Package ‘susieR’

November 12, 2021

Encoding UTF-8

Type Package

Title Sum of Single Effects Linear Regression

Description Implements methods for variable selection in linear regression based on the \``Sum of Single Effects\'' (SuSiE) model, as described in Wang et al (2020) <DOI:10.1101/501114> and Zou et al (2021) <DOI:10.1101/2021.11.03.467167>. These methods provide simple summaries, called \``Credible Sets\'', for accurately quantifying uncertainty in which variables should be selected. The methods are motivated by genetic fine-mapping applications, and are particularly well-suited to settings where variables are highly correlated and detectable effects are sparse. The fitting algorithm, a Bayesian analogue of stepwise selection methods called \``Iterative Bayesian Stepwise Selection\'' (IBSS), is simple and fast, allowing the SuSiE model be fit to large data sets (thousands of samples and hundreds of thousands of variables).

Date 2021-11-12

Version 0.11.92

URL https://github.com/stephenslab/susieR

BugReports https://github.com/stephenslab/susieR/issues

License MIT + file LICENSE

Depends R (>= 3.0.0)

Imports methods, graphics, grDevices, stats, Matrix, matrixStats, mixsqp, reshape, crayon, ggplot2

Suggests curl, testthat, microbenchmark, knitr, rmarkdown, L0Learn, genlasso, Rfast

LazyData yes

LazyDataCompression xz

NeedsCompilation no

RoxygenNote 7.1.2
VignetteBuilder knitr

Author Gao Wang [aut],
Yuxin Zou [aut],
Kaiqian Zhang [aut],
Peter Carbonetto [aut, cre],
Matthew Stephens [aut]

Maintainer Peter Carbonetto <peter.carbonetto@gmail.com>

Repository CRAN

Date/Publication 2021-11-12 16:50:02 UTC

R topics documented:

- coef.susie
- compute_ss
- compute_suff_stat
- estimate_s_rss
- FinemappingConvergence
- get_cs_correlation
- kriging_rss
- N2finemapping
- N3finemapping
- predict.susie
- summary.susie
- SummaryConsistency
- susie
- susie_auto
- susie_get_objective
- susie_init_coef
- susie_plot
- susie_plot_changepoint
- susie_rss
- susie_trendfilter
- univariate_regression

coef.susie

Extract regression coefficients from susie fit

Description

Extract regression coefficients from susie fit

Usage

```r
## S3 method for class 'susie'
coef(object, ...)
```
compute_ss

Arguments

- `object` A susie fit.
- `...` Additional arguments passed to the generic `coef` method.

Value

A p+1 vector, the first element being an intercept, and the remaining p elements being estimated regression coefficients.

compute_ss | *Compute sufficient statistics for input to susie_suff_stat*

Description

This is a synonym for `compute_suff_stat` included for historical reasons (deprecated).

Usage

```r
compute_ss(X, y, standardize = FALSE)
```

Arguments

- `X` An n by p matrix of covariates.
- `y` An n vector.
- `standardize` Logical flag indicating whether to standardize columns of X to unit variance prior to computing summary data.

Value

A list of sufficient statistics (X'X, X'y, y'y and n)

Examples

```r
data(N2finemapping)
ss = compute_ss(N2finemapping$X, N2finemapping$Y[,1])
```
compute_suff_stat

Compute sufficient statistics for input to susie_suff_stat

Description

Computes the sufficient statistics $X'X, X'y, y'y$ and n after centering (and possibly standardizing) the columns of X and centering y to have mean zero. We also store the column means of X and mean of y.

Usage

```r
compute_suff_stat(X, y, standardize = FALSE)
```

Arguments

- **X**: An n by p matrix of covariates.
- **y**: An n vector.
- **standardize**: Logical flag indicating whether to standardize columns of X to unit variance prior to computing summary data

Value

A list of sufficient statistics (XtX, Xty, yty, n) and $X_colmeans, y_mean$.

Examples

```r
data(N2finemapping)
ss = compute_suff_stat(N2finemapping$X, N2finemapping$Y[,1])
```

estimate_s_rss

Estimate s in susie_rss Model Using Regularized LD

Description

The estimated s gives information about the consistency between the z scores and LD matrix. A larger s means there is a strong inconsistency between z scores and LD matrix. The “null-mle” method obtains mle of s under $z| RN(0, (1-s)R + sI), 0 < s < 1$. The “null-partialmle” method obtains mle of s under $U^T z| RN(0, sI)$, in which U is a matrix containing the of eigenvectors that span the null space of R; that is, the eigenvectors corresponding to zero eigenvalues of R. The estimated s from “null-partialmle” could be greater than 1. The “null-pseudomle” method obtains mle of s under pseudolikelihood $L(s) = \prod_{j=1}^{p} p(z_j| z_{-j}, s, R), 0 < s < 1$.

Usage

```r
estimate_s_rss(z, R, r_tol = 1e-08, method = "null-mle")
```
Arguments

z
 A p-vector of z scores.

R
 A p by p symmetric, positive semidefinite correlation matrix.

r_tol
 Tolerance level for eigenvalue check of positive semidefinite matrix of R.

method
 a string specifies the method to estimate s.

Value

A number between 0 and 1.

Examples

set.seed(1)
n = 500
p = 1000
beta = rep(0,p)
beta[1:4] = 0.01
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
input_ss = compute_suff_stat(X,y,standardize = TRUE)
ss = univariate_regression(X,y)
R = cor(X)
attr(R,"eigen") = eigen(R, symmetric = TRUE)
zhat = with(ss,betahat/sebetahat)
s = estimate_s_rss(zhat, R)

Description

Data simulated using real genotypes from 50,000 individuals and 200 SNPs. Two of the SNPs have non-zero effects on the multivariate response. The response data are generated under a linear regression model. The simulated response and the columns of the genotype matrix are centered.

Format

FinemappingConvergence is a list with the following elements:

XtX Summary statistics computed using the centered and scaled genotype matrix.

Xty Summary statistics computed using the centered and scaled genotype data, and the centered simulated response.

yty yty is computed using the centered simulated response.
get_cs_correlation

- **n** The sample size (50,000).
- **true_coef** The coefficients used to simulate the responses.
- **z** z-scores from a simple (single-SNP) linear regression.

See Also

A similar data set with more SNPs is used in the “Refine SuSiE model” vignette.

Examples

```r
data(finemappingConvergence)
```

Description

This function evaluates the correlation between single effect CSs. It is not part of the SuSiE inference. Rather, it is designed as a diagnostic tool to assess how correlated the reported CS are.

Usage

```r
get_cs_correlation(model, X = NULL, Xcorr = NULL, max = FALSE)
```

Arguments

- **model** A SuSiE fit, typically an output from `susie` or one of its variants.
- **X** n by p matrix of values of the p variables (covariates) in n samples. When provided, correlation between variables will be computed and used to remove CSs whose minimum correlation among variables is smaller than `min_abs_corr`.
- **Xcorr** p by p matrix of correlations between variables (covariates). When provided, it will be used to remove CSs whose minimum correlation among variables is smaller than `min_abs_corr`.
- **max** When max = FAFLSE, return a matrix of CS correlations. When max = TRUE, return only the maximum absolute correlation among all pairs of correlations.

Value

A matrix of correlations between CSs, or the maximum absolute correlation when max = TRUE.
kriging_rss

Compute Distribution of z-scores of Variant j Given Other z-scores, and Detect Possible Allele Switch Issue

Description

Under the null, the rss model with regularized LD matrix is
\[
 z \mid R, s N(0, (1 - s)R + sI)).
\]

We use a mixture of normals to model the conditional distribution of
\[z_j \mid z_{-j}, R, s \sum_{k=1}^{K} \pi_k N(-\Omega_{j,-j}z_{-j}/\Omega_{jj}, \sigma_k^2/\Omega_{jj}),\]

\[\Omega = ((1 - s)R + sI)^{-1}, \sigma_1, ..., \sigma_k \text{ is a grid of fixed positive numbers.}\]

We estimate the mixture weights \(\pi\) We detect the possible allele switch issue using likelihood ratio for each variant.

Usage

```r
kriging_rss(
    z, R,
    r_tol = 1e-08,
    s = estimate_s_rss(z, R, r_tol, method = "null-mle")
)
```

Arguments

- **z**: A p-vector of z scores.
- **R**: A p by p symmetric, positive semidefinite correlation matrix.
- **r_tol**: Tolerance level for eigenvalue check of positive semidefinite matrix of R.
- **s**: an estimated s from `estimate_s_rss`

Value

a list containing a ggplot2 plot object and a table. The plot compares observed z score vs the expected value. The possible allele switched variants are labeled as red points (log LR > 2 and abs(z) > 2). The table summarizes the conditional distribution for each variant and the likelihood ratio test. The table has the following columns: the observed z scores, the conditional expectation, the conditional variance, the standardized differences between the observed z score and expected value, the log likelihood ratio statistics.

Examples

```r
# See also the vignette, "Diagnostic for fine-mapping with summary statistics."
set.seed(1)
n = 500
p = 1000
beta = rep(0, p)
beta[1:4] = 0.01
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
```
N2finemapping

Simulated Fine-mapping Data with Two Effect Variables

Description

This data set contains a genotype matrix for 574 individuals and 1,002 variables. The variables are genotypes after centering and scaling, and therefore retain the correlation structure of the original genotype data. Two of the variables have non-zero effects on the multivariate response. The response data are generated under a multivariate linear regression model. See Wang et al (2020) for details.

Format

N2finemapping is a list with the following elements:

- **X** Centered and scaled genotype data.
- **chrom** Chromosome of the original data, in hg38 coordinates.
- **pos** Chromosomal position of the original data, in hg38 coordinates. The information can be used to compare impact of using other genotype references of the same variables in susie_rss application.
- **true_coef** Simulated effect sizes.
- **residual_variance** Simulated residual covariance matrix.
- **Y** Simulated multivariate response.
- **allele_freq** Allele frequencies based on the original genotype data.
- **V** Suggested prior covariance matrix for effect sizes of the two non-zero effect variables.

References

Examples

data(N2finemapping)
Description

The data-set contains a matrix of 574 individuals and 1,001 variables. These variables are real-world genotypes centered and scaled, and therefore retains the correlation structure of variables in the original genotype data. 3 out of the variables have non-zero effects. The response data is generated under a multivariate linear regression model. See Wang et al (2020) for more details.

Format

`N3finemapping` is a list with the following elements:

- `X` N by P variable matrix of centered and scaled genotype data.
- `chrom` Chromosome of the original data, in hg38 coordinate.
- `pos` Chromosomal position of the original data, in hg38 coordinate. The information can be used to compare impact of using other genotype references of the same variables in susie_rss application.
- `true_coef` The simulated effect sizes.
- `residual_variance` The simulated residual covariance matrix.
- `Y` The simulated response variables.
- `allele_freq` Allele frequency of the original genotype data.
- `V` Prior covariance matrix for effect size of the three non-zero effect variables.

References

Examples

```r
data(N3finemapping)
```
predict.susie

Predict outcomes or extract coefficients from susie fit.

Description

Predict outcomes or extract coefficients from susie fit.

Usage

S3 method for class 'susie'
predict(object, newx = NULL, type = c("response", "coefficients"), ...)

Arguments

object
A susie fit.

newx
A new value for X at which to do predictions.

type
The type of output. For type = "response", predicted or fitted outcomes are returned; for type = "coefficients", the estimated coefficients are returned.

...
Other arguments used by generic predict function. These extra arguments are not used here.

Value

For type = "response", predicted or fitted outcomes are returned; for type = "coefficients", the estimated coefficients are returned. If the susie fit has intercept = NA (which is common when using susie_suff_stat) then predictions are computed using an intercept of 0, and a warning is emitted.

summary.susie

Summarize Susie Fit.

Description

summary method for the “susie” class.

Usage

S3 method for class 'susie'
summary(object, ...)

S3 method for class 'summary.susie'
print(x, ...)
SummaryConsistency

Arguments

object A susie fit.
... Additional arguments passed to the generic summary or print.summary method.
x A susie summary.

Value

summary.susie returns a list containing a data frame of variables and a data frame of credible sets.

SummaryConsistency

Simulated Fine-mapping Data with LD matrix From Reference Panel.

Description

Data simulated using real genotypes from 10,000 individuals and 200 SNPs. One SNP have non-zero effect on the multivariate response. The response data are generated under a linear regression model. There is also one SNP with flipped allele between summary statistics and the reference panel.

Format

SummaryConsistency is a list with the following elements:

z z-scores computed by fitting univariate simple regression variable-by-variable.
ldref LD matrix estimated from the reference panel.
flip_id The index of the SNP with the flipped allele.
signal_id The index of the SNP with the non-zero effect.

See Also

A similar data set with more samples is used in the “Diagnostic for fine-mapping with summary statistics” vignette.

Examples

data(SummaryConsistency)
Description

Performs a sparse Bayesian multiple linear regression of y on X, using the "Sum of Single Effects" model from Wang et al (2020). In brief, this function fits the regression model $y = \mu + Xb + e$, where elements of e are i.i.d. normal with zero mean and variance residual_variance, μ is an intercept term and b is a vector of length p representing the effects to be estimated. The "susie assumption" is that $b = \sum_{l=1}^L b_l$ where each b_l is a vector of length p with exactly one non-zero element. The prior on the non-zero element is normal with zero mean and variance $\text{var}(y) \times \text{scaled_prior_variance}$. The value of L is fixed, and should be chosen to provide a reasonable upper bound on the number of non-zero effects to be detected. Typically, the hyperparameters residual_variance and scaled_prior_variance will be estimated during model fitting, although they can also be fixed as specified by the user. See functions susie_get_cs and other functions of form susie_get_* to extract the most commonly-used results from a susie fit.

Usage

```r
susie(
  X,
  y,
  L = min(10, ncol(X)),
  scaled_prior_variance = 0.2,
  residual_variance = NULL,
  prior_weights = NULL,
  null_weight = NULL,
  standardize = TRUE,
  intercept = TRUE,
  estimate_residual_variance = TRUE,
  estimate_prior_variance = TRUE,
  estimate_prior_method = c("optim", "EM", "simple"),
  check_null_threshold = 0,
  prior_tol = 1e-09,
  residual_variance_upperbound = Inf,
  s_init = NULL,
  coverage = 0.95,
  min_abs_corr = 0.5,
  compute_univariate_zscore = FALSE,
  na.rm = FALSE,
  max_iter = 100,
  tol = 0.001,
  verbose = FALSE,
  track_fit = FALSE,
  residual_variance_lowerbound = var(drop(y))/10000,
  refine = FALSE,
  n_purity = 100
)
```
susie

)
susie_suff_stat(
 bhat,
 shat,
 R,
 n,
 var_y,
 XtX,
 Xty,
 yty,
 X_colmeans = NA,
 y_mean = NA,
 maf = NULL,
 maf_thresh = 0,
 L = 10,
 scaled_prior_variance = 0.2,
 residual_variance = NULL,
 estimate_residual_variance = TRUE,
 estimate_prior_variance = TRUE,
 estimate_prior_method = c("optim", "EM", "simple"),
 check_null_threshold = 0,
 prior_tol = 1e-09,
 r_tol = 1e-08,
 prior_weights = NULL,
 null_weight = NULL,
 standardize = TRUE,
 max_iter = 100,
 s_init = NULL,
 coverage = 0.95,
 min_abs_corr = 0.5,
 tol = 0.001,
 verbose = FALSE,
 track_fit = FALSE,
 check_input = FALSE,
 refine = FALSE,
 check_prior = FALSE,
 n_purity = 100
)

Arguments

X An n by p matrix of covariates.

y The observed responses, a vector of length n.

L Maximum number of non-zero effects in the susie regression model. If L is
 larger than the number of covariates, p, L is set to p.

scaled_prior_variance
 The prior variance, divided by var(y) (or by (1/(n-1))yty for susie_suff_stat);
that is, the prior variance of each non-zero element of \(b \) is \(\text{var}(y) \times \text{scaled_prior_variance} \). The value provided should be either a scalar or a vector of length \(L \). If \text{estimate_prior_variance} = \text{TRUE}, this provides initial estimates of the prior variances.

residual_variance

Variance of the residual. If \text{estimate_residual_variance} = \text{TRUE}, this value provides the initial estimate of the residual variance. By default, it is set to \(\text{var}(y) \) in \text{susie} and \(\frac{1}{(n-1)}yty \) in \text{susie_suff_stat}.

prior_weights

A vector of length \(p \), in which each entry gives the prior probability that corresponding column of \(X \) has a nonzero effect on the outcome, \(y \).

null_weight

Prior probability of no effect (a number between 0 and 1, and cannot be exactly 1).

standardize

If \text{standardize} = \text{TRUE}, standardize the columns of \(X \) to unit variance prior to fitting (or equivalently standardize \(X^tX \) and \(Xty \) to have the same effect). Note that \text{scaled_prior_variance} specifies the prior on the coefficients of \(X \) after standardization (if it is performed). If you do not standardize, you may need to think more carefully about specifying \text{scaled_prior_variance}. Whatever your choice, the coefficients returned by \text{coef} are given for \(X \) on the original input scale. Any column of \(X \) that has zero variance is not standardized.

intercept

If \text{intercept} = \text{TRUE}, the intercept is fitted; it \text{intercept} = \text{FALSE}, the intercept is set to zero. Setting \text{intercept} = \text{FALSE} is generally not recommended.

estimate_residual_variance

If \text{estimate_residual_variance} = \text{TRUE}, the residual variance is estimated, using \text{residual_variance} as an initial value. If \text{estimate_residual_variance} = \text{FALSE}, the residual variance is fixed to the value supplied by \text{residual_variance}.

estimate_prior_variance

If \text{estimate_prior_variance} = \text{TRUE}, the prior variance is estimated (this is a separate parameter for each of the \(L \) effects). If provided, \text{scaled_prior_variance} is then used as an initial value for the optimization. When \text{estimate_prior_variance} = \text{FALSE}, the prior variance for each of the \(L \) effects is determined by the value supplied to \text{scaled_prior_variance}.

estimate_prior_method

The method used for estimating prior variance. When \text{estimate_prior_method} = \text{"simple"}, is used, the likelihood at the specified prior variance is compared to the likelihood at a variance of zero, and the setting with the larger likelihood is retained.

check_null_threshold

When the prior variance is estimated, compare the estimate with the null, and set the prior variance to zero unless the log-likelihood using the estimate is larger by this threshold amount. For example, if you set \text{check_null_threshold} = \text{0.1}, this will "nudge" the estimate towards zero when the difference in log-likelihoods is small. A note of caution that setting this to a value greater than zero may lead the IBSS fitting procedure to occasionally decrease the ELBO.

prior_tol

When the prior variance is estimated, compare the estimated value to \text{prior_tol} at the end of the computation, and exclude a single effect from PIP computation if the estimated prior variance is smaller than this tolerance value.
residual_variance_upperbound
Upper limit on the estimated residual variance. It is only relevant when estimate_residual_variance = TRUE.

s_init
A previous susie fit with which to initialize.

coverage
A number between 0 and 1 specifying the “coverage” of the estimated confidence sets.

min_abs_corr
Minimum absolute correlation allowed in a credible set. The default, 0.5, corresponds to a squared correlation of 0.25, which is a commonly used threshold for genotype data in genetic studies.

compute_univariate_zscore
If compute_univariate_zscore = TRUE, the univariate regression z-scores are outputted for each variable.

na.rm
Drop any missing values in y from both X and y.

max_iter
Maximum number of IBSS iterations to perform.

tol
A small, non-negative number specifying the convergence tolerance for the IBSS fitting procedure. The fitting procedure will halt when the difference in the variational lower bound, or “ELBO” (the objective function to be maximized), is less than tol.

verbose
If verbose = TRUE, the algorithm’s progress, and a summary of the optimization settings, are printed to the console.

track_fit
If track_fit = TRUE, trace is also returned containing detailed information about the estimates at each iteration of the IBSS fitting procedure.

residual_variance_lowerbound
Lower limit on the estimated residual variance. It is only relevant when estimate_residual_variance = TRUE.

refine
If refine = TRUE, then an additional iterative refinement procedure is used, after the IBSS algorithm, to check and escape from local optima (see details).

n_purity
Passed as argument n_purity to susie_get_cs.

bhat
A p-vector of estimated effects.

shat
A p-vector of standard errors.

R
A p by p correlation matrix. It should be estimated from the same samples used to compute bhat and shat. Using an out-of-sample matrix may produce unreliable results.

n
The sample size.

var_y
The sample variance of y, defined as \(y' y / (n - 1)\). When the sample variance cannot be provided, the coefficients (returned from coef) are computed on the “standardized” X, y scale.

XtX
A p by p matrix \(X'X\) in which the columns of X are centered to have mean zero.

Xty
A p-vector \(X'y\) in which y and the columns of X are centered to have mean zero.

yty
A scalar \(y'y\) in which y is centered to have mean zero.

X_colmeans
A p-vector of column means of X. If both X_colmeans and y_mean are provided, the intercept is estimated; otherwise, the intercept is NA.
The function `susie` implements the IBSS algorithm from Wang et al. (2020). The option `refine = TRUE` implements an additional step to help reduce problems caused by convergence of the IBSS algorithm to poor local optima (which is rare in our experience, but can provide misleading results when it occurs). The refinement step incurs additional computational expense that increases with the number of CSs found in the initial run.

The function `susie_suff_stat` implements essentially the same algorithms, but using sufficient statistics. (The statistics are sufficient for the regression coefficients \(b \), but not for the intercept \(\mu \); see below for how the intercept is treated.) If the sufficient statistics are computed correctly then the results from `susie_suff_stat` should be the same as (or very similar to) `susie`, although runtimes will differ as discussed below. The simplest sufficient statistics are the sample size \(n \), and then the \(p \) by \(p \) matrix \(X'X \), the \(p \) vector \(X'y \), and the sum of squared \(y \) values \(y'y \), all computed after centering the columns of \(X \) and the vector \(y \) to have mean 0; these can be computed using `compute_suff_stat`. Alternatively the user can provide \(n \) and \(bhat \) (the univariate OLS estimates from regressing \(y \) on each column of \(X \)), \(shat \) (the standard errors from these OLS regressions), the \(p \) by \(p \) symmetric, positive semidefinite correlation matrix \(R = \text{cov}^2 \text{cor}(X'X) \), and the variance of \(y \), again all computed from centered \(X \) and \(y \). Note that here \(R \) and \(bhat \) should be computed using the same matrix \(X \). If you do not have access to the original \(X \) to compute the matrix \(R \) then use `susie_rss`.

The handling of the intercept term in `susie_suff_stat` needs some additional explanation. Computing the summary data after centering \(X \) and \(y \) effectively ensures that the resulting posterior quantities for \(b \) allow for an intercept in the model; however, the actual value of the intercept cannot be estimated from these centered data. To estimate the intercept term the user must also provide the column means of \(X \) and the mean of \(y \) (\(X_{\text{colmeans}} \) and \(y_{\text{mean}} \)). If these are not provided, they are treated as \(NA \), which results in the intercept being \(NA \). If for some reason you prefer to have the intercept be 0 instead of \(NA \) then set \(X_{\text{colmeans}} = 0, y_{\text{mean}} = 0 \).

For completeness, we note that if `susie_suff_stat` is run on \(X'X, X'y, y'y \) computed without centering \(X \) and \(y \), and with \(X_{\text{colmeans}} = 0, y_{\text{mean}} = 0 \), this is equivalent to `susie` applied to \(X, y \) with intercept = `FALSE` (although results may differ due to different initializations of `residual_variance` and `scaled_prior_variance`). However, this usage is not recommended for most situations.

The computational complexity of `susie` is \(O(npL) \) per iteration, whereas `susie_suff_stat` is \(O(p^2L) \) per iteration (not including the cost of computing the sufficient statistics, which is dominated by the \(O(np^2) \) cost of computing \(X'X \)). Because of the cost of computing \(X'X \), `susie` will
usually be faster. However, if \(n >> p \), and/or if \(X'X \) is already computed, then `susie_suff_stat` may be faster.

Value

A "susie" object with some or all of the following elements:

- **alpha**: An L by p matrix of posterior inclusion probabilities.
- **mu**: An L by p matrix of posterior means, conditional on inclusion.
- **mu2**: An L by p matrix of posterior second moments, conditional on inclusion.
- **Xr**: A vector of length n, equal to \(X' \times \text{colSums}(alpha \times mu) \).
- **lbf**: log-Bayes Factor for each single effect.
- **lbf_variable**: log-Bayes Factor for each variable and single effect.
- **intercept**: Intercept (fixed or estimated).
- **sigma2**: Residual variance (fixed or estimated).
- **V**: Prior variance of the non-zero elements of \(b \), equal to \(\text{scaled_prior_variance} \times \text{var}(y) \).
- **elbo**: The value of the variational lower bound, or "ELBO" (objective function to be maximized), achieved at each iteration of the IBSS fitting procedure.
- **fitted**: Vector of length n containing the fitted values of the outcome.
- **sets**: Credible sets estimated from model fit; see `susie_get_cs` for details.
- **pip**: A vector of length p giving the (marginal) posterior inclusion probabilities for all p covariates.
- **z**: A vector of univariate z-scores.
- **niter**: Number of IBSS iterations that were performed.
- **converged**: TRUE or FALSE indicating whether the IBSS converged to a solution within the chosen tolerance level.

`susie_suff_stat` returns also outputs:

- **XtXr**: A p-vector of \(t(X) \times \text{the fitted values} \times \text{colSums}(alpha\times mu) \).

References

See Also

`susie_get_cs` and other `susie_get_*` functions for extracting results; `susie_trendfilter` for applying the SuSiE model to non-parametric regression, particularly changepoint problems, and `susie_rss` for applying the SuSiE model when one only has access to limited summary statistics related to \(X \) and \(y \) (typically in genetic applications).
Examples

susie example
set.seed(1)
n = 1000
p = 1000
beta = rep(0, p)
beta[1:4] = 1
X = matrix(rnorm(n*p), nrow = n, ncol = p)
X = scale(X, center = TRUE, scale = TRUE)
y = drop(X %*% beta + rnorm(n))
res1 = susie(X, y, L = 10)
susie_get_cs(res1) # extract credible sets from fit
plot(beta, coef(res1)[-1])
abline(a = 0, b = 1, col = "skyblue", lty = "dashed")
plot(y, predict(res1))
abline(a = 0, b = 1, col = "skyblue", lty = "dashed")

susie_suff_stat example
input_ss = compute_suff_stat(X, y)
res2 = with(input_ss,
 susie_suff_stat(XtX = XtX, Xty = Xty, yty = yty, n = n,
 X_colmeans = X_colmeans, y_mean = y_mean, L = 10))
plot(coef(res1), coef(res2))
abline(a = 0, b = 1, col = "skyblue", lty = "dashed")

Description

susie_auto is an attempt to automate reliable running of susie even on hard problems. It implements a three-stage strategy for each L: first, fit susie with very small residual error; next, estimate residual error; finally, estimate the prior variance. If the last step estimates some prior variances to be zero, stop. Otherwise, double L, and repeat. Initial runs are performed with relaxed tolerance; the final run is performed using the default susie tolerance.

Usage

susie_auto(
 X,
 y,
 L_init = 1,
 L_max = 512,
 verbose = FALSE,
 init_tol = 1,
 standardize = TRUE,
 intercept = TRUE,
max_iter = 100,
tol = 0.01,
...
)

Arguments

- **X**: An n by p matrix of covariates.
- **y**: The observed responses, a vector of length n.
- **L_init**: The initial value of L.
- **L_max**: The largest value of L to consider.
- **verbose**: If `verbose = TRUE`, the algorithm’s progress, and a summary of the optimization settings, are printed to the console.
- **init_tol**: The tolerance to passed to `susie` during early runs (set large to shorten the initial runs).
- **standardize**: If `standardize = TRUE`, standardize the columns of X to unit variance prior to fitting. Note that `scaled_prior_variance` specifies the prior on the coefficients of X after standardization (if it is performed). If you do not standardize, you may need to think more carefully about specifying `scaled_prior_variance`. Whatever your choice, the coefficients returned by `coef` are given for X on the original input scale. Any column of X that has zero variance is not standardized.
- **intercept**: If `intercept = TRUE`, the intercept is fitted; if `intercept = FALSE`, the intercept is set to zero. Setting `intercept = FALSE` is generally not recommended.
- **max_iter**: Maximum number of IBSS iterations to perform.
- **tol**: A small, non-negative number specifying the convergence tolerance for the IBSS fitting procedure. The fitting procedure will halt when the difference in the variational lower bound, or “ELBO” (the objective function to be maximized), is less than `tol`.
- **...**: Additional arguments passed to `susie`.

Value

See `susie` for a description of return values.

See Also

- `susie`

Examples

```r
set.seed(1)
n = 1000
p = 1000
beta = rep(0, p)
beta[1:4] = 1
X = matrix(rnorm(n*p), nrow = n, ncol = p)
X = scale(X, center = TRUE, scale = TRUE)
```
\begin{verbatim}
y = drop(X %*% beta + rnorm(n))
res = susie_auto(X,y)
plot(beta,coef(res)[-1])
abline(a = 0,b = 1,col = "skyblue",lty = "dashed")
plot(y,predict(res))
abline(a = 0,b = 1,col = "skyblue",lty = "dashed")
\end{verbatim}

\section*{Description}
These functions access basic properties or draw inferences from a fitted susie model.

\section*{Usage}

\begin{verbatim}
susie_get_objective(res, last_only = TRUE, warning_tol = 1e-06)
susie_get_posterior_mean(res, prior_tol = 1e-09)
susie_get_posterior_sd(res, prior_tol = 1e-09)
susie_get_niter(res)
susie_get_prior_variance(res)
susie_get_residual_variance(res)
susie_get_lfsr(res)
susie_get_posterior_samples(susie_fit, num_samples)
susie_get_cs(res, X = NULL, Xcorr = NULL, coverage = 0.95, min_abs_corr = 0.5, dedup = TRUE, squared = FALSE, check_symmetric = TRUE, n_purity = 100, use_rfast)
susie_get_pip(res, prune_by_cs = FALSE, prior_tol = 1e-09)
\end{verbatim}
susie_get_objective

Arguments

- **res**: A susie fit, typically an output from `susie` or one of its variants. For `susie_get_pip` and `susie_get_cs`, this may instead be the posterior inclusion probability matrix, alpha.
- **last_only**: If `last_only = FALSE`, return the ELBO from all iterations; otherwise return the ELBO from the last iteration only.
- **warning_tol**: Warn if ELBO is decreasing by this tolerance level.
- **prior_tol**: Filter out effects having estimated prior variance smaller than this threshold.
- **susie_fit**: A susie fit, an output from `susie`.
- **num_samples**: The number of draws from the posterior distribution.
- **X**: An n by p matrix of values of the p variables (covariates) in n samples. When provided, correlation between variables will be computed and used to remove CSs whose minimum correlation among variables is smaller than `min_abs_corr`.
- **Xcorr**: A p by p matrix of correlations between variables (covariates). When provided, it will be used to remove CSs whose minimum correlation among variables is smaller than `min_abs_corr`.
- **coverage**: A number between 0 and 1 specifying desired coverage of each CS.
- **min_abs_corr**: A "purity" threshold for the CS. Any CS that contains a pair of variables with correlation less than this threshold will be filtered out and not reported.
- **dedup**: If `dedup = TRUE`, remove duplicate CSs.
- **squared**: If `squared = TRUE`, report min, mean and median of squared correlation instead of the absolute correlation.
- **check_symmetric**: If `check_symmetric = TRUE`, perform a check for symmetry of matrix `Xcorr` when `Xcorr` is provided (not NULL).
- **n_purity**: The maximum number of credible set (CS) variables used in calculating the correlation ("purity") statistics. When the number of variables included in the CS is greater than this number, the CS variables are randomly subsampled.
- **use_rfast**: Use the Rfast package for the purity calculations. By default `use_rfast = TRUE` if the Rfast package is installed.
- **prune_by_cs**: Whether or not to ignore single effects not in a reported CS when calculating PIP.

Value

`susie_get_objective` returns the evidence lower bound (ELBO) achieved by the fitted susie model and, optionally, at each iteration of the IBSS fitting procedure.

- `susie_get_residual_variance` returns the (estimated or fixed) residual variance parameter.
- `susie_get_prior_variance` returns the (estimated or fixed) prior variance parameters.
- `susie_get_posterior_mean` returns the posterior mean for the regression coefficients of the fitted susie model.
- `susie_get_posterior_sd` returns the posterior standard deviation for coefficients of the fitted susie model.
susie_get_niter returns the number of model fitting iterations performed.

susie_get_pip returns a vector containing the posterior inclusion probabilities (PIPs) for all variables.

susie_get_lfsr returns a vector containing the average Lfsr across variables for each single-effect, weighted by the posterior inclusion probability (alpha).

susie_get_posterior_samples returns a list containing the effect sizes samples and causal status with two components: b, an num_variables x num_samples matrix of effect sizes; gamma, an num_variables x num_samples matrix of causal status random draws.

susie_get_cs returns credible sets (CSs) from a susie fit, as well as summaries of correlation among the variables included in each CS. If desired, one can filter out CSs that do not meet a specified “purity” threshold; to do this, either X or Xcorr must be supplied. It returns a list with the following elements:

cs A list in which each list element is a vector containing the indices of the variables in the CS.
coverage The nominal coverage specified for each CS.
purity If X or Xcorr is provided, the purity of each CS.
cs_index If X or Xcorr is provided) the index (number between 1 and L) of each reported CS in the supplied susie fit.

Examples

```r
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[1:4] = 1
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
s = susie(X,y,L = 10)
susie_get_objective(s)
susie_get_objective(s, last_only=FALSE)
susie_get_residual_variance(s)
susie_get_prior_variance(s)
susie_get_posterior_mean(s)
susie_get_posterior_sd(s)
susie_get_niter(s)
susie_get_pip(s)
susie_get_lfsr(s)
```
susie_init_coef

Initialize a susie object using regression coefficients

Description

Initialize a susie object using regression coefficients

Usage

```r
susie_init_coef(coef_index, coef_value, p)
```

Arguments

- `coef_index`: An L-vector containing the indices of the nonzero coefficients.
- `coef_value`: An L-vector containing initial coefficient estimates.
- `p`: A scalar giving the number of variables.

Value

A list with elements `alpha`, `mu` and `mu2` to be used by `susie`.

Examples

```r
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[sample(1:1000,4)] = 1
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))

# Initialize susie to ground-truth coefficients.
s = susie_init_coef(which(beta != 0),beta[beta != 0],length(beta))
res = susie(X,y,L = 10,s_init=s)
```

susie_plot

SuSiE Plots.

Description

`susie_plot` produces a per-variable summary of the SuSiE credible sets. `susie_plot_iteration` produces a diagnostic plot for the susie model fitting. For `susie_plot_iteration`, several plots will be created if `track_fit = TRUE` when calling `susie`.
susie_plot

Usage

```r
susie_plot(
  model,
  y,
  add_bar = FALSE,
  pos = NULL,
  b = NULL,
  max_cs = 400,
  add_legend = NULL,
  ...
)
```

```r
susie_plot_iteration(model, L, file_prefix, pos = NULL)
```

Arguments

- **model**
 A SuSiE fit, typically an output from `susie` or one of its variants. For `susie_plot`, the susie fit must have `model$z`, `model$PIP`, and may include `model$sets`. `model` may also be a vector of z-scores or PIPs.

- **y**
 A string indicating what to plot: either "z" for z-scores, "PIP" for posterior inclusion probabilities, "log10PIP" for posterior inclusion probabilities on the (base-10) log-scale. For any other setting, the data are plotted as is.

- **add_bar**
 If `add_bar = TRUE`, add horizontal bar to signals in credible interval.

- **pos**
 Indices of variables to plot. If `pos = NULL` all variables are plotted.

- **b**
 For simulated data, set `b = TRUE` to highlight "true" effects (highlights in red).

- **max_cs**
 The largest credible set to display, either based on purity (set `max_cs` between 0 and 1), or based on size (set `max_cs > 1`).

- **add_legend**
 If `add_legend = TRUE`, add a legend to annotate the size and purity of each CS discovered. It can also be specified as location where legends should be added, e.g., `add_legend = "bottomright"` (default location is "topright").

- **...**
 Additional arguments passed to `plot`.

- **L**
 An integer specifying the number of credible sets to plot.

- **file_prefix**
 Prefix to path of output plot file. If not specified, the plot, or plots, will be saved to a temporary directory generated using `tempdir`.

Value

Invisibly returns NULL.

See Also

- `susie_plot_changepoint`
Examples

```r
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[sample(1:1000,4)] = 1
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
res = susie(X,y,L = 10)
susie_plot(res,"PIP")
susie_plot(res,"PIP",add_bar = TRUE)
susie_plot(res,"PIP",add_legend = TRUE)
# Plot selected regions with adjusted x-axis position label
res$genomic_position = 1000 + (1:length(res$pip))
susie_plot(res,"PIP",add_legend = TRUE,
pos = list(attr = "genomic_position",start = 1000,end = 1500))
# True effects are shown in red.
susie_plot(res,"PIP",b = beta,add_legend = TRUE)
```

susie_plot_changepoint

Plot changepoint data and susie fit using ggplot2

Description

Plots original data, y, overlaid with line showing susie fitted value and shaded rectangles showing credible sets for changepoint locations.

Usage

```r
susie_plot_changepoint(
  s,
  y,
  line_col = "blue",
  line_size = 1.5,
  ...)
cs_col = "red"
}

Arguments

s A susie fit generated by susie_trendfilter(y,order = 0).
y An n-vector of observations that are ordered in time or space (assumed equally-spaced).
line_col Color for the line showing fitted values.
line_size Size of the lines showing fitted values

cs_col Color of the shaded rectangles showing credible sets.

Value

A ggplot2 plot object.

Examples

set.seed(1)
mu = c(rep(0,50),rep(1,50),rep(3,50),rep(-2,50),rep(0,300))
y = mu + rnorm(500)
# Here we use a less sensitive tolerance so that the example takes
# less time; in practice you will likely want to use a more stringent
# setting such as tol = 0.001.
s = susie_trendfilter(y,tol = 0.1)

# Produces ggplot with credible sets for changepoints.
susie_plot_changepoint(s,y)

susie_rss

Sum of Single Effects (SuSiE) Regression using summary statistics

Description

susie_rss performs variable selection under a sparse Bayesian multiple linear regression of Y on X using only the z-scores from standard univariate regression of Y on each column of X, and an estimate R of the correlation matrix between columns of X. It does this by combining the "RSS likelihood" from Zhu and Stephens (2017) with the Sum of Single Effects" model from Wang et al (2020).

Usage

susie_rss(
  z,
  R,
  z_ld_weight = 0,
)
prior_variance = 50,
estimate_prior_variance = TRUE,
check_prior = TRUE,
...
)

Arguments

z A p-vector of z scores.
R A p by p correlation matrix.
z_ld_weight This parameter is included for backwards compatibility with previous versions of the function, but it is no longer recommended to use a non-zero value. If $z_{ld\ weight} > 0$, the matrix R used in the model is adjusted to be $cov2cor((1-w)\cdot R + w\cdot tcrossprod(z))$, where $w = z_{ld\ weight}$.
prior_variance The prior variance(s) for the non-zero element of $b_j$. It is either a scalar, or a vector of length L. When estimate_prior_variance = TRUE (highly recommended) this simply provides an initial value for the prior variance, and the default value of 50 is simply intended to be a large initial value.
estimate_prior_variance If estimate_prior_variance = TRUE, which is highly recommended, the prior variance is estimated (this is a separate parameter for each of the L effects). If provided, prior_variance is then used as an initial value for the optimization. When estimate_prior_variance = FALSE (not recommended) the prior variance for each of the L effects is determined by the value supplied to prior_variance.
check_prior When check_prior = TRUE, it checks if the estimated prior variance becomes unreasonably large (comparing with $10 \cdot max(abs(z))^2$).
...
Other parameters to be passed to susie_suff_stat.

Details

In some applications, particularly genetic applications, it is desired to fit a regression model ($Y = X\tilde{b} + E$ say, which we refer to as "the original regression model" or ORM) without access to the actual values of $Y$ and $X$, but given only some summary statistics. susie_rss assumes the availability of z scores from standard univariate regression of $Y$ on each column of $X$, and an estimate $R$ of the correlation matrix between columns of $X$ ($R$ is sometimes called the LD matrix in genetic applications). See Zhu and Stephens (2017), and references therein, for further background.

The susie_rss function is based on the model (2.10) from Zhu and Stephens, $z|R, b N(Rb, R)$ where $b$ is a vector of length $p$ representing the effects to be estimated. The effect $b_j$ is simply a multiple of the coefficient $\tilde{b}_j$ in the ORM, and so $b_j$ is non-zero if and only if $\tilde{b}_j$ is non-zero. In this sense the variable selection problem in this model is the same as the variable selection problem in the ORM, and so the credible sets and PIPs computed by susie_rss can be interpreted as credible sets and PIPs for the ORM. However, converting posterior estimates of $b_j$ to estimates of $\tilde{b}_j$ would require computation of the scaling factor (not done here).

More precisely, susie_rss assumes the log-likelihood for $b$ is $l(b; z, R) = -0.5(b'\cdot Rb - 2z'\cdot b)$, which is equivalent to model (2.10) from Zhu and Stephens if $R$ is invertible, but does not require $R$ to be invertible. It combines this likelihood with the "susie prior" which assumes that $b = \sum_{l=1}^L b_l$
where each \( b_l \) is a vector of length \( p \) with exactly one non-zero element; see \texttt{susie} and Wang et al (2020) for details.

In practice, this is accomplished by calling \texttt{susie_suff_stat} with \( X^T X = R \) and \( X^T y = z \), and fixing \( \text{residual_variance} = 1 \). (Values for \( n \) and \( y^T y \) are also required by \texttt{susie_suff_stat}. They do not affect inference when the residual variance is fixed, but they do affect the interpretation of \( \text{scaled_prior_variance} \); we set \( n=2, y^T y=1 \) so that \( \text{var}(y) = y^T y/(n - 1) = 1 \).) Additional arguments to be passed to \texttt{susie_suff_stat} can be provided via \ldots.

**Value**

A "\texttt{susie}" object with the following elements:

- **alpha**
  An \( L \) by \( p \) matrix of posterior inclusion probabilities.
- **mu**
  An \( L \) by \( p \) matrix of posterior means, conditional on inclusion.
- **mu2**
  An \( L \) by \( p \) matrix of posterior second moments, conditional on inclusion.
- **lbf**
  Log-Bayes Factor for each single effect.
- **lbf_variable**
  Log-Bayes Factor for each variable and single effect.
- **V**
  Prior variance of the non-zero elements of \( b \).
- **elbo**
  The value of the variational lower bound, or “ELBO” (objective function to be maximized), achieved at each iteration of the IBSS fitting procedure.
- **Rr**
  A vector of length \( p \), equal to \( R \%\% \text{colSums}(alpha*mu) \).
- **sets**
  Credible sets estimated from model fit; see \texttt{susie_get_cs} for details.
- **pip**
  A vector of length \( p \) giving the (marginal) posterior inclusion probabilities for all \( p \) covariates.
- **niter**
  Number of IBSS iterations that were performed.
- **converged**
  TRUE or FALSE indicating whether the IBSS converged to a solution within the chosen tolerance level.

**References**


**Examples**

```r
set.seed(1)

n = 1000
p = 1000
beta = rep(0, p)
beta[1:4] = 1
```
Apply susie to trend filtering (especially changepoint problems), a type of non-parametric regression.

**Description**

Fits the non-parametric Gaussian regression model $y = mu + e$, where the mean $mu$ is modelled as $mu = Xb$, $X$ is a matrix with columns containing an appropriate basis, and $b$ is vector with a (sparse) SuSiE prior. In particular, when order = 0, the jth column of $X$ is a vector with the first j elements equal to zero, and the remaining elements equal to 1, so that $b_j$ corresponds to the change in the mean of $y$ between indices $j$ and $j+1$. For background on trend filtering, see Tibshirani (2014). See also the "Trend filtering" vignette, vignette("trend_filtering").

**Usage**

```r
susie_trendfilter(y, order = 0, standardize = FALSE, use_mad = TRUE, ...)
```
Arguments

- **y**: An n-vector of observations ordered in time or space (assumed to be equally spaced).
- **order**: An integer specifying the order of trend filtering. The default, order = 0, corresponds to "changepoint" problems (i.e., piecewise constant \( \mu \)). Although order > 0 is implemented, we do not recommend its use; in practice, we have found problems with convergence of the algorithm to poor local optima, producing unreliable inferences.
- **standardize**: Logical indicating whether to standardize the X variables ("basis functions"); standardize = FALSE is recommended as these basis functions already have a natural scale.
- **use_mad**: Logical indicating whether to use the "median absolute deviation" (MAD) method to estimate residual variance. If use_mad = TRUE, susie is run twice, first by fixing the residual variance to the MAD value, then a second time, initialized to the first fit, but with residual variance estimated the usual way (by maximizing the ELBO). We have found this strategy typically improves reliability of the results by reducing a tendency to converge to poor local optima of the ELBO.

... Other arguments passed to susie.

Details

This implementation exploits the special structure of X, which means that the matrix-vector product \( X^T y \) is fast to compute; in particular, the computation time is \( O(n) \) rather than \( O(n^2) \) if \( X \) were formed explicitly. For implementation details, see the "Implementation of SuSiE trend filtering" vignette by running vignette("trendfiltering_derivations").

Value

A "susie" fit; see susie for details.

References


Examples

```r
set.seed(1)
mu = c(rep(0,50),rep(1,50),rep(3,50),rep(-2,50),rep(0,200))
y = mu + rnorm(400)
s = susie_trendfilter(y)
plot(y)
lines(mu,col = 1,lwd = 3)
lines(predict(s),col = 2,lwd = 2)

Calculate credible sets (indices of y that occur just before # changepoints).
susie_get_cs(s)
```
# Plot with credible sets for changepoints.
susie_plot_changepoint(s,y)

---

**univariate_regression**  
*Perform Univariate Linear Regression Separately for Columns of X*

## Description

This function performs the univariate linear regression $y \sim x$ separately for each column $x$ of $X$. Each regression is implemented using `.lm.fit()`. The estimated effect size and standard error for each variable are outputted.

## Usage

```r
univariate_regression(
 X,
 y,
 Z = NULL,
 center = TRUE,
 scale = FALSE,
 return_residuals = FALSE
)
```

## Arguments

- **X**: n by p matrix of regressors.
- **y**: n-vector of response variables.
- **Z**: Optional n by k matrix of covariates to be included in all regressions. If Z is not `NULL`, the linear effects of covariates are removed from y first, and the resulting residuals are used in place of y.
- **center**: If `center = TRUE`, center X, y and Z.
- **scale**: If `scale = TRUE`, scale X, y and Z.
- **return_residuals**: Whether or not to output the residuals if Z is not `NULL`.

## Value

A list with two vectors containing the least-squares estimates of the coefficients ($\hat{\beta}$) and their standard errors ($\text{se(\hat{\beta})}$). Optionally, and only when a matrix of covariates Z is provided, a third vector `residuals` containing the residuals is returned.
Examples

```r
set.seed(1)
n = 1000
p = 1000
beta = rep(0, p)
beta[1:4] = 1
X = matrix(rnorm(n*p), nrow = n, ncol = p)
X = scale(X, center = TRUE, scale = TRUE)
y = drop(X %*% beta + rnorm(n))
res = univariate_regression(X, y)
plot(res$betahat/res$sebetahat)
```
Index

* data
  FinemappingConvergence, 5
  N2finemapping, 8
  N3finemapping, 9
  SummaryConsistency, 11

  coef.susie, 2
  compute_ss, 3
  compute_suff_stat, 4

  estimate_s_rss, 4

  FinemappingConvergence, 5

  get_cs_correlation, 6

  kriging_rss, 7

  N2finemapping, 8
  N3finemapping, 9

  plot, 24
  predict.susie, 10
  print.summary.susie(summary.susie), 10

  summary.susie, 10
  SummaryConsistency, 11
  susie, 6, 12, 19, 21, 24, 28, 30
  susie_auto, 18
  susie_get_cs, 12, 15, 17, 28
  susie_get_cs(susie_get_objective), 20
  susie_get_lfsr(susie_get_objective), 20
  susie_get_niter(susie_get_objective),
  20
  susie_get_objective, 20
  susie_get_pip(susie_get_objective), 20
  susie_get_posterior_mean
    (susie_get_objective), 20
  susie_get_posterior_samples
    (susie_get_objective), 20

  susie_get_posterior_sd
    (susie_get_objective), 20
  susie_get_prior_variance
    (susie_get_objective), 20
  susie_get_residual_variance
    (susie_get_objective), 20
  susie_init_coef, 23
  susie_plot, 23
  susie_plot_changepoint, 24, 25
  susie_plot_iteration(susie_plot), 23
  susie_rss, 16, 17, 26
  susie_suff_stat, 27, 28
  susie_suff_stat(susie), 12
  susie_trendfilter, 17, 29
  tempdir, 24
  univariate_regression, 31