- diag(m)
V <- matrix(0.4, nrow = g, ncol = g) # CAR covariance
diag(V) <- 0.6
V_true <- V
rho <- 0.999999 # Spatial dependence parameter ~ 1 for intrinsic CAR
Q <- diag(m) - rho*A # m is number of neighbors for each spot
covphi <- solve(Q) %x% V # gn x gn covariance of phis
phi <- rmvnorm(1, sigma = covphi) # gn vector of spatial effects
PHI <- matrix(phi, ncol = g, byrow = TRUE) # n x g matrix of spatial effects
PHI <- t(scale(t(PHI)))

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
 Y[i,] <- rmvnorm(1, mean = Mu[z[i]], sigma = Sig[z[i]])
}

fit model
in practice use more mcmc iterations
fit_mvn_MCAR <- fit_mvn_MCAR(Y = Y, coords_df = coords_df, K = K, nsim = 10, burn = 0)

fit_mvn_PG

Multivariate normal mixture model clustering - PG multinom regression

Description

Implement Gibbs sampling for MVN model. Includes fixed effects multinomial regression on cluster indicators using Polya-Gamma data augmentation.

Usage

fit_mvn_PG(Y, W, K, nsim = 2000, burn = 1000, z_init = NULL, verbose = FALSE)

Arguments

Y An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
W An n x v matrix of covariates to predict cluster membership. Should include an intercept (i.e., first column is 1)
K The number of mixture components to fit.
nsim Number of total MCMC iterations to run.
burn Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
z_init Optional initialized allocation vector. Initialized with hierarchical clustering if NULL.
verbose Logical for printing cluster allocations at each iteration.

Value

a list of posterior samples

Examples

parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

Cluster Specific Parameters
Mu <- list(
 Mu1 = rnorm(g,-5,1),
 Mu2 = rnorm(g,0,1),
 Mu3 = rnorm(g,5,1),
 Mu4 = rnorm(g,-2,3)
)

cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(
 Sig1 = S,
 Sig2 = S,
 Sig3 = S,
 Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
 {
 Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
 }

fit model
in practice use more mcmc iterations
fit <- fit_mvn_PG(Y = Y, W = W, K = K, nsim = 10, burn = 0)

fit_mvn_PG_CAR

Multivariate normal mixture model clustering - PG multinomial regression w/ CAR random effect

Description

Implement Gibbs sampling for MVN model. Includes fixed effects multinomial regression w/ CAR random intercepts on cluster indicators using Polya-Gamma data augmentation.

Usage

fit_mvn_PG_CAR(Y, W, coords_df, K, nsim = 2000, burn = 1000, z_init = NULL)

Arguments

Y
An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.

W
An n x v matrix of covariates to predict cluster membership. Should include an intercept (i.e., first column is 1)
coords_df An n x 2 data frame or matrix of 2d spot coordinates.
K The number of mixture components to fit.
nsim Number of total MCMC iterations to run.
burn Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
z_init Optional initialized allocation vector. Randomly initialized if NULL.

Value
a list of posterior samples

Examples

parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

Cluster Specific Parameters
Mu <- list(
 Mu1 = rnorm(g,-5,1),
 Mu2 = rnorm(g,0,1),
 Mu3 = rnorm(g,5,1),
 Mu4 = rnorm(g,-2,3)
)

cluster specific variance-covariance
S <- matrix(1,nrow = g,nrow1 = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(
 Sig1 = S,
 Sig2 = S,
 Sig3 = S,
 Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
 {
 Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
 }

fit model
in practice use more mcmc iterations
fit <- fit_mvn_PG_CAR(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)

fit_mvn_PG_CAR_MCAR

Multivariate normal spatial mixture model clustering w/ PG multinomial regression on membership probabilities

Description

Implement Gibbs sampling for MVN model with MCAR spatial random effects w/ PG multinomial regression on membership probabilities and CAR random ints in multinomial regression model.

Usage

fit_mvn_PG_CAR_MCAR(
 Y,
 W,
 coords_df,
 K,
 nsim = 2000,
 burn = 1000,
 z_init = NULL,
 verbose = FALSE
)

Arguments

Y An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
W An n x v matrix of covariates to predict cluster membership. Should include an intercept (i.e., first column is 1)
coords_df An n x 2 data frame or matrix of 2d spot coordinates.
K The number of mixture components to fit.
nsim Number of total MCMC iterations to run.
burn Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
z_init Optional initialized allocation vector. Randomly initialized if NULL.
verbose Logical for printing cluster allocations at each iteration.

Value

a list of posterior samples
Examples

```r
# parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

# Cluster Specific Parameters
Mu <- list(
    Mu1 = rnorm(g,-5,1),
    Mu2 = rnorm(g,0,1),
    Mu3 = rnorm(g,5,1),
    Mu4 = rnorm(g,-2,3)
)

# cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(
    Sig1 = S,
    Sig2 = S,
    Sig3 = S,
    Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
    Y[i,] <- rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}

# fit model
# in practice use more mcmc iterations
fit <- fit_mvn_PG_CAR_MCAR(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)
```

`fit_mvn_PG_CAR_MCAR_smooth`

Multivariate normal spatial mixture model clustering w/ PG multinomial regression on membership probabilities with spatial smoothing
Description
Implement Gibbs sampling for MVN model with MCAR spatial random effects w/ PG multinomial
regression on membership probabilities and CAR random ints in multinomial regression model with
spatial smoothing.

Usage

```r
fit_mvn_PG_CAR_MCAR_smooth(
  Y,
  W,
  coords_df,
  K,
  r = 3,
  nsim = 2000,
  burn = 1000,
  z_init = NULL,
  verbose = FALSE
)
```

Arguments

- **Y**: An n x g matrix of gene expression values. n is the number of cell spots and g is
 the number of features.
- **W**: An n x v matrix of covariates to predict cluster membership. Should include an
 intercept (i.e., first column is 1)
- **coords_df**: An n x 2 data frame or matrix of 2d spot coordinates.
- **K**: The number of mixture components to fit.
- **r**: Empirical spatial smoothing
- **nsim**: Number of total MCMC iterations to run.
- **burn**: Number of MCMC iterations to discard as burn in. The number of saved samples
 is nsim - burn.
- **z_init**: Optional initialized allocation vector. Randomly initialized if NULL.
- **verbose**: Logical for printing cluster allocations at each iteration.

Value

- a list of posterior samples

Examples

```r
# parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
```
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

Cluster Specific Parameters
Mu <- list(
 Mu1 = rnorm(g,-5,1),
 Mu2 = rnorm(g,0,1),
 Mu3 = rnorm(g,5,1),
 Mu4 = rnorm(g,-2,3)
)

cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(
 Sig1 = S,
 Sig2 = S,
 Sig3 = S,
 Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
 Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}

fit model
in practice use more mcmc iterations
fit <- fit_mvn_PG_CAR_MCAR_smooth(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)

fit_mvn_PG_CAR_smooth
Multivariate normal mixture model clustering - PG multinom regression w/ CAR random effect and spatial smoothing

Description

Implement Gibbs sampling for MVN model. Includes fixed effects multinomial regression w/ CAR random intercepts on cluster indicators using Polya-Gamma data augmentation and spatial smoothing.

Usage

```r
fit_mvn_PG_CAR_smooth(
    Y,
    W,
```
```r
coords_df,
K,
r = 3,
nsim = 2000,
burn = 1000,
z_init = NULL
)

Arguments

Y
An n x g matrix of gene expression values. n is the number of cell spots and g is
the number of features.

W
An n x v matrix of covariates to predict cluster membership. Should include an
intercept (i.e., first column is 1)

cords_df
An n x 2 data frame or matrix of 2d spot coordinates.

K
The number of mixture components to fit.

r
Empirical spatial smoothing

nsim
Number of total MCMC iterations to run.

burn
Number of MCMC iterations to discard as burn in. The number of saved samples
is nsim - burn.

z_init
Optional initialized allocation vector. Randomly initialized if NULL.

Value

a list of posterior samples

Examples

# parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations

g <- 3 # number of features

K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)

pi <- table(z)/length(z) # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1), size = n, replace = TRUE, prob = c(0.5,0.5))

# Cluster Specific Parameters
Mu <- list(
    Mu1 = rnorm(g,-5,1),
    Mu2 = rnorm(g,0,1),
    Mu3 = rnorm(g,5,1),
    Mu4 = rnorm(g,-2,3)
)
# cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(
    Sig1 = S,
    Sig2 = S,
    Sig3 = S,
    Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
    Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[z[i]],sigma = Sig[z[i]])
}

# fit model
# in practice use more mcmc iterations
fit <- fit_mvn_PG_CAR_smooth(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)

---

**fit_mvn_PG_MCAR**  
*Multivariate normal spatial mixture model clustering w/ PG multinomial regression on membership probabilities*

**Description**

Implement Gibbs sampling for MVN model with MCAR spatial random effects w/ PG multinomial regression on membership probabilities

**Usage**

fit_mvn_PG_MCAR(
    Y,  
    W,  
    coords_df,  
    K,  
    nsim = 2000,  
    burn = 1000,  
    z_init = NULL,  
    verbose = FALSE
)

**Arguments**

- **Y**  
  An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.

- **W**  
  An n x v matrix of covariates to predict cluster membership. Should include an intercept (i.e., first column is 1)
coords_df  An n x 2 data frame or matrix of 2d spot coordinates.
K  The number of mixture components to fit.
nsim  Number of total MCMC iterations to run.
burn  Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
z_init  Optional initialized allocation vector. Randomly initialized if NULL.
verbose  Logical for printing cluster allocations at each iteration.

Value
a list of posterior samples

Examples

# parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)
n <- nrow(coords_df)  # number of observations
g <- 3  # number of features
K <- length(unique(coords_df_sim$z))  # number of clusters (mixture components)
pi <- table(z)/length(z)  # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

# Cluster Specific Parameters
Mu <- list(
  Mu1 = rnorm(g,-5,1),
  Mu2 = rnorm(g,0,1),
  Mu3 = rnorm(g,5,1),
  Mu4 = rnorm(g,-2,3)
)

# cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g)  # y covariance matrix
diag(S) <- 1.5
Sig <- list(
  Sig1 = S,
  Sig2 = S,
  Sig3 = S,
  Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
  Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}
# fit model
# in practice use more mcmc iterations
fit <- fit_mvn_PG_MCAR(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)

---

**fit_mvn_PG_MCAR_smooth**  
*Multivariate normal spatial mixture model clustering w/ PG multinomial regression on membership probabilities and spatial smoothing*

**Description**  
Implement Gibbs sampling for MVN model with MCAR spatial random effects w/ PG multinomial regression on membership probabilities and spatial smoothing

**Usage**

```r
fit_mvn_PG_MCAR_smooth(
 Y,
 W,
 coords_df,
 K,
 r = 3,
 nsim = 2000,
 burn = 1000,
 z_init = NULL,
 verbose = FALSE
)
```

**Arguments**

- **Y**: An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
- **W**: An n x v matrix of covariates to predict cluster membership. Should include an intercept (i.e., first column is 1)
- **coords_df**: An n x 2 data frame or matrix of 2d spot coordinates.
- **K**: The number of mixture components to fit.
- **r**: Empirical spatial smoothing
- **nsim**: Number of total MCMC iterations to run.
- **burn**: Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
- **z_init**: Optional initialized allocation vector. Randomly initialized if NULL.
- **verbose**: Logical for printing cluster allocations at each iteration.
Value

a list of posterior samples

Examples

```r
parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
k <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

Cluster Specific Parameters
Mu <- list(
 Mu1 = rnorm(g,-5,1),
 Mu2 = rnorm(g,0,1),
 Mu3 = rnorm(g,5,1),
 Mu4 = rnorm(g,-2,3)
)

cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(
 Sig1 = S,
 Sig2 = S,
 Sig3 = S,
 Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
 Y[i,] <- rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}

fit model
in practice use more mcmc iterations
fit <- fit_mvn_PG_MCAR_smooth(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)
```

**fit_mvn_PG_smooth**  
*Multivariate normal mixture model clustering - PG multinom regression Spatial smoothing*
Description

Implement Gibbs sampling for MVN model with spatial smoothing prior. Includes fixed effects multinomial regression on cluster indicators using Polya-Gamma data augmentation.

Usage

```r
fit_mvn_PG_smooth(
 Y,
 W,
 coords_df,
 K,
 r = 3,
 nsim = 2000,
 burn = 1000,
 z_init = NULL,
 verbose = FALSE
)
```

Arguments

- **Y**: An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
- **W**: An n x v matrix of covariates to predict cluster membership. Should include an intercept (i.e., first column is 1)
- **coords_df**: An n x 2 data frame or matrix of 2d spot coordinates.
- **K**: The number of mixture components to fit.
- **r**: Empirical spatial smoothing
- **nsim**: Number of total MCMC iterations to run.
- **burn**: Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
- **z_init**: Optional initialized allocation vector. Initialized with hierarchical clustering if NULL.
- **verbose**: Logical for printing cluster allocations at each iteration.

Value

- A list of posterior samples

Examples

```r
parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
```
```r
number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability
W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

Cluster Specific Parameters
Mu <- list(
 Mu1 = rnorm(g,-5,1),
 Mu2 = rnorm(g,0,1),
 Mu3 = rnorm(g,5,1),
 Mu4 = rnorm(g,-2,3)
)

cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1.5

Sig <- list(
 Sig1 = S,
 Sig2 = S,
 Sig3 = S,
 Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
 Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])

fit model
in practice use more mcmc iterations
fit <- fit_mvn_PG_smooth(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)
```

---

### fit_mvn_smooth

**Spatial multivariate normal mixture model clustering**

**Description**

Implement Gibbs sampling for MVN model with spatial smoothing

**Usage**

```r
fit_mvn_smooth(
 Y,
 coords_df,
 K,
 r,
 nsim = 2000,
)```

burn = 1000,
 z_init = NULL,
 verbose = FALSE
)

Arguments

Y An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features.
coords_df An n x 2 data frame or matrix of 2d spot coordinates.
K The number of mixture components to fit.
r Empirical spatial smoothing
nsim Number of total MCMC iterations to run.
burn Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn.
z_init Optional initialized allocation vector. Randomly initialized if NULL.
verbose Logical for printing cluster allocations at each iteration.

Value

da list of posterior samples

Examples

Not run:
parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)

n <- nrow(coords_df) # number of observations
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

Cluster Specific Parameters
cluster specific means
Mu <- list(
 Mu1 = rnorm(g,-2,1),
 Mu2 = rnorm(g,-1,1),
 Mu3 = rnorm(g,1,1),
 Mu4 = rnorm(g,2,1)
)

cluster specific variance-covariance
S <- matrix(0.5,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1
Sig <- list(
 Sig1 = S,
 Sig2 = S,
Sig3 = S
Sig4 = S

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
 Y[i,] <- mvtnorm::rmvnorm(1, mean = Mu[[z[i]]], sigma = Sig[[z[i]]])
}

sometimes helps to initialize using heuristic like kmeans
fitk <- stats::kmeans(Y, 4)
z_km <- remap_canonical2(fitk$cluster)

fit model
use more iterations in practice
fit1 <- fit_mvn_smooth(Y, coords_df, 4, 2, 10, 0, z_km)
End(Not run)

fit_spruce

Fit spruce Bayesian spatial mixture model

Description

This function allows you to detect sub-populations single-sample spatial transcriptomics experiments.

Usage

```r
fit_spruce(
  seurat_obj,
  K,
  emb = "PCs",
  n_dim = 8,
  r = 3,
  MCAR = TRUE,
  CAR = TRUE,
  smooth = TRUE,
  nsim = 2000,
  burn = 1000,
  z_init = NULL
)
```

Arguments

- `seurat_obj` An integrated Seurat object
- `K` The number of sub-populations to infer. Each should be present in each sample.
Either one of "PCs", "HVGs", or "SVGs" OR a matrix with custom embeddings. If the latter, rows should be sorted as in meta data of Seurat object.

The number of dimensions to use if emb is specified as one of "PCs", "HVGs", or "SVGs". Ignored if emb is a matrix of custom embeddings.

Spatial smoothing parameter. Should be greater than 0 with larger values enforcing stronger prior spatial association.

Logical. Include multivariate CAR random intercepts in gene expression model?

Logical. Include univariate CAR random intercepts in multinomial gene expression model?

Logical. Use manual spatial smoothing controlled by r parameter?

Number of total MCMC iterations to conduct.

Number of initial MCMC iterations to discard as burn in. The number of saved iterations is nsim-burn

Initialized cluster allocation vector to aid in MCMC convergence. If NULL z_init will be set using hierarchical clustering.

A list of MCMC samples, including the MAP estimate of cluster indicators (z)

get_map

Get MAP estimate of cluster indicators

Description

Compute maximum a posteriori (MAP) estimate of cluster indicators

Usage

get_map(z)

Arguments

z

All cluster indicator posterior samples from a given cell spot

Value

MAP estimate of cluster labels. Useful applied over columns of posterior samples matrix (see example)
Examples

```
# parameters
n <- 100  # number of observations
G <- 3   # number of features
K <- 3   # number of clusters (mixture components)
pi <- rep(1/K,K)  # cluster membership probability
z <- sample(1:K, size = n, replace = TRUE, prob = pi)  # cluster indicators
z <- remap_canonical2(z)

# Cluster Specific Parameters
# cluster specific means
Mu <- list(
  Mu1 = rnorm(G,-5,1),
  Mu2 = rnorm(G,0,1),
  Mu3 = rnorm(G,5,1)
)

# cluster specific variance-covariance
S <- matrix(1,nrow = G,ncol = G)  # covariance matrix
diag(S) <- 1.5
Sig <- list(
  Sig1 = S,
  Sig2 = S,
  Sig3 = S
)

Y <- matrix(0, nrow = n, ncol = G)
for(i in 1:n)
{
  Y[i,] <- rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}

# fit model
fit1 <- fit_mvn(Y,3,100,0)

# Apply get_map() to columns of Z (i.e., posterior samples from each cell spot)
z_map <- apply(fit1$Z, 2, get_map)
```

get_psi_sums

Sum all neighboring psis

Description

Sum all neighboring psis

Usage

```
get_psi_sums(Psi, A)
```
get_scores

Arguments

Psi: an n x 1 vector of component k psis
A: an n x n adjacency matrix

calculates confidence scores

Description

Use posterior estimates to calculate uncertainty scores

Usage

get_scores(fit)

Arguments

fit: A model fit returned by one of the fit_*_PG model functions

Value

An n x (K + 1) matrix. First K columns are continuous phenotypes, and last column is uncertainty scores

Examples

parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)
n <- nrow(coords_df) # number of observations
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability

W <- matrix(0, nrow = n, ncol = 2)
W[,1] <- 1
W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5))

Cluster Specific Parameters
Mu <- list(
 Mu1 = rnorm(g,-5,1),
 Mu2 = rnorm(g,0,1),
 Mu3 = rnorm(g,5,1),
 Mu4 = rnorm(g,-2,3)
)

cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1.5
Sig <- list(
 Sig1 = S,
 Sig2 = S,
 Sig3 = S,
 Sig4 = S
)

Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
 Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}

fit model
in practice use more mcmc iterations
fit <- fit_mvn_PG_smooth(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)

scores_df <- get_scores(fit)

plot_deltas

Plot delta parameters from multinomial regression model

Description

Allows for visualization of multinomial regression models from spatial or non-spatial models

Usage

```r
plot_deltas(fit)
```

Arguments

- `fit`: A model fit returned by one of the `fit_*_PG` model functions

Value

- a ggplot

Examples

```r
# parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)
n <- nrow(coords_df) # number of observations
```
`psi_sums`

Sum neighboring psis in spot i

Description

Sum neighboring psis in spot i

Usage

`psi_sums(ai, Psi)`

Arguments

- `ai` the ith row (or column) of the adjacency matrix
- `Psi` an n x 1 vector of component k psis

```r
# number of features
k <- 3

# number of clusters (mixture components)
K <- length(unique(coords_df_sim$z))

# cluster membership probability
pi <- table(z)/length(z)

# Cluster Specific Parameters
Mu <- list(
  Mu1 = rnorm(g,-5,1),
  Mu2 = rnorm(g,0,1),
  Mu3 = rnorm(g,5,1),
  Mu4 = rnorm(g,-2,3)
)

# cluster specific variance-covariance
Sig <- list(
  Sig1 = S,
  Sig2 = S,
  Sig3 = S,
  Sig4 = S
)

# fit model
fit <- fit_mvn_PG_smooth(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0)
plot_deltas(fit)
```
remap_canonical2

Canonical re-mapping of mixture component labels

Description

Avoid label switching by re-mapping sampled mixture component labels at each iteration (Peng and Carvalho 2016).

Usage

```r
remap_canonical2(z)
```

Arguments

- `z`
 A length-n vector of discrete mixture component labels

Value

A length-n vector of mixture component labels re-mapped to a canonical sub-space

Examples

```r
# parameters
n <- 10  # number of observations
K <- 3  # number of clusters (mixture components)
pi <- rep(1/K, K)  # cluster membership probability
z <- sample(1:K, size = n, replace = TRUE, prob = pi)  # cluster indicators
z <- remap_canonical2(z)
```

spruce

SPRUCE

Description

This package fits Bayesian spatial mixture models

spruce functions

The spruce functions ...
Index

* **Bayesian**
 * fit_spruce, 26
* **datasets**
 * coords_df_sim, 3
* **spatial**
 * fit_spruce, 26
* **transcriptomics**
 * fit_spruce, 26

build_knn_graph, 2

cords_df_sim, 3

fit_msn, 3
fit_msn_PG_smooth, 4
fit_msn_smooth, 6
fit_mvn, 8
fit_mvn_MCAR, 9
fit_mvn_PG, 11
fit_mvn_PG_CAR, 12
fit_mvn_PG_CAR_MCAR, 14
fit_mvn_PG_CAR_MCAR_smooth, 15
fit_mvn_PG_CAR_smooth, 17
fit_mvn_PG_MCAR, 19
fit_mvn_PG_MCAR_smooth, 21
fit_mvn_PG_smooth, 22
fit_mvn_smooth, 24
fit_spruce, 26

get_map, 27
get_psi_sums, 28
get_scores, 29

plot_deltas, 30
psi_sums, 31

remap_canonical2, 32

spruce, 32