Package ‘steprf’

November 8, 2021

Title Stepwise Predictive Variable Selection for Random Forest
Version 1.0.0
Date 2021-10-28

Description An introduction to several novel predictive variable selection methods for random forest. They are based on various variable importance methods (i.e., averaged variable importance (AVI), and knowledge informed AVI (i.e., KIAVI, and KIAVI2)) and predictive accuracy in stepwise algorithms. For details of the variable selection methods, please see: Li, J., Siwabessy, J., Huang, Z. and Nichol, S. (2019) <doi:10.3390/geosciences9040180>. Li, J., Alvarez, B., Siwabessy, J., Tran, M., Huang, Z., Przelawski, R., Radke, L., Howard, F., Nichol, S. (2017). <DOI:10.13140/RG.2.2.27686.22085>.

Depends R (>= 4.0)
Imports spm, randomForest, spm2, psy
License GPL (>= 2)
RoxygenNote 7.1.1
Encoding UTF-8
Suggests knitr, rmarkdown, lattice, reshape2
NeedsCompilation no
Author Jin Li [aut, cre]
Maintainer Jin Li <jinli68@gmail.com>
Repository CRAN
Date/Publication 2021-11-08 08:40:05 UTC

R topics documented:

- cran-comments .. 2
- RFcv2 .. 2
- steprf .. 4
- steprfAVI ... 7
- steprfAVI1 .. 9
- steprfAVI2 .. 11
- steprfAVIPredictors ... 14

Index 15
Description

This is an updated and extended version of 'spm' package. The change in package name from 'spm' to 'spm2' is due to the change in Author's support from Geoscience Australia to Data2Action Australia.

R CMD check results
0 errors | 0 warnings | 0 notes

Author(s)

Jin Li

RFcv2
Cross validation, n-fold for random forest (RF)

Description

This function is a cross validation function for random forest. It is for functions `steprf`, `steprfAVI`, etc.

Usage

```r
RFcv2(
    trainx,
    trainy,
    cv.fold = 10,
    mtry = if (!is.null(trainy) && !is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else floor(sqrt(ncol(trainx))),
    ntree = 500,
    predacc = "VEcv",
    ...
)
```

Arguments

- `trainx`: a dataframe or matrix contains columns of predictor variables.
- `trainy`: a vector of response, must have length equal to the number of rows in `trainx`.
- `cv.fold`: integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- `mtry`: a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
ntree

number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.

predacc

"VEcv" for vecv for numerical data, or "ccr" (i.e., correct classification rate) or "kappa" for categorical data.

... other arguments passed on to randomForest.

Value

A list with the following component: vecv for numerical data: ; or ccr (correct classification rate) for categorical data: .

Note

This function is largely based on rf.cv (see Li et al. 2013) and rfcv in randomForest.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

library(spm)
data(hard)
data(petrel1)

rfcv1 <- RFcv2(petrel[, c(1,2,6:9)], petrel[, 5], predacc = "VEcv")
rfcv1

rfcv2 <- RFcv2(hard[, -c(1, 17)], hard[, 17], predacc = "ccr")
rfcv2

rfcv3 <- RFcv2(hard[, -c(1, 17)], hard[, 17], predacc = "kappa")
rfcv3

n <- 10 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
 rfcv1 <- RFcv2(petrel[, c(1,2,6:9)], petrel[, 5], predacc = "VEcv")
}
steprf <- function(trainx, trainy, method = "KIAVI", cv.fold = 10, ntree = 500, rpt = 20, predacc = "VEcv", importance = TRUE, maxk = c(4), nsim = 100, delta.predacc = 0.001, min.n.var = 2, corr.threshold = 0.5, ...)

Description

This function is to select predictive variables for random forest by various variable importance methods (i.e., AVI, Knowledge informed AVI (KIAVI), KIAVI2) and predictive accuracy. It is implemented via the functions 'steprfAVI' and 'steprfAVIPredictors'.

Usage

steprf(
 trainx,
 trainy,
 method = "KIAVI",
 cv.fold = 10,
 ntree = 500,
 rpt = 20,
 predacc = "VEcv",
 importance = TRUE,
 maxk = c(4),
 nsim = 100,
 delta.predacc = 0.001,
 min.n.var = 2,
 corr.threshold = 0.5,
 ...
)
Arguments

- **trainx**: a dataframe or matrix contains columns of predictor variables.
- **trainy**: a vector of response, must have length equal to the number of rows in trainx.
- **method**: a variable selection method for 'RF'; can be: "AVI", "KIAVI" and "KIAVI2". If "AVI" is used, it would produce the same results as 'steprfAVI'. By default, "KIAVI" is used.
- **cv.fold**: integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- **ntree**: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
- **rpt**: iteration of cross validation.
- **predacc**: "VEcv" for vecv for numerical data, or "ccr" (i.e., correct classification rate) or "kappa" for categorical data.
- **importance**: importance of predictive variables.
- **maxk**: maxk split value. By default, 4 is used.
- **nsim**: iteration number. By default, 100 is used.
- **delta.predacc**: minimum changes between the accuracies of two consecutive predictive models.
- **min.n.var**: minimum number of predictive variables remained in the final predictive model the default is 2. If 1 is used, then warnings: 'invalid mtry: reset to within valid range' will be issued, which should be ignored.
- **corr.threshold**: correlation threshold and the defaults value is 0.5.
- **...**: other arguments passed on to randomForest.

Value

A list with the following components: 1) steprfPredictorsFinal: the variables selected for the last RF model, whether it is of the highest predictive accuracy need to be confirmed using 'max.predictive.accuracy' that is listed next; 2) max.predictive.accuracy: the predictive accuracy of the most accurate RF model for each run of 'steprfAVI', which can be used to confirm the model with the highest accuracy; 3) numberruns: number of runs of 'steprfAVI'; 4) laststepAVI: the outputs of last run of 'steprfAVI'; 5) steprfAVIOutsAll: the outputs of all 'steprfAVI' produced during the variable selection process; 6) steprfPredictorsAll: the outputs of 'steprfAVIPredictors' for all 'steprfAVI' produced during the variable selection process; 7) KIAVIPredictorsAll: predictors used for all 'steprfAVI' produced during the variable selection process; for a method "AVI", if the variables are different from those in the training dataset, it suggests that these variables should be tested if the predictive accuracy can be further improved.

Note

In 'steprf', 'steprfAVI' is used instead of 'steprfAVI1' and 'steprfAVI2'. This is because: 1) 'avi' is expected to change with the removal of each predictor, but in 'steprfAVI1' the averaged variable importance is calculated only once and is from the full model only, so its use is expected to produce a less optimal model, hence not used; and 2) the 'steprf' would lead to the same set of predictors as that for 'steprfAVI2' if 'steprfAVI2' is used, so it is not used either.
Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
library(spm)
data(petrel)
set.seed(1234)
steprf1 <- steprf(trainx = petrel[, c(1,2, 6:9)], trainy = petrel[, 5], method = "KIAVI", rpt = 2, predacc = "VEcv", importance = TRUE, nsim = 3, delta.predacc = 0.01)
names(steprf1)
steprf1$steprfPredictorsFinal$variables.most.accurate
steprf1$max.predictive.accuracy
```
steprfAVI

Select predictive variables for random forest by AVI and accuracy in a stepwise algorithm

Description

This function is to select predictive variables for random forest by their averaged variable importance (AVI) that is calculated for each model after excluding the least important variable, and returns the corresponding predictive accuracy. It is also developed for 'steprf' function.

Usage

steprfAVI(
 trainx,
 trainy,
 cv.fold = 10,
 ntree = 500,
 rpt = 20,
 predacc = "VEcv",
 importance = TRUE,
 maxk = c(4),
 nsim = 100,
 min.n.var = 2,
 corr.threshold = 0.5,
 ...
)

Arguments

- trainx: a dataframe or matrix contains columns of predictor variables.
- trainy: a vector of response, must have length equal to the number of rows in trainx.
- cv.fold: integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
- ntree: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
- rpt: iteration number of cross validation.
- predacc: "VEcv" for vecv for numerical data, or "ccr" (i.e., correct classification rate) or "kappa" for categorical data.
- importance: importance of predictive variables.
- maxk: maxk split value. By default, 4 is used.
- nsim: iteration number for 'avi'. By default, 100 is used.
- min.n.var: minimum number of predictive variables remained in the final predictive model the default is 2. If 1 is used, then warnings: 'invalid mtry: reset to within valid range' will be issued, which should be ignored.
- corr.threshold: correlation threshold and the defaults value is 0.5.
- ...: other arguments passed on to randomForest.
Value

A list with the following components: 1) variable.removed: variable removed based on AVI, 2) predictive.accuracy: averaged predictive accuracy of the model after excluding the variable.removed, 3) delta.accuracy: contribution to accuracy by each variable.removed, and 4) predictive.accuracy2: predictive accuracy matrix of the model after excluding the variable.removed for each iteration.

Author(s)

Jin Li

References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

library(spm)
data(petrel)
set.seed(1234)
steprf1 <- steprfAVI(trainx = petrel[, c(1,2, 6:9)], trainy = petrel[, 5],
 rpt = 2, predacc = "VEcv", importance = TRUE, nsim = 3, min.n.var = 2)
steprf1

steprf2 <- steprfAVI(trainx = hard[, -c(1, 17)], trainy = hard[, 17],
 rpt = 2, predacc = "ccr", importance = TRUE, nsim = 3, min.n.var = 2)
steprf2

#plot steprf1 results
library(reshape2)
pal <- as.data.frame(steprf1$predictive.accuracy2)
steprfAVI1

Select predictive variables for random forest by avi and accuracy in a stepwise algorithm

Description

This function is to select predictive variables for random forest by their averaged variable importance which is derived from the full model and returns the corresponding predictive accuracy. That is, in comparison with 'steprfAVI', the averaged variable importance is calculated only once and is from the full model only.

Usage

steprfAVI1(
 trainx,
 trainy,
 cv.fold = 10,
 mtry = if (!is.null(trainy) && !is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else floor(sqrt(ncol(trainx))),
 ntree = 500,
 rpt = 2,
 predacc = "VEcv",
 importance = TRUE,
 maxk = c(4),
 nsim = 100,
 min.n.var = 2,
 corr.threshold = 0.5,
 ...
)

Arguments

trainx a dataframe or matrix contains columns of predictor variables.

trainy a vector of response, must have length equal to the number of rows in trainx.
cv.fold integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
mtry a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
ntree number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
rpt iteration of cross validation.
predacc "VEcv" for vecv for numerical data, or "ccr" (i.e., correct classification rate) or "kappa" for categorical data.
importance importance of predictive variables.
maxk maxk split value. By default, 4 is used.
nsim iteration number. By default, 100 is used.
min.n.var minimum number of predictive variables remained in the final predictive model. the default is 1.
corr.threshold correlation threshold and the defaults value is 0.5.
... other arguments passed on to randomForest.

Value
A list with the following components: variable removed based on avi (variable.removed), averaged predictive accuracy of the model after excluding variable.removed (predictive.accuracy), contribution to accuracy by each variable.removed (delta.accuracy), and predictive accuracy matrix of the model after excluding variable.removed for each iteration (predictive.accuracy2)

Author(s)
Jin Li

References
Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

```r
library(spm)
data(petrel)
set.seed(1234)
steprfAVI1.1 <- steprfAVI1(trainx = petrel[, c(1,2, 6:9)], trainy = petrel[, 5], predacc = "VEcv", nsim = 10)
steprfAVI1.1
#plot steprf1 results
library(reshape2)
pa1 <- as.data.frame(steprfAVI1.1$predictive.accuracy2)
names(pa1) <- steprfAVI1.1$variable.removed
pa2 <- melt(pa1, id = NULL)
names(pa2) <- c("Variable","VEcv")
library(lattice)
par (font.axis=2, font.lab=2)
with(pa2, boxplot(VEcv~Variable, ylab="VEcv (%)", xlab="Predictive variable removed", main = "Predictive accuracy vs variable removed", font.main = 4, cex.names=1, font=2, ylab="Increase rate in VEcv (%)")
tiff("Fig 1.tif", width=8, height=8, units='in', res=300, compression="lzw")
par (font.axis=2, font.lab=2)
barplot(steprfAVI1.1$delta.accuracy, col = (1:length(steprfAVI1.1$variable.removed)), names.arg = steprfAVI1.1$variable.removed, main = "Predictive accuracy vs variable removed", font.main = 4, cex.names=1, font=2, ylab="Increase in VEcv (%)")
dev.off()
```

steprfAVI2

Select predictive variables for random forest by AVI and accuracy in a stepwise algorithm

Description

This function is similar to `steprfAVI`; the only difference is that `set.seed()` is added before each code line that involves randomness and such additions alter the results considerably.

Usage

```r
steprfAVI2(
  trainx,
  trainy,
```
cv.fold = 10,
ntree = 500,
rpt = 20,
predacc = "VEcv",
importance = TRUE,
maxk = c(4),
nsim = 100,
min.n.var = 2,
corr.threshold = 0.5,
rseed = 1234,
...

Arguments

trainx a dataframe or matrix contains columns of predictor variables.
trainy a vector of response, must have length equal to the number of rows in trainx.
cv.fold integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
nmtree number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
rpt iteration of cross validation.
predacc "VEcv" for vecv for numerical data, or "ccr" (i.e., correct classification rate) or "kappa" for categorical data.
importance importance of predictive variables.
maxk maxk split value. By default, 4 is used.
nsim iteration number. By default, 100 is used.
min.n.var minimum number of predictive variables remained in the final predictive model the default is 2. If 1 is used, then warnings: 'invalid mtry: reset to within valid range’ will be issued, which should be ignored.
corr.threshold correlation threshold and the defaults value is 0.5.
rseed random seed. By default, 1234 is used.
... other arguments passed on to randomForest.

Value

A list with the following components: 1) variable.removed: variable removed based on AVI, 2) predictive.accuracy: averaged predictive accuracy of the model after excluding the variable.removed, 3) delta.accuracy: contribution to accuracy by each variable.removed, and 4) predictive.accuracy2: predictive accuracy matrix of the model after excluding the variable.removed for each iteration.

Author(s)

Jin Li
References

Li, J. 2013. Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods. Pages 394-400 The International Congress on Modelling and Simulation (MODSIM) 2013, Adelaide.

Examples

library(spm)
data(petrel)
steprf1 <- steprfAVI2(trainx = petrel[, c(1,2, 6:9)], trainy = petrel[, 5],
 rpt = 2, predacc = "VEcv", importance = TRUE, nsim = 3, min.n.var = 2)
steprf1

#plot steprf1 results
library(lattice)
par (font.axis=2, font.lab=2)
with(pa2, boxplot(VEcv~Variable, ylab="VEcv (%)", xlab="Predictive variable removed"))

barplot(steprf1$delta.accuracy, col = (1:length(steprf1$variable.removed)),
 names.arg = steprf1$variable.removed, main = "Predictive accuracy vs variable removed",
 font.main = 4, cex.names=1, font=2, ylab="Increase in VEcv (%)")
dev.off()
steprfAVIPredictors Extract names of the selected predictive variables by steprf

Description
This function is to extract names of the selected predictive variables by steprfAVI.

Usage
steprfAVIPredictors(steprf1, trainx)

Arguments
steprf1 a list of output of `steprf` function.
trainx a dataframe or matrix contains columns of predictor variables.

Value
A list with the following components: 1) variables.most.accurate: a list of predictive variables contained in the most accurate RF model, 2) PABV: a list of predictive variables with positive contributions to the predictive accuracy of RF models, that is, predictive accuracy boosting variable (PABV), 3) PARV: a list of predictive variables with negative contributions to the predictive accuracy of RF models, that is, predictive accuracy reducing variable, and 4) max.predictive.accuracy: the predictive accuracy of the most accurate RF model.

Author(s)
Jin Li

References

Examples
library(spm)
data(petrel)
set.seed(1234)
steprf1 <- steprfAVI(trainx = petrel[, c(1,2, 6:9)], trainy = petrel[, 5],
nsim = 10, min.n.var = 2)

steprfAVIPredictors(steprf1, trainx = petrel[, c(1,2, 6:9)])
Index

cran-comments, 2
RFcv2, 2
steprf, 4
steprfAVI, 7
steprfAVI1, 9
steprfAVI2, 11
steprfAVIPredictors, 14