Implementation of hybrid STL decomposition based time delay neural network model for univariate time series forecasting. For method details see Jha G K, Sinha, K (2014). <doi:10.1007/s00521-012-1264-z>, Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
Version: | 0.1.0 |
Depends: | R (≥ 2.10) |
Imports: | forecast, nnfor |
Published: | 2021-02-24 |
Author: | Girish Kumar Jha [aut, cre], Ronit Jaiswal [aut, ctb], Kapil Choudhary [ctb], Rajeev Ranjan Kumar [ctb] |
Maintainer: | Girish Kumar Jha <girish.stat at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | no |
CRAN checks: | stlTDNN results |
Reference manual: | stlTDNN.pdf |
Package source: | stlTDNN_0.1.0.tar.gz |
Windows binaries: | r-devel: stlTDNN_0.1.0.zip, r-release: stlTDNN_0.1.0.zip, r-oldrel: stlTDNN_0.1.0.zip |
macOS binaries: | r-release: stlTDNN_0.1.0.tgz, r-oldrel: stlTDNN_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=stlTDNN to link to this page.