Package ‘stokes’

November 15, 2021

Type Package
Title The Exterior Calculus
Version 1.0-9
Depends spray
Suggests knitr, Deriv, testthat, markdown, rmarkdown, emulator
Imports permutations (>= 1.0-4), partitions, magrittr, methods, mathjaxr, disordR (>= 0.0-8)
Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>
Description Provides functionality for working with tensors, alternating tensors, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Functionality for Grassman algebra is provided. The canonical reference would be: M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". Version stokes_1.0-8 is a reduced functionality placeholder pending upload of spray version 1.0-16 to CRAN.
License GPL-2
URL https://github.com/RobinHankin/stokes
BugReports https://github.com/RobinHankin/stokes/issues
RdMacros mathjaxr

R topics documented:

stokes-package ... 2
Alt ... 3
as.1form .. 5
coeffs .. 6
consolidate ... 6
contract .. 7
cross ... 8
hodge ... 9
stokes-package

The Exterior Calculus

Description

stokes version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.

Provides functionality for working with tensors, alternating tensors, wedge products, Stokes’s theorem, and related concepts from the exterior calculus. Functionality for Grassman algebra is provided. The canonical reference would be: M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". Version stokes_1.0-8 is a reduced functionality placeholder pending upload of spray version 1.0-16 to CRAN.

Details

The DESCRIPTION file:

Package: stokes
Type: Package
Title: The Exterior Calculus
Version: 1.0-9
Depends: spray
Suggests: knitr, Deriv, testthat, markdown, rmarkdown, emulator
Imports: permutations (>= 1.0-4), partitions, magrittr, methods, mathjaxr, disordR (>= 0.0-8)
Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin@gmail.com")
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
Description: Provides functionality for working with tensors, alternating tensors, wedge products, Stokes’s theorem, and related concepts from the exterior calculus.
License: GPL-2
URL: https://github.com/RobinHankin/stokes
BugReports: https://github.com/RobinHankin/stokes/issues
RdMacros: mathjaxr
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Index of help topics:

Alt Alternating multilinear forms
Ops.kform Arithmetic Ops Group Methods for 'kform' and 'ktensor' objects
as.1form Coerce vectors to 1-forms
coeffs Extract and manipulate coefficients
consolidate Various low-level helper functions
contract Contractions of k-forms
cross Cross products of k-tensors
hodge Hodge star operator
inner Inner product operator
issmall Is a form zero to within numerical precision?
keep Keep or drop variables
kform k-forms
ktensor k-tensors
print.stokes Print methods for k-tensors and k-forms
rform Random kforms and ktensors
scalar Lose attributes
stokes-package The Exterior Calculus
symbolic Symbolic form
transform Linear transforms of k-forms
volume The volume element
wedge Wedge products
zap Zap small values in k-forms and k-tensors
zeroform Zero tensors and zero forms

Generally in the package, arguments that are k-forms are denoted K, k-tensors by U, and spray objects by S. Multilinear maps (which may be either k-forms or k-tensors) are denoted by M.

Author(s)

NA
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

References

stokes version 1.0-9 is a reduced functionality placeholder package pending upload of a newer spray package to CRAN which uses disordR discipline.

Converts a k-tensor to alternating form
Usage

Alt(S, give_kform)

Arguments

S A multilinear form, an object of class \texttt{ktensor}

give_kform Boolean, with default \texttt{FALSE} meaning to return an alternating \(k\)-tensor [that is, an object of class \texttt{ktensor} that happens to be alternating] and \texttt{TRUE} meaning to return a \(k\)-form [that is, an object of class \texttt{kform}]

Details

Given a \(k\)-tensor \(T\), we have

\[
\text{Alt}(T) (v_1, \ldots, v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \text{sgn} (\sigma) \cdot T (v_{\sigma(1)}, \ldots, v_{\sigma(k)})
\]

Thus for example if \(k = 3\):

\[
\text{Alt}(T) (v_1, v_2, v_3) = \frac{1}{6} \begin{pmatrix}
+T(v_1, v_2, v_3) & -T(v_1, v_3, v_2) \\
-T(v_2, v_1, v_3) & +T(v_2, v_3, v_1) \\
+T(v_3, v_1, v_2) & -T(v_3, v_2, v_1)
\end{pmatrix}
\]

and it is reasonably easy to see that \text{Alt}(T) is alternating, in the sense that

\[
\text{Alt}(T) (v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = -\text{Alt}(T) (v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k)
\]

Function \texttt{Alt()} is intended to take and return an object of class \texttt{ktensor}; but if given a \texttt{kform} object, it just returns its argument unchanged.

A short vignette is provided with the package: type \texttt{vignette("Alt")} at the commandline.

Value

Returns an alternating \(k\)-tensor. To work with \(k\)-forms, which are a much more efficient representation of alternating tensors, use \texttt{as.kform()}.

Author(s)

Robin K. S. Hankin

See Also

\texttt{kform}
Coerce vectors to 1-forms

Description

stokes version 1.0-9 is a reduced functionality placeholder package pending upload of a newer spray package to CRAN which uses disordR discipline.

Given a vector, return the corresponding 1-form; the exterior derivative of a 0-form (that is, a scalar function). Function grad() is a synonym.

Usage

as.1form(v)
grad(v)

Arguments

v A vector with element \(i \) being \(\partial f / \partial x_i \)

Details

The exterior derivative of a \(k \)-form \(\phi \) is a \((k + 1)\)-form \(d\phi \) given by

\[
\begin{align*}
d\phi (P_x(v_1, \ldots, v_{k+1})) &= \lim_{h \to 0} \frac{1}{h^{k+1}} \int_{\partial P_x(hv_1, \ldots, hv_{k+1})} \phi \\
\end{align*}
\]

We can use the facts that

\[
\begin{align*}
d(f dx_{i_1} \wedge \cdots \wedge dx_{i_k}) &= df \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k} \\
\end{align*}
\]

and

\[
\begin{align*}
df &= \sum_{j=1}^{n} (D_j f) \ dx_j \\
\end{align*}
\]

to calculate differentials of general \(k \)-forms. Specifically, if

\[
\phi = \sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{i_1 \cdots i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}
\]

then

\[
\begin{align*}
d\phi &= \sum_{1 \leq i_1 < \cdots < i_k \leq n} \left[\sum_{j=1}^{n} D_j a_{i_1 \cdots i_k} dx_j \right] \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k} \\
\end{align*}
\]

The entry in square brackets is given by grad(). See the examples for appropriate R idiom.

Value

A one-form
Author(s)
Robin K. S. Hankin

See Also
kform

coeffs Extract and manipulate coefficients

Description
stokes Version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.
Extract and manipulate coefficients of ktensor and kform objects

Arguments
S Object to be tested for being a spray
coeffs<-() In the assignment operator coeffs<-(), a disord object so that coeffs(S) <- x works as expected

Details
To see the coefficients of a kform or ktensor object, use coeffs(), which returns a disord object (this is actually spray::coeffs()). Replacement methods are specific to the stokes package but also use disord discipline.

Author(s)
Robin K. S. Hankin

consolidate Various low-level helper functions

Description
Various low-level helper functions used in Alt() and kform()

Usage
consolidate(S)
kil_.trivial_rows(S)
include_perms(S)
kform_to_ktensor(S)

Arguments
S Object of class spray
Details

Low-level helper functions.

- Function `consolidate()` takes a spray object, and combines any rows that are identical up to a permutation, respecting the sign of the permutation.
- Function `kill_trivial_rows()` takes a spray object and deletes any rows with a repeated entry (which have k-forms identically zero).
- Function `include_perms()` replaces each row of a spray object with all its permutations, respecting the sign of the permutation.
- Function `ktensor_to_kform()` coerces a k-form to a k-tensor.

Value

The functions documented here all return a spray object.

Author(s)

Robin K. S. Hankin

See Also

ktensor, kform, Alt

contract

Contractions of k-forms

Description

A contraction is a natural linear map from k-forms to \(k - 1 \)-forms.

Usage

\[
\text{contract(K,v,lose=TRUE)} \\
\text{contract_elementary(o,v)}
\]

Arguments

- **K**: A k-form
- **o**: Integer-valued vector corresponding to one row of an index matrix
- **lose**: Boolean, with default TRUE meaning to coerce a 0-form to a scalar and FALSE meaning to return the formal 0-form
- **v**: A vector; in function `contract()`, if a matrix, interpret each column as a vector to contract with
Details

Given a k-form ϕ and a vector v, the contraction ϕ_v of ϕ and v is a $k - 1$-form with

$$\phi_v (v^1, \ldots, v^{k-1}) = \phi (v, v^1, \ldots, v^{k-1})$$

if $k > 1$; we specify $\phi_v = \phi(v)$ if $k = 1$.

Function `contract_elementary()` is a low-level helper function that translates elementary k-forms with coefficient 1 (in the form of an integer vector corresponding to one row of an index matrix) into its contraction with v.

Value

Returns an object of class `kform`.

Author(s)

Robin K. S. Hankin

References

See Also

`wedge`, `lose`

cross

Cross products of k-tensors

Description

stokes Version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.

Cross products of k-tensors

Usage

`cross(U, ...)`
`cross2(U1, U2)`

Arguments

| U, U1, U2 | Object of class `ktensor` |
| ... | Further arguments, currently ignored |
Details

Given a k-tensor S and an l-tensor T, we can form the cross product $S \otimes T$, defined as

$$S \otimes T(v_1, \ldots, v_k, v_{k+1}, \ldots, v_{k+l}) = S(v_1, \ldots, v_k) \cdot T(v_{k+1}, \ldots, v_{k+l}).$$

Package idiom for this includes `cross(S, T)` and $S \%\% X \%\% T$; note that the cross product is not commutative. Function `cross()` can take any number of arguments (the result is well-defined because the cross product is associative); it uses `cross2()` as a low-level helper function.

Value

The functions documented here all return a spray object.

Note

The binary form `%X%` uses uppercase X to avoid clashing with `%x%` which is the Kronecker product in base R.

Author(s)

Robin K. S. Hankin

References

Spivak 1961

See Also

`ktensor`

hodge

Hodge star operator

Description

stokes version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.

Given a k-form, return its Hodge dual

Usage

`hodge(K, n=max(index(K)), g=rep(1,n), lose=TRUE)`

Arguments

- `K`: Object of class kform
- `n`: Dimensionality of space, defaulting the the largest element of the index
- `g`: Diagonal of the metric tensor, defaulting to the standard metric
- `lose`: Boolean, with default TRUE meaning to coerce to a scalar if appropriate
Value

Given a k-form, in an n-dimensional space, returns a $(n - k)$-form.

Author(s)

Robin K. S. Hankin

See Also

wedge

inner \quad Inner product operator

Description

The inner product

Usage

inner(M)

Arguments

M \quad square matrix

Details

The inner product of two vectors x and y is usually written $\langle x, y \rangle$ or $x \cdot y$, but the most general form would be $x^T M y$ where M is a matrix. Noting that inner products are multilinear, that is $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$ and $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$, we see that the inner product is indeed a multilinear map, that is, a tensor.

Given a square matrix M, function inner(M) returns the 2-form that maps x, y to $x^T M y$.

A short vignette is provided with the package: type vignette("inner") at the commandline.

Value

Returns a k-tensor, an inner product

Author(s)

Robin K. S. Hankin

See Also

kform
issmall

Is a form zero to within numerical precision?

Description

stokes Version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.

Given a k-form, return TRUE if it is “small”

Usage

```r
issmall(M, tol=1e-8)
```

Arguments

- **M** Object of class `kform` or `ktensor`
- **tol** Small tolerance, defaulting to $1e^{-8}$

Value

Returns a logical

Author(s)

Robin K. S. Hankin

keep

Keep or drop variables

Description

stokes version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.

Keep or drop variables

Usage

```r
keep(K, yes)
discard(K, no)
```

Arguments

- **K** Object of class `kform`
- **yes, no** Specification of dimensions to either keep (yes) or discard (no), coerced to a free object

Details

Function `keep(omega, yes)` keeps the terms specified and `discard(omega, no)` discards the terms specified. It is not clear to me what these functions mean from a mathematical perspective.
Value

The functions documented here all return a `kform` object.

Author(s)

Robin K. S. Hankin

See Also

`lose`

Description

Functionality for dealing with k-forms

Usage

```r
kform(S)
as.kform(M, coeffs, lose=TRUE)
kform_basis(n, k)
kform_general(W, k, coeffs, lose=TRUE)
is.kform(x)
## S3 method for class 'kform'
as.function(x, ...)
```

Arguments

- `n` Dimension of the vector space $V = \mathbb{R}^n$
- `k` A k-form maps V^k to \mathbb{R}
- `W` Integer vector of dimensions
- `M, coeffs` Index matrix and coefficients for a k-form
- `S` Object of class `spray`
- `lose` Boolean, with default `TRUE` meaning to coerce a 0-form to a scalar and `FALSE` meaning to return the formal 0-form
- `x` Object of class `kform`
- `...` Further arguments, currently ignored

Details

A k-form is an alternating k-tensor. In the `stokes` package, k-forms are represented as sparse arrays (`spray` objects), but with a class of c("kform","spray"). The constructor function `kform()` takes a spray object and returns a `kform` object: it ensures that rows of the index matrix are strictly nonnegative integers, have no repeated entries, and are strictly increasing. Function `as.kform()` is more user-friendly.

- `kform()` is the constructor function. It takes a `spray` object and returns a `kform`.
kform 13

- `as.kform()` also returns a `kform` but is a bit more user-friendly than `kform()`.
- `kform_basis()` is a low-level helper function that returns a matrix whose rows constitute a basis for the vector space \(\Lambda^k(R^n) \) of \(k \)-forms.
- `kform_general()` returns a `kform` object with terms that span the space of alternating tensors.
- `is.kform()` returns `TRUE` if its argument is a `kform` object.

Recall that a \(k \)-tensor is a multilinear map from \(V^k \) to the reals, where \(V = R^n \) is a vector space. A multilinear \(k \)-tensor \(T \) is *alternating* if it satisfies

\[
T(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = T(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k)
\]

In the package, an object of class `kform` is an efficient representation of an alternating tensor. Function `kform_matrix()` is a low-level helper function that returns a matrix whose rows constitute a basis for the vector space \(\Lambda^k(R^n) \) of \(k \)-forms:

\[
\phi = \sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{i_1 \ldots i_k} \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}
\]

and indeed we have:

\[
a_{i_1 \ldots i_k} = \phi(e_{i_1}, \ldots, e_{i_k})
\]

where \(e_j, 1 \leq j \leq k \) is a basis for \(V \).

Value

All functions documented here return a `kform` object except `as.function.kform()`, which returns a function, and `is.kform()`, which returns a Boolean.

Note

Hubbard and Hubbard use the term “\(k \)-form”, but Spivak does not.

Author(s)

Robin K. S. Hankin

References

Hubbard and Hubbard; Spivak

See Also

`ktensor`, `lose`
ktensor

k-tensors

Description

Functionality for k-tensors

Usage

ktensor(S)
as.ktensor(M,coeffs)
is.ktensor(x)

S3 method for class 'ktensor'
as.function(x,...)

Arguments

M,coeffs Matrix of indices and coefficients, as in spray(M,coeffs)
S Object of class spray
x Object of class ktensor
... Further arguments, currently ignored

Details

A k-tensor object \(S \) is a map from \(V^k \) to the reals \(R \), where \(V \) is a vector space (here \(R^n \)) that satisfies multilinearity:

\[
S(v_1, \ldots, av_i, \ldots, v_k) = a \cdot S(v_1, \ldots, v_i, \ldots, v_k)
\]

and

\[
S(v_1, \ldots, v_i + v'_i, \ldots, v_k) = S(v_1, \ldots, v_i, \ldots, x_v) + S(v_1, \ldots, v'_i, \ldots, v_k).
\]

Note that this is not equivalent to linearity over \(V^nk \) (see examples).

In the stokes package, k-tensors are represented as sparse arrays (spray objects), but with a class of c("ktensor","spray"). This is a natural and efficient representation for tensors that takes advantage of sparsity using spray package features.

Function as.ktensor() will coerce a k-form to a k-tensor via kform_to_ktensor().

Value

All functions documented here return a ktensor object except as.function.ktensor(), which returns a function.

Author(s)

Robin K. S. Hankin

References

Spivak 1961
Ops.kform

See Also

cross.kform,wedge

Description

Allows arithmetic operators to be used for k-forms and k-tensors such as addition, multiplication, etc, where defined.

Usage

```r
## S3 method for class 'kform'
Ops(e1, e2 = NULL)
## S3 method for class 'ktensor'
Ops(e1, e2 = NULL)
```

Arguments

- `e1, e2` Objects of class kform or ktensor

Details

The functions `Ops.kform()` and `Ops.ktensor()` pass unary and binary arithmetic operators ("\(\times\)", "\(-\)", "\(\times\)", and "\(\div\)"") to the appropriate specialist function by coercing to spray objects.

For wedge products of k-forms, use `wedge()` or `%\&%`; and for cross products of k-tensors, use `cross()` or `%X%`.

Value

All functions documented here return an object of class kform or ktensor.

Note

A plain asterisk, "\(\times\)", given two kforms or two ktensors, will return the wedge product or the cross product respectively, on the grounds that the idiom has only one natural interpretation. But its use is discouraged.

Author(s)

Robin K. S. Hankin
Description

stokes Version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.

Print methods for objects with options for printing in matrix form or multivariate polynomial form

Usage

S3 method for class 'kform'
print(x, ...)

S3 method for class 'ktensor'
print(x, ...)

Arguments

x k-form or k-tensor
... Further arguments (currently ignored)

Details

The print method is designed to tell the user that an object is a tensor or a k-form. It prints a message to this effect (with special dispensation for zero tensors), then calls the spray print method.

Value

Returns its argument invisibly.

Note

The print method asserts that its argument is a map from R^n to R, where n is the largest element in the index matrix. However, such a map naturally furnishes a map from R^m to R provided that $m \geq n$ via the natural projection from R^n to R^m. Formally this would be $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0) \in R^m$. In the case of the zero k-form or k-tensor, “n” is to be interpreted as “any $n \geq 0$”.

Author(s)

Robin K. S. Hankin
Description

stokes version 1.0-9 is a reduced functionality placeholder package pending upload of a newer spray package to CRAN which uses disordR discipline.

Random k-form objects and k-tensors, intended as quick “get you going” examples

Usage

```r
rform(terms=9,k=3,n=7,coeffs)
rtensor(terms=9,k=3,n=7,coeffs)
```

Arguments

- `terms` Number of distinct terms
- `k, n` A k-form maps V^k to R, where $V = R^n$
- `coeffs` The coefficients of the form; if missing use `seq_len(terms)`

Details

What you see is what you get, basically.

Note that argument `terms` is an upper bound, as the index matrix might contain repeats which are combined.

Value

All functions documented here return an object of class `kform` or `ktensor`.

Author(s)

Robin K. S. Hankin

Examples

```r
1+1 # stokes_1.0-9 is a placeholder pending release of spray
```
scalar

Lose attributes

Description

stokes version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.

Scalars: 0-forms and 0-tensors

Usage

```r
scalar(s, lose=FALSE)
is.scalar(M)
"0form"(s, lose=FALSE)
## S3 method for class 'kform'
lose(M)
## S3 method for class 'ktensor'
lose(M)
```

Arguments

- `s`: A scalar value; a number
- `M`: Object of class `ktensor` or `kform`
- `lose`: In function `scalar()`, Boolean with `TRUE` meaning to return a normal scalar, and default `FALSE` meaning to return a formal 0-form or 0-tensor

Details

A k-tensor (including k-forms) maps k vectors to a scalar. If $k = 0$, then a 0-tensor maps no vectors to a scalar, that is, mapping nothing at all to a scalar, or what normal people would call a plain old scalar. Such forms are created by a couple of constructions in the package, specifically `scalar()`, `kform_general(1,0)` and `contract()`. These functions take a `lose` argument that behaves much like the `drop` argument in base extraction.

Function `lose()` takes an object of class `ktensor` or `kform` and, if of arity zero, returns the coefficient.

Note that function `kform()` *always* returns a `kform` object, it never loses attributes.

A 0-form is not the same thing as a zero tensor. A 0-form maps V^0 to the reals; a scalar. A zero tensor maps V^k to zero.

Value

The functions documented here return an object of class `kform` or `ktensor`, except for `is.scalar()`, which returns a Boolean.

Author(s)

Robin K. S. Hankin

See Also

`zeroform`, `lose`
symbolic

Symbolic form

Description

stokes version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.
Prints k-tensor and k-form objects in symbolic form

Usage

as.symbolic(M,symbols=letters,d="")

Arguments

M Object of class kform or ktensor; a map from V^k to \mathbb{R}, where $V = \mathbb{R}^n$
symbols A character vector giving the names of the symbols
d String specifying the appearance of the differential operator

Value

Returns a noquote character string.

Author(s)

Robin K. S. Hankin

transform
Linear transforms of k-forms

Description

Given a k-form, express it in terms of linear combinations of the dx_i

Usage

transform(K,M)
stretch(K,d)

Arguments

K Object of class kform
M Matrix of transformation
d Numeric vector representing the diagonal elements of a diagonal matrix
Details

Suppose we are given a two-form

\[\omega = \sum_{i<j} a_{ij} dx_i \wedge dx_j \]

and relationships

\[dx_i = \sum_r M_{ir} dy_r \]

then we would have

\[\omega = \sum_{i<j} a_{ij} \left(\sum_r M_{ir} dy_r \right) \wedge \left(\sum_r M_{jr} dy_r \right). \]

The general situation would be a \(k \)-form where we would have

\[\omega = \sum_{i_1<\cdots<i_k} a_{i_1,\ldots,i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k} \]

giving

\[\omega = \sum_{i_1<\cdots<i_k} \left[a_{i_1,\ldots,i_k} \left(\sum_r M_{i_1 r} dy_r \right) \wedge \cdots \wedge \left(\sum_r M_{i_k r} dy_r \right) \right]. \]

The `transform()` function does all this but it is slow. I am not 100% sure that there isn’t a much more efficient way to do such a transformation. There are a few tests in `tests/testthat` and a discussion in the `stokes` vignette.

Function `stretch()` carries out the same operation but for \(M \) a diagonal matrix. It is much faster than `transform()`.

Value

The functions documented here return an object of class `kform`.

Author(s)

Robin K. S. Hankin

References

See Also

`wedge`
The volume element

Volume

stokes Version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.

The volume element in \(n \) dimensions

Usage

\[\text{volume}(n) \]
\[\text{is.volume}(k) \]

Arguments

\(n \)
Dimension of the space

\(K \)
Object of class \text{kform}

Details

Spivak phrases it well (theorem 4.6, page 82):

If \(V \) has dimension \(n \), it follows that \(\Lambda^n(V) \) has dimension 1. Thus all alternating \(n \)-tensors on \(V \) are multiples of any non-zero one. Since the determinant is an example of such a member of \(\Lambda^n(V) \) it is not surprising to find it in the following theorem:

Let \(v_1, \ldots, v_n \) be a basis for \(V \) and let \(\omega \in \Lambda^n(V) \). If \(w_i = \sum_{j=1}^{n} a_{ij} v_j \) then

\[
\omega(w_1, \ldots, w_n) = \det (a_{ij}) \cdot \omega(v_1, \ldots v_n)
\]

(see the examples for numerical verification of this).

Neither the zero \(k \)-form, nor scalars, are considered to be a volume element.

Value

Function \text{volume()} returns an object of class \text{kform}; function \text{is.volume()} returns a Boolean.

Author(s)

Robin K. S. Hankin

References

Spivak

See Also

\text{zeroform}, \text{as.1form}
wedge

Wedge products

Description

Wedge products of \(k \)-forms

Usage

\[
\text{wedge2}(K1,K2) \\
\text{wedge}(x, \ldots)
\]

Arguments

\(K1,K2,x,\ldots \) \(k \)-forms

Details

Wedge product of \(k \)-forms.

Value

The functions documented here return an object of class \texttt{kform}.

Note

In general use, use \(\text{wedge()} \) or \(\%\%\% \). Function \(\text{wedge()} \) uses low-level helper function \(\text{wedge2()} \), which takes only two arguments.
A short vignette is provided with the package: type \texttt{vignette("wedge")} at the commandline.

Author(s)

Robin K. S. Hankin

zap

Zap small values in \(k \)-forms and \(k \)-tensors

Description

\(\text{stokes} \) Version 1.0-9 is a reduced functionality placeholder pending upload of a newer spray package to CRAN which uses disordR discipline.
Equivalent to \(\text{zapsmall()} \)

Usage

\[
\text{zap}(X) \\
\text{zap}(X) \\
\text{zap}(X)
\]
Arguments

X Tensor or k-form to be zapped

Details

Given an object of class ktensor or kform, coefficients close to zero are ‘zapped’, i.e., replaced by ‘0’, using base::zapsmall().

Note, zap() actually changes the numeric value, it is not just a print method.

Value

Returns an object of the same class

Author(s)

Robin K. S. Hankin

zero Zero tensors and zero forms

Description

stokes version 1.0-9 is a reduced functionality placeholder package pending upload of a newer spray package to CRAN which uses disordR discipline.

Correct idiom for generating zero k-tensors and k/forms

Usage

zeroform(n)
zerotensor(n)

Arguments

n Arity of the k-form or k-tensor

Value

Returns an object of class kform or ktensor.

Note

Idiom such as as.ktensor(rep(1, n), 0) and as.kform(rep(1, 5), 0) and indeed as.kform(1:5, 0) is incorrect as the arity of the tensor is lost.

A 0-form is not the same thing as a zero tensor. A 0-form maps V^0 to the reals; a scalar. A zero tensor maps V^k to zero.

Author(s)

Robin K. S. Hankin

See Also

scalar
Index

* package
 stokes-package, 2
* symbolmath
 coeffs, 6
 Ops.kform, 15
 print.stokes, 16
 %x% (cross), 8
 %*% (wedge), 22
 0form (scalar), 18
Alt, 3, 7
as.1form, 5, 21
as.function.kform (kform), 12
as.kform (kform), 12
as.ktensor (ktensor), 14
as.symbolic (symbolic), 19
coeff (coeffs), 6
coeffs, 6
coeffs.kform-method (coeffs), 6
coeffs.ktensor-method (coeffs), 6
coeffs<-.kform (coeffs), 6
coeffs<-.ktensor (coeffs), 6
consolidate, 6
contract, 7
contract_elementary (contract), 7
cross, 8, 15
cross2 (cross), 8
discard (keep), 11
drop (scalar), 18
drop.free (keep), 11
general_kform (kform), 12
grad (as.1form), 5
Hodge (hodge), 9
hodge, 9
include_perms (consolidate), 6
inner, 10
inner_product (inner), 10
is.form (kform), 12
is.kform (kform), 12
is.ktensor (ktensor), 14
is.scalar (scalar), 18
is.tensor (ktensor), 14
is.volume (volume), 21
issmall, 11
keep, 11
kform, 4, 6, 7, 10, 12, 15
kform_basis (kform), 12
kform_general (kform), 12
kform_to_ktensor (consolidate), 6
kill_trivial_rows (consolidate), 6
ktensor, 7, 9, 13, 14
lose, 8, 12, 13, 18
lose (scalar), 18
lose_repeats (consolidate), 6
Ops (Ops.kform), 15
Ops.kform, 15
print.kform (print.stokes), 16
print.ktensor (print.stokes), 16
print.stokes, 16
pull-back (transform), 19
pullback (transform), 19
push-forward (transform), 19
pushforward (transform), 19
retain (keep), 11
rform, 17
rkform (rform), 17
rtensor (rform), 17
scalar, 18, 23
star (hodge), 9
stokes-package, 2
stretch (transform), 19
symbolic, 19
transform, 19
value<- (coeffs), 6
volume, 21
wedge, 8, 10, 15, 20, 22
wedge2 (wedge), 22
zap, 22
zapsmall (zap), 22
zaptiny (zap), 22
zero, 23
zeroform, 18, 21
zeroform (zero), 23
zerotensor (zero), 23