Package ‘sweater’

January 20, 2022

Title Speedy Word Embedding Association Test and Extras Using R
Version 0.1.4
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
URL https://github.com/chainsawriot/sweater
BugReports https://github.com/chainsawriot/sweater/issues
LinkingTo Rcpp
Imports Rcpp, purrr, quanteda, LiblineaR, proxy, data.table, cli
Suggests covr, testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 3.5)
NeedsCompilation yes
Author Chung-hong Chan [aut, cre](<https://orcid.org/0000-0002-6232-7530>)
Maintainer Chung-hong Chan <chainsawtiney@gmail.com>
Repository CRAN
Date/Publication 2022-01-20 22:30:08 UTC
calculate_es

Calculate the effect size of a query

Description
This function calculates the effect of a query.

Usage
```r
calculate_es(x, ...)
```

Arguments
- `x`: an S3 object return from a query, either by the function `query()` or underlying functions such as `mac()`
- `...`: additional parameters for the effect size functions

Value
- the effect size
Embedding Coherence Test

Description

This function estimates the Embedding Coherence Test (ECT) of word embeddings (Dev & Philips, 2019).

Usage

```r
ect(w, S_words, A_words, B_words, verbose = FALSE)
```

Arguments

- `w`: a numeric matrix of word embeddings (e.g. from rsparse::GloVe)
- `S_words`: a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- `A_words`: a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- `B_words`: a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- `verbose`: logical, whether to display information

Value

A list with class "ect" containing the following components:

- `$A_words`: the input A_words
- `$B_words`: the input B_words
- `$S_words`: the input S_words
- `$u_a`: Cosine similarity between each word vector of S_words and average vector of A_words
- `$u_b`: Cosine similarity between each word vector of S_words and average vector of B_words

Author(s)

Chung-hong Chan
References

See Also

ect_es() can be used to obtain the effect size of the test. plot_ect() can be used to visualize the result.

Examples

data(googlenews)
garg_f1 <- ect(googlenews, S1, A1, B1)
plot_ect(garg_f1)

ect_es

Calculate the Spearman Coefficient of an ECT result

Description

This functions calculates the Spearman Coefficient of an Embedding Coherence Test. The value ranges from -1 to +1 and a larger value indicates less bias.

Usage

ect_es(x)

Arguments

x an ect object from the ect() function.
glove_math

Value

Spearman Coefficient

Author(s)

Chung-hong Chan

References

glove_math

A subset of the pretrained GLoVE word vectors

Description

This is a subset of the original pretrained GLoVE word vectors provided by Pennington et al (2017). The same word vectors were used in Caliskan et al. (2017) to study biases.

Usage

`glove_math`

Format

An object of class `matrix` (inherits from `array`) with 32 rows and 300 columns.

References

googlenews

Description

This is a subset of the original pretrained word2vec word vectors trained on Google News. The same word vectors were used in Garg et al. (2018) to study biases.

Usage

```r
googlenews
```

Format

An object of class `matrix` (inherits from `array`) with 116 rows and 300 columns.

References

mac

Mean average cosine similarity

Description

This function calculates the mean average cosine similarity (MAC) score proposed in Manzini et al (2019).

Usage

```r
mac(w, S_words, A_words, verbose = FALSE)
```

Arguments

- `w` a numeric matrix of word embeddings (e.g. from rsparse::GloVe)
- `S_words` a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- `A_words` a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- `verbose` logical, whether to display information
Value

A list with class "rnd" containing the following components:

- P: a vector of cosine similarity values for every word in S_{words}
- S_{words}: the input S_{words}
- A_{words}: the input A_{words}

mac_es can be used to obtain the effect size of the test.

Author(s)

Chung-hong Chan

Examples

```r
data(googlenews)
x <- mac(googlenews, S1, A1)
x$P
```

Description

This function calculates the mean of cosine distance values.

Usage

mac_es(x)

Arguments

- x: an object from the function mac
Value

Mean of all cosine similarity values

Author(s)

Chung-hong Chan

nas

Calculate Normalized Association Score

Description

This function quantifies the bias in a set of word embeddings by Caliskan et al (2017). In comparison to WEAT introduced in the same paper, this method is more suitable for continuous ground truth data. See Figure 1 and Figure 2 of the original paper.

Usage

```
nas(w, S_words, A_words, B_words, verbose = FALSE)
```

Arguments

- `w`: a numeric matrix of word embeddings (e.g. from rsparse::GloVe)
- `S_words`: a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- `A_words`: a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- `B_words`: a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- `verbose`: logical, whether to display information

Value

A list with class "nas" containing the following components:

- `$P`: a vector of normalized association score for every word in S
- `$raw`: a list of raw results used for calculating normalized association scores
- `$S_words`: the input S_words
- `$A_words`: the input A_words
- `$B_words`: the input B_words

Author(s)

Chung-hong Chan
plot_bias

Visualize the bias of words in S

Description

For ect, this function calls `plot_ect()`. For mac, rnd, and semaxis, this function plots the bias of words in S as a Cleveland Dot Plot.

Usage

```r
plot_bias(x)
```

S3 method for class 'sweater'

```r
plot(x, ...)
```

Arguments

- `x`: an S3 object returned from mac, rnd, semaxis, nas or rnsb
- `...`: other parameters

Value

a plot

Author(s)

Chung-hong Chan

plot_ect

Plot an ECT result on a two-dimensional plane

Description

This function plots the words in S\textsubscript{words} on a 2D plane according to their association with the average vectors of A\textsubscript{words} and B\textsubscript{words}. A equality line is also added. Words along the equality line have less bias. Words located on the upper side of the equality line have a stronger association with A\textsubscript{words} and vice versa.

Usage

```r
plot_ect(x, ...)
```

Arguments

- `x`: an ect object from the `ect` function.
- `...`: additional parameters to the underlying `plot()` function
Value
a plot

Author(s)
Chung-hong Chan

query
A common interface for making query

Description
This function makes a query based on the supplied parameters. The object can then be displayed by the S3 method print.sweater() and plotted by plot.sweater().

Usage
query(
 w,
 S_words,
 T_words,
 A_words,
 B_words,
 method = "guess",
 verbose = FALSE,
 ...
)

S3 method for class 'sweater'
print(x, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>a numeric matrix of word embeddings (e.g. from rsparse::GloVe)</td>
</tr>
<tr>
<td>S_words</td>
<td>a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...</td>
</tr>
<tr>
<td>T_words</td>
<td>a character vector of the second set of target words. In an example of studying gender stereotype, it can include occupations such as nurse, teacher, librarian...</td>
</tr>
<tr>
<td>A_words</td>
<td>a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.</td>
</tr>
<tr>
<td>B_words</td>
<td>a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.</td>
</tr>
<tr>
<td>method</td>
<td>string, the method to be used to make the query. Available options are: weat, mac, nas, semaxis, rnsb, rnd, nas, ect and guess. If guess, the function selects the best option for you.</td>
</tr>
</tbody>
</table>
read_word2vec

verbose logical, whether to display information

... additional parameters for the underlying function

x a sweater S3 object

Value

a sweater S3 object

Author(s)

Chung-hong Chan

See Also

weat(), mac(), nas(), semaxis(), rnsb(), rnd(), nas(), ect()

Examples

data(googlenews)
garg_f1 <- query(googlenews, S_words = S1, A_words = A1, B_words = B1)
garg_f1
plot(garg_f1)

read_word2vec A helper function for reading word2vec format

Description

This function reads word2vec text format and return a dense matrix that can be used by this package. The file can have or have not the "verification line", i.e. the first line contains the dimensionality of the matrix. If the verification line exists, the function will check the returned matrix for correctness.
Usage

read_word2vec(x)

Arguments

x path to your text file

Value

a dense matrix

Author(s)

Chung-hong Chan

Description

This function calculates the relative norm distance (RND) of word embeddings.

Usage

rnd(w, S_words, A_words, B_words, verbose = FALSE)

Arguments

w a numeric matrix of word embeddings (e.g. from rsparse::GloVe)
S_words a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
A_words a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
B_words a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
verbose logical, whether to display information

Value

A list with class "rnd" containing the following components:

$norm_diff a vector of relative norm distances for every word in S_words
$S_words the input S_words
$A_words the input A_words
$B_words the input B_words

rnd_es can be used to obtain the effect size of the test.
rnd_es

Author(s)

Chung-hong Chan

Examples

data(googlenews)
S1 <- c("janitor", "statistician", "midwife", "bailiff", "auctioneer",
"photographer", "geologist", "shoemaker", "athlete", "cashier", "dancer",
"housekeeper", "accountant", "physicist", "gardener", "dentist", "weaver",
"blacksmith", "psychologist", "supervisor", "mathematician", "surveyor",
"tailor", "designer", "economist", "mechanic", "laborer", "postmaster",
"broker", "chemist", "librarian", "attendant", "clerical", "musician",
"porter", "scientist", "carpenter", "sailor", "instructor", "sheriff",
"pilot", "inspector", "mason", "baker", "administrator", "architect",
"collector", "operator", "surgeon", "driver", "painter", "conductor",
"nurse", "cook", "engineer", "retired", "sales", "lawyer", "clergy",
"physician", "farmer", "clerk", "manager", "guard", "artist", "smith",
"official", "police", "doctor", "professor", "student", "judge",
"teacher", "author", "secretary", "soldier")
"male", "brother", "sons", "fathers", "men", "boys", "males", "brothers",
"uncle", "uncles", "nephew", "nephews")
B1 <- c("she", "daughter", "hers", "her", "mother", "woman", "girl",
"herself", "female", "sister", "daughters", "mothers", "women", "girls",
"females", "sisters", "aunt", "aunts", "niece", "nieces")
garg_f1 <- rnd(googlenews, S1, A1, B1)
plot_bias(garg_f1)

rnd_es

Calculation of sum of all relative norm distances

Description

This function calculates the sum of all relative norm distances from the relative norm distance test.

Usage

rnd_es(x)

Arguments

x an object from the function rnd

Value

Sum of all relative norm distances

Author(s)

Chung-hong Chan
Description

This function estimate the Relative Negative Sentiment Bias (RNSB) of word embeddings (Sweeney & Najafian, 2019).

Usage

```r
rnsb(w, S_words, A_words, B_words, levels = 1, verbose = FALSE)
```

Arguments

- `w`: a numeric matrix of word embeddings (e.g. from rsparse::GloVe)
- `S_words`: a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- `A_words`: a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- `B_words`: a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- `levels`: levels of entries in a hierarchical dictionary that will be applied (see quanteda::dfm_lookup)
- `verbose`: logical, whether to display information

Value

A list with class "rnsb" containing the following components:

- `$classifier`: a logistic regression model with L2 regularization trained with LiblineaR
- `$A_words`: the input A_words
- `$B_words`: the input B_words
- `$S_words`: the input S_words
- `$P`: the predicted negative sentiment probabilities

`rnsb_es` can be used to obtain the effect size of the test.

Author(s)

Chung-hong Chan

References

Examples

data(googlenews)
S1 <- c("janitor", "statistician", "midwife", "bailiff", "auctioneer",
"photographer", "geologist", "shoemaker", "athlete", "cashier", "dancer",
"housekeeper", "accountant", "physicist", "gardener", "dentist", "weaver",
"blacksmith", "psychologist", "supervisor", "mathematician", "surveyor",
"tailor", "designer", "economist", "mechanic", "laborer", "postmaster",
"broker", "chemist", "librarian", "attendant", "clerical", "musician",
"porter", "scientist", "carpenter", "sailor", "instructor", "sheriff",
"pilot", "inspector", "mason", "baker", "administrator", "architect",
"collector", "operator", "surgeon", "driver", "painter", "conductor",
"nurse", "cook", "engineer", "retired", "sales", "lawyer", "clergy",
"physician", "farmer", "clerk", "manager", "guard", "artist", "smith",
"official", "police", "doctor", "professor", "student", "judge",
"teacher", "author", "secretary", "soldier")
"male", "brother", "sons", "fathers", "men", "boys", "males", "brothers",
"uncle", "uncles", "nephew", "nephews")
B1 <- c("she", "daughter", "hers", "her", "mother", "woman", "girl",
"herself", "female", "sister", "daughters", "mothers", "women", "girls",
"females", "sisters", "aunt", "aunts", "niece", "nieces")
garg_f1 <- rnsb(googlenews, S1, A1, B1)
plot_bias(garg_f1)

rnsb_es Calculation the Kullback-Leibler divergence

Description

This function calculates the Kullback-Leibler divergence of the predicted negative probabilities, \(P \), from the uniform distribution.

Usage

rnsb_es(x)

Arguments

x an rnsb object from the rnsb function.

Value

the Kullback-Leibler divergence.

Author(s)

Chung-hong Chan
References

semaxis

Description
This function calculates the axis and the score using the SemAxis framework proposed in An et al (2018).

Usage
semaxis(w, S_words, A_words, B_words, l = 0, verbose = FALSE)

Arguments
- **w**: a numeric matrix of word embeddings (e.g. from rsparse::GloVe)
- **S_words**: a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- **A_words**: a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- **B_words**: a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- **l**: an integer indicates the number of words to augment each word in A and B based on cosine, see An et al (2018). Default to 0 (no augmentation).
- **verbose**: logical, whether to display information

Value
A list with class "semaxis" containing the following components:

- **$P**: for each of words in S, the score according to SemAxis
- **$V**: the semantic axis vector
- **$S_words**: the input S_words
- **$A_words**: the input A_words
- **$B_words**: the input B_words

Author(s)
Chung-hong Chan
small_reddit

References

Examples

data(glove_math)
S1 <- c("math", "algebra", "geometry", "calculus", "equations", "computation", "numbers", "addition")
A1 <- c("male", "man", "boy", "brother", "he", "him", "his", "son")
B1 <- c("female", "woman", "girl", "sister", "she", "her", "hers", "daughter")
semaxis(glove_math, S1, A1, B1, l = 0)$P

small_reddit A subset of the pretrained word2vec word vectors on Reddit

Description

This is a subset of the pretrained word2vec word vectors on Reddit provided by An et al. (2018). With this dataset, you can try with the "l" parameter of semaxis() up to 10.

Usage

small_reddit

Format

An object of class matrix (inherits from array) with 106 rows and 300 columns.

References

weat Speedy Word Embedding Association Test

Description

This functions test the bias in a set of word embeddings using the method by Caliskan et al (2017).

Usage

weat(w, S_words, T_words, A_words, B_words, verbose = FALSE)
Arguments

- \(w \): a numeric matrix of word embeddings (e.g. from \texttt{rsparse::GloVe})
- \(S _\text{words} \): a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- \(T _\text{words} \): a character vector of the second set of target words. In an example of studying gender stereotype, it can include occupations such as nurse, teacher, librarian...
- \(A _\text{words} \): a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- \(B _\text{words} \): a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- \(\text{verbose} \): logical, whether to display information

Value

A list with class "\texttt{weat}" containing the following components:

- \(S _\text{diff} \): for each of words in \(S _\text{words} \), mean of the mean differences in cosine similarity between words in \(A _\text{words} \) and words in \(B _\text{words} \)
- \(T _\text{diff} \): for each of words in \(T _\text{words} \), mean of the mean differences in cosine similarity between words in \(A _\text{words} \) and words in \(B _\text{words} \)
- \(S _\text{words} \): the input \(S _\text{words} \)
- \(T _\text{words} \): the input \(T _\text{words} \)
- \(A _\text{words} \): the input \(A _\text{words} \)
- \(B _\text{words} \): the input \(B _\text{words} \)

\texttt{weat_es} can be used to obtain the effect size of the test; \texttt{weat_resampling} for a test of significance.

Author(s)

Chung-hong Chan

References

Examples

Reproduce the number in Caliskan et al. (2017) - Table 1, "Math vs. Arts"
data(glove_math)
S1 <- c("math", "algebra", "geometry", "calculus", "equations", "computation", "numbers", "addition")
T1 <- c("poetry", "art", "dance", "literature", "novel", "symphony", "drama", "sculpture")
A1 <- c("male", "man", "boy", "brother", "he", "him", "his", "son")
B1 <- c("female", "woman", "girl", "sister", "she", "her", "hers", "daughter")
sw <- weat(glove_math, S1, T1, A1, B1)
weat_es(sw)
Description

This function calculates the effect size from a sweater object. The original implementation in Caliskan et al. (2017) assumes the numbers of words in S and in T must be equal. The current implementation eases this assumption by adjusting the variance with the difference in sample sizes. It is also possible to convert the Cohen’s d to Pearson’s correlation coefficient (r).

Usage

```r
weat_es(x, standardize = TRUE, r = FALSE)
```

Arguments

- `x`: an object from the `weat` function.
- `standardize`: a boolean to denote whether to correct the difference by the standard division. The standardized version can be interpreted the same way as Cohen’s d.
- `r`: a boolean to denote whether convert the effect size to biserial correlation coefficient.

Value

the effect size of the query

Author(s)

Chung-hong Chan

References

Examples

```r
# Reproduce the number in Caliskan et al. (2017) - Table 1, "Math vs. Arts"
data(glove_math)
S1 <- c("math", "algebra", "geometry", "calculus", "equations",
   "computation", "numbers", "addition")
T1 <- c("poetry", "art", "dance", "literature", "novel", "symphony", "drama", "sculpture")
A1 <- c("male", "man", "boy", "brother", "he", "him", "his", "son")
B1 <- c("female", "woman", "girl", "sister", "she", "her", "hers", "daughter")
sw <- weat(glove_math, S1, T1, A1, B1)
weat_es(sw)
```
Description

This function conducts the test of significance for WEAT as described in Caliskan et al. (2017). The exact test (proposed in Caliskan et al.) takes an unreasonably long time, if the total number of words in S and T is larger than 10. The resampling test is an approximation of the exact test.

Usage

```r
weat_exact(x)
weat_resampling(x, n_resampling = 9999)
```

Arguments

- `x`: an object from the `weat` function.
- `n_resampling`: an integer specifying the number of replicates used to estimate the exact test

Value

A list with class "htest"

Author(s)

Chung-hong Chan

References

Examples

```r
# Reproduce the number in Caliskan et al. (2017) - Table 1, "Math vs. Arts"
data(glove_math)
S1 <- c("math", "algebra", "geometry", "calculus", "equations", "computation", "numbers", "addition")
T1 <- c("poetry", "art", "dance", "literature", "novel", "symphony", "drama", "sculpture")
A1 <- c("male", "man", "boy", "brother", "he", "him", "his", "son")
B1 <- c("female", "woman", "girl", "sister", "she", "her", "hers", "daughter")
sw <- weat(glove_math, S1, T1, A1, B1)
weat_resampling(sw)
```
Index

* datasets
 glove_math, 5
 googlenews, 6
 small_reddit, 17

calculate_es, 2
ect, 3, 9
ect(), 4, 11
ect_es, 4
ect_es(), 3, 4

glove_math, 5
googlenews, 6

mac, 6, 7
mac(), 2, 11
mac_es, 7, 7
mac_es(), 3

nas, 8
nas(), 11

plot(), 9
plot.sweater (plot_bias), 9
plot.sweater(), 10
plot_bias, 9
plot_ect, 9
plot_ect(), 4, 9
print.sweater (query), 10
print.sweater(), 10

query, 10
query(), 2

read_word2vec, 11
rnd, 12, 13
rnd(), 11
rnd_es, 12, 13
rnd_es(), 3
rnsb, 14, 15

rnsb(), 11
rnsb_es, 14, 15
rnsb_es(), 3

semaxis, 16
semaxis(), 11, 17
small_reddit, 17

weat, 17, 19, 20
weat(), 11
weat_es, 18, 19
weat_es(), 3
weat_exact, 20
weat_resampling, 18
weat_resampling (weat_exact), 20