
Package ‘text2map’
April 12, 2022

Type Package

Title R Tools for Text Matrices, Embeddings, and Networks

Version 0.1.4

Description This is a collection of functions optimized for working with
with various kinds of text matrices. Focusing on
the text matrix as the primary object - represented
either as a base R dense matrix or a 'Matrix' package sparse
matrix - allows for a consistent and intuitive interface
that stays close to the underlying mathematical foundation
of computational text analysis. In particular, the package
includes functions for working with word embeddings,
text networks, and document-term matrices. Methods developed in
Stoltz and Taylor (2019) <doi:10.1007/s42001-019-00048-6>,
Taylor and Stoltz (2020) <doi:10.1007/s42001-020-00075-8>,
Taylor and Stoltz (2020) <doi:10.15195/v7.a23>, and
Stoltz and Taylor (2021) <doi:10.1016/j.poetic.2021.101567>.

URL https://gitlab.com/culturalcartography/text2map

License MIT + file LICENSE

Encoding UTF-8

LazyData true

BugReports https://gitlab.com/culturalcartography/text2map/-/issues

RoxygenNote 7.1.2

Depends R (>= 3.5.0)

Imports tibble, Matrix, text2vec, parallel, doParallel, foreach,
stringr, stringi, dplyr, kit, fastmatch, mlpack, methods,
qgraph (>= 1.6.9), igraph (>= 1.2.6), magrittr, rlang

Suggests testthat (>= 3.0.0), tidytext, tm, quanteda, knitr, rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr, rmarkdown

NeedsCompilation no

1

https://doi.org/10.1007/s42001-019-00048-6
https://doi.org/10.1007/s42001-020-00075-8
https://doi.org/10.15195/v7.a23
https://doi.org/10.1016/j.poetic.2021.101567
https://gitlab.com/culturalcartography/text2map
https://gitlab.com/culturalcartography/text2map/-/issues


2 anchor_lists

Author Dustin Stoltz [aut, cre] (<https://orcid.org/0000-0002-4774-0765>),
Marshall Taylor [aut] (<https://orcid.org/0000-0002-7440-0723>)

Maintainer Dustin Stoltz <maintainers@textmapping.com>

Repository CRAN

Date/Publication 2022-04-12 07:10:02 UTC

R topics documented:
anchor_lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
CMDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
CoCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
dtm_builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
dtm_melter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
dtm_resampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
dtm_stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
dtm_stopper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
find_projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
find_rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
find_transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ft_wv_sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
get_anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
get_centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
get_direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
get_regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
get_stoplist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
jfk_speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
plot.CoCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
print.CoCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
stoplists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
tiny_gender_tagger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
vocab_builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Index 30

anchor_lists A dataset of anchor lists

Description

A dataset containing juxtaposing pairs of English words for 26 semantic relations. These anchors
are used with the get_anchors() function, which can then be used with the get_direction()
function. These have been collected from previously published articles and should be used as a
starting point for defining a given relation in a word embedding model.

Usage

anchor_lists

https://orcid.org/0000-0002-4774-0765
https://orcid.org/0000-0002-7440-0723


CMDist 3

Format

A data frame with 303 rows and 4 variables.

Variables

Variables:

• add. words to be added (or the positive direction)

• subtract. words to be subtract (or the negative direction)

• relation. the relation to be extracted, 26 relations available

• domain. 6 broader categories within which each relation falls

See Also

CoCA, get_direction, get_centroid, get_anchors

CMDist Calculate Concept Mover’s Distance

Description

Concept Mover’s Distance classifies documents of any length along a continuous measure of en-
gagement with a given concept of interest using word embeddings.

Usage

CMDist(
dtm,
cw = NULL,
cv = NULL,
wv,
missing = "stop",
scale = TRUE,
sens_interval = FALSE,
alpha = 1,
n_iters = 20L,
parallel = FALSE,
threads = 2L,
setup_timeout = 120L

)



4 CMDist

Arguments

dtm Document-term matrix with words as columns. Works with DTMs produced by
any popular text analysis package, or using the dtm_builder() function.

cw Vector with concept word(s) (e.g., c("love","money"), c("critical thinking"))

cv Concept vector(s) as output from get_direction(), get_centroid(), or get_regions()

wv Matrix of word embedding vectors (a.k.a embedding model) with rows as words.

missing Indicates what action to take if words are not in embeddings. If action =
"stop" (default), the function is stopped and an error messages states which
words are missing. If action = "remove", output is the same as terms but miss-
ing words or rows with missing words are removed. Missing words will be
printed as a message.

scale Logical (default = FALSE) uses scale() on output. This will set zero to the mean
of the estimates, and scale by the standard deviation of the estimates. Document
estimates will, therefore, be relative to other documents within that specific run,
but not necessarily across discrete runs.

sens_interval logical (default = FALSE), if TRUE several CMDs will be estimate on N resam-
pled DTMs, sensitivity intervals are produced by returning the 2.5 and 97.5
percentiles of estimated CMDs for a given concept word or concept vector.

alpha If sens_interval = TRUE, a number indicating the proportion of the document
length to be resampled for sensitivity intervals. Default is 1 or 100 percent of
each documents’ length.

n_iters If sens_interval = TRUE, integer (default = 20L) indicates the number of re-
sampled DTMs to produced for sensitivity intervals

parallel Logical (default = FALSE), whether to parallelize estimate

threads If parallel = TRUE, an integer indicating attempts to connect to master before
failing.

setup_timeout If parallel = TRUE, maximum number of seconds a worker attempts to connect
to master before failing.

Details

CMDist() requires three things: a (1) document-term matrix (DTM), a (2) matrix of word embed-
ding vectors, and (3) concept words or concept vectors. The function uses word counts from the
DTM and word similarities from the cosine similarity of their respective word vectors in a word em-
bedding model. The "cost" of transporting all the words in a document to a single vector or a few
vectors (denoting a concept of interest) is the measure of engagement, with higher costs indicating
less engagement. For intuitiveness the output of CMDist() is inverted such that higher numbers will
indicate more engagement with a concept of interest.

The vector, or vectors, of the concept are specified in several ways. The simplest involves selecting a
single word from the word embeddings, the analyst can also specify the concept by indicating a few
words. The algorithm then splits the overall flow between each concept word (roughly) depending
on which word in the document is nearest. The words need not be in the DTM, but they must be in
the word embeddings (the function will either stop or remove words not in the embeddings).



CMDist 5

Instead of selecting a word already in the embedding space, the function can also take a vector
extracted from the embedding space in the form of a centroid (which averages the vectors of sev-
eral words) ,a direction (which uses the offset of several juxtaposing words), or a region (which
is built by clustering words into $k$ regions). The get_centroid(), get_direction(), and
get_regions() functions will extract these.

Value

Returns a data frame with the first column as document ids and each subsequent column as the
CMD engagement corresponding to each concept word or concept vector. The upper and lower
bound estimates will follow each unique CMD if sens_interval = TRUE.

Author(s)

Dustin Stoltz and Marshall Taylor

References

Stoltz, Dustin S., and Marshall A. Taylor. (2019) ’Concept Mover’s Distance’ Journal of Computa-
tional Social Science 2(2):293-313. doi: 10.1007/s42001019000486.
Taylor, Marshall A., and Dustin S. Stoltz. (2020) ’Integrating semantic directions with concept
mover’s distance to measure binary concept engagement.’ Journal of Computational Social Science
1-12. doi: 10.1007/s42001020000758.
Taylor, Marshall A., and Dustin S. Stoltz. (2020) ’Concept Class Analysis: A Method for Identify-
ing Cultural Schemas in Texts.’ Sociological Science 7:544-569. doi: 10.15195/v7.a23.

See Also

CoCA, get_direction, get_centroid

Examples

# load example word embeddings
data(ft_wv_sample)

# load example text
data(jfk_speech)

# minimal preprocessing
jfk_speech$sentence <- tolower(jfk_speech$sentence)
jfk_speech$sentence <- gsub("[[:punct:]]+", " ", jfk_speech$sentence)

# create DTM
dtm <- dtm_builder(jfk_speech, sentence, sentence_id)

# example 1
cm.dists <- CMDist(dtm,

cw = "space",
wv = ft_wv_sample

https://doi.org/10.1007/s42001-019-00048-6
https://doi.org/10.1007/s42001-020-00075-8
https://doi.org/10.15195/v7.a23


6 CoCA

)

# example 2
space <- c("spacecraft", "rocket", "moon")
cen <- get_centroid(anchors = space, wv = ft_wv_sample)

cm.dists <- CMDist(dtm,
cv = cen,
wv = ft_wv_sample

)

CoCA Performs Concept Class Analysis (CoCA)

Description

CoCA outputs schematic classes derived from documents’ engagement with multiple bi-polar con-
cepts (in a Likert-style fashion). The function requires a (1) DTM of a corpus which can be obtained
using any popular text analysis package, or from the dtm_builder() function, and (2) semantic di-
rections as output from the get_direction(). CMDist() works under the hood. Code modified
from the corclass package.

Usage

CoCA(
dtm,
wv = NULL,
directions = NULL,
filter_sig = TRUE,
filter_value = 0.05,
zero_action = c("drop", "ownclass")

)

Arguments

dtm Document-term matrix with words as columns. Works with DTMs produced by
any popular text analysis package, or you can use the dtm_builder() function.

wv Matrix of word embedding vectors (a.k.a embedding model) with rows as words.

directions direction vectors output from get_direction()

filter_sig logical (default = TRUE), sets ’insignificant’ ties to 0 to decrease noise and
increase stability

filter_value Minimum significance cutoff. Absolute row correlations below this value will
be set to 0

zero_action If ’drop’, CCA drops rows with 0 variance from the analyses (default). If ’own-
class’, the correlations between 0-variance rows and all other rows is set 0, and
the correlations between all pairs of 0-var rows are set to 1



CoCA 7

Value

Returns a named list object of class CoCA. List elements include:

• membership: document memberships

• modules: schematic classes

• cormat: correlation matrix

Author(s)

Dustin Stoltz and Marshall Taylor

References

Taylor, Marshall A., and Dustin S. Stoltz. (2020) ’Concept Class Analysis: A Method for Identify-
ing Cultural Schemas in Texts.’ Sociological Science 7:544-569. doi: 10.15195/v7.a23.
Boutyline, Andrei. ’Improving the measurement of shared cultural schemas with correlational class
analysis: Theory and method.’ Sociological Science 4.15 (2017): 353-393. doi: 10.15195/v4.a15

See Also

CMDist, get_direction

Examples

#' # load example word embeddings
data(ft_wv_sample)

# load example text
data(jfk_speech)

# minimal preprocessing
jfk_speech$sentence <- tolower(jfk_speech$sentence)
jfk_speech$sentence <- gsub("[[:punct:]]+", " ", jfk_speech$sentence)

# create DTM
dtm <- dtm_builder(jfk_speech, sentence, sentence_id)

# create semantic directions
gen <- data.frame(

add = c("woman"),
subtract = c("man")

)

die <- data.frame(
add = c("alive"),
subtract = c("die")

)

gen.dir <- get_direction(anchors = gen, wv = ft_wv_sample)

https://doi.org/10.15195/v7.a23
https://doi.org/10.15195/v4.a15


8 dtm_builder

die.dir <- get_direction(anchors = die, wv = ft_wv_sample)

sem_dirs <- rbind(gen.dir, die.dir)

classes <- CoCA(
dtm = dtm,
wv = ft_wv_sample,
directions = sem_dirs,
filter_sig = TRUE,
filter_value = 0.05,
zero_action = "drop"

)

print(classes)

dtm_builder A fast unigram DTM builder

Description

A streamlined function to take raw texts from a column of a data.frame and produce a sparse
Document-Term Matrix (of generic class "dgCMatrix").

Usage

dtm_builder(
data,
text,
doc_id = NULL,
vocab = NULL,
chunk = NULL,
dense = FALSE

)

Arguments

data Data.frame with column of texts and column of document ids
text Name of the column with documents’ text
doc_id Name of the column with documents’ unique ids.
vocab Default is NULL, if a list of terms is provided, the function will return a DTM

with terms restricted to this vocabulary. Columns will also be in the same order
as the list of terms.

chunk Default is NULL, if an integer is provided, the function will "re-chunk" the cor-
pus into new documents of a particular length. For example, 100L will divide
the corpus into new documents with 100 terms (with the final document likely
including slightly less than 100).

dense The default (FALSE``) is to return a matrix of class "dgCMatrix" because doc-
ument-term matrix typically have mostly zero cells. This is much more mem-
ory efficient. Setting dense to TRUEwill return a normal baseR‘ matrix.



dtm_builder 9

Details

The function is fast because it has few bells and whistles:

• No weighting schemes other than raw counts

• Tokenizes by the fixed, single whitespace

• Only tokenizes unigrams. No bigrams, trigrams, etc...

• Columns are in the order unique terms are discovered

• No preprocessing during building

• Outputs a basic sparse Matrix or dense matrix

Weighting or stopping terms can be done efficiently after the fact with simple matrix operations,
rather than achieved implicitly within the function itself. For example, using the dtm_stopper()
function. Prior to creating the DTM, texts should have whitespace trimmed, if desired, punctuation
removed and terms lowercased.

Like tidytext’s DTM functions, dtm_builder() is optimized for use in a pipeline, but unlike
tidytext, it does not build an intermediary tripletlist, so dtm_builder() is faster and far more
memory efficient.

The function can also chunk the corpus into documents of a given length (default is NULL). If the
integer provided is 200L, this will divide the corpus into new documents with 200 terms (with the
final document likely including slightly less than 200). If the total terms in the corpus were less
than or equal to chunk integer, this would produce a DTM with one document (most will probably
not want this).

If the vocabulary is already known, or standardizing vocabulary across several DTMs is desired, a
list of terms can be provided to the vocab argument. Columns of the DTM will be in the order of
the list of terms.

Value

returns a document-term matrix of class "dgCMatrix" or class "matrix"

Author(s)

Dustin Stoltz

Examples

library(dplyr)

my.corpus <- data.frame(
text = c(
"I hear babies crying I watch them grow",
"They'll learn much more than I'll ever know",
"And I think to myself",
"What a wonderful world",
"Yes I think to myself",
"What a wonderful world"

),



10 dtm_melter

line_id = paste0("line", seq_len(6))
)
## some text preprocessing
my.corpus$clean_text <- tolower(gsub("'", "", my.corpus$text))

# example 1 with R 4.1 pipe

dtm <- my.corpus |>
dtm_builder(clean_text, line_id)

# example 2 without pipe
dtm <- dtm_builder(

data = my.corpus,
text = clean_text,
doc_id = line_id

)

# example 3 with dplyr pipe and mutate
dtm <- my.corpus %>%

mutate(
clean_text = gsub("'", "", text),
clean_text = tolower(clean_text)

) %>%
dtm_builder(clean_text, line_id)

# example 4 with dplyr and chunk of 3 terms
dtm <- my.corpus %>%

dtm_builder(clean_text,
line_id,
chunk = 3L

)

# example 5 with user defined vocabulary
my.vocab <- c("wonderful", "world", "haiku", "think")

dtm <- dtm_builder(
data = my.corpus,
text = clean_text,
doc_id = line_id,
vocab = my.vocab

)

dtm_melter Melt a DTM into a triplet data frame

Description

Converts a DTM into a data frame with three columns: documents, terms, frequency. Each row is a
unique document by term frequency. This is akin to reshape2 packages melt function, but works
on a sparse matrix. The resulting data frame is also equivalent to the tidytext triplet tibble.



dtm_resampler 11

Usage

dtm_melter(dtm)

Arguments

dtm Document-term matrix with terms as columns. Works with DTMs produced by
any popular text analysis package, or using the dtm_builder() function.

Value

returns data frame with three columns: doc_id, term, freq

Author(s)

Dustin Stoltz

dtm_resampler Resamples an input DTM to generate new DTMs

Description

Takes any DTM and randomly resamples from each row, creating a new DTM

Usage

dtm_resampler(dtm, alpha = NULL, n = NULL)

Arguments

dtm Document-term matrix with terms as columns. Works with DTMs produced by
any popular text analysis package, or you can use the dtm_builder() function.

alpha Number indicating proportion of document lengths, e.g., alpha = 1 returns re-
sampled rows that are the same lengths as the original DTM.

n Integer indicating the length of documents to be returned, e.g., n = 100L will
bring documents shorter than 100 tokens up to 100, while bringing documents
longer than 100 tokens down to 100.

Details

Using the row counts as probabilities, each document’s tokens are resampled with replacement up
to a certain proportion of the row count (set by alpha). This function can be used with iteration to
"bootstrap" a DTM without returning to the raw text. It does not iterate, however, so operations can
be performed on one DTM at a time without storing multiple DTMs in memory.

If alpha is less than 1, then a proportion of each documents’ lengths is returned. For example, alpha
= 0.50 will return a resampled DTM where each row has half the tokens of the original DTM. If
alpha = 2, than each row in the resampled DTM twice the number of tokens of the original DTM.
If an integer is provided to n then all documents will be resampled to that length. For example, n =



12 dtm_stats

2000L will resample each document until they are 2000 tokens long – meaning those shorter than
2000 will be increased in length, while those longer than 2000 will be decreased in length. alpha
and n should not be specified at the same time.

Value

returns a document-term matrix of class "dgCMatrix"

dtm_stats Gets DTM summary statistics

Description

dtm_stats() provides a summary, corpus-level statistics using any document-term matrix

Usage

dtm_stats(
dtm,
richness = TRUE,
distribution = TRUE,
central = TRUE,
character = TRUE,
simplify = FALSE

)

Arguments

dtm Document-term matrix with terms as columns. Works with DTMs produced by
any popular text analysis package, or you can use the dtm_builder() function.

richness Logical (default = TRUE), whether to include statistics about lexical richness,
i.e. terms that occur once, twice, and three times (hapax, dis, tris), and the total
type-token ratio.

distribution Logical (default = TRUE), whether to include statistics about the distribution,
i.e. min, max st. dev, skewness, kurtosis.

central Logical (default = TRUE), whether to include statistics about the central tenden-
cies i.e. mean and median for types and tokens.

character Logical (default = TRUE), whether to include statistics about the character lengths
of terms, i.e. min, max, mean

simplify Logical (default = FALSE), whether to return statistics as a data frame where
each statistic is a column. Default returns a list of small data frames.

Value

A list of one to five data frames with summary statistics (if simplify=FALSE), otherwise a single
data frame where each statistics is a column.



dtm_stopper 13

Author(s)

Dustin Stoltz

dtm_stopper Removes terms from a DTM based on rules

Description

dtm_stopper will "stop" terms from the analysis by removing columns in a DTM based on stop
rules. Rules include matching terms in a precompiled or custom list, terms meeting an upper or
lower document frequency threshold, or terms meeting an upper or lower term frequency threshold.

Usage

dtm_stopper(
dtm,
stop_list = NULL,
stop_termfreq = NULL,
stop_termrank = NULL,
stop_termprop = NULL,
stop_docfreq = NULL,
stop_docprop = NULL,
stop_hapax = FALSE,
stop_null = FALSE,
ignore_case = TRUE

)

Arguments

dtm Document-term matrix with terms as columns. Works with DTMs produced by
any popular text analysis package, or you can use the dtm_builder function.

stop_list Vector of terms, from a precompiled stoplist or custom list such as c("never","gonna","give").
stop_termfreq Vector of two numbers indicating the lower and upper threshold for exclusion

(see details). Use Inf for max or min, respectively.
stop_termrank Single integer indicating upper term rank threshold for exclusion (see details).
stop_termprop Vector of two numbers indicating the lower and upper threshold for exclusion

(see details). Use Inf for max or min, respectively.
stop_docfreq Vector of two numbers indicating the lower and upper threshold for exclusion

(see details). Use Inf for max or min, respectively.
stop_docprop Vector of two numbers indicating the lower and upper threshold for exclusion

(see details). Use Inf for max or min, respectively.
stop_hapax Logical (default = FALSE) indicating whether to remove terms occurring one

time (or zero times), a.k.a. hapax legomena
stop_null Logical (default = FALSE) indicating whether to remove terms that occur zero

times in the DTM.
ignore_case Logical (default = TRUE) indicating whether to ignore capitalization.



14 dtm_stopper

Details

Stopping terms by removing their respective columns in the DTM is significantly more efficient
than searching raw text with string matching and deletion rules. Behind the scenes, the function
relies on the fastmatch package to quickly match/not-match terms.

The stop_list arguments takes a list of terms which are matched and removed from the DTM. If
ignore_case = TRUE (the default) then word case will be ignored.

The stop_termfreq argument provides rules based on a term’s occurrences in the DTM as a whole
– regardless of its within document frequency. If real numbers between 0 and 1 are provided then
terms will be removed by corpus proportion. For example c(0.01,0.99), terms that are either
below 1% of the total tokens or above 99% of the total tokens will be removed. If integers are
provided then terms will be removed by total count. For example c(100,9000), occurring less than
100 or more than 9000 times in the corpus will be removed. This also means that if c(0,1) is
provided, then the will only keep terms occurring once.

The stop_termrank argument provides the upper threshold for a terms’ rank in the corpus. For
example, 5L will remove the five most frequent terms.

The stop_docfreq argument provides rules based on a term’s document frequency – i.e. the num-
ber of documents within which it occurs, regardless of how many times it occurs. If real numbers
between 0 and 1 are provided then terms will be removed by corpus proportion. For example
c(0.01,0.99), terms in more than 99% of all documents or terms that are in less than 1% of all
documents. For example c(100,9000), then words occurring in less than 100 documents or more
than 9000 documents will be removed. This means that if c(0,1) is provided, then the function
will only keep terms occurring in exactly one document, and remove terms in more than one.

The stop_hapax argument is a shortcut for removing terms occurring just one time in the corpus
– called hapax legomena. Typically, a size-able portion of the corpus tends to be hapax terms,
and removing them is a quick solution to reducing the dimensions of a DTM. The DTM must be
frequency counts (not relative frequencies).

The stop_null argument removes terms that do not occur at all. In other words, there is a column
for the term, but the entire column is zero. This can occur for a variety of reasons, such as starting
with a predefined vocabulary (e.g., using dtm_builder’s vocab argument) or through some cleaning
processes.

Value

returns a document-term matrix of class "dgCMatrix"

Author(s)

Dustin Stoltz

Examples

# create corpus and DTM
my.corpus <- data.frame(

text = c(
"I hear babies crying I watch them grow",
"They'll learn much more than I'll ever know",



find_projection 15

"And I think to myself",
"What a wonderful world",
"Yes I think to myself",
"What a wonderful world"

),
line_id = paste0("line", seq_len(6))

)
## some text preprocessing
my.corpus$clean_text <- tolower(gsub("'", "", my.corpus$text))

dtm <- dtm_builder(
data = my.corpus,
text = clean_text,
doc_id = line_id

)

## example 1 with R 4.1 pipe

dtm_st <- dtm |>
dtm_stopper(stop_list = c("world", "babies"))

## example 2 without pipe
dtm_st <- dtm_stopper(

dtm,
stop_list = c("world", "babies")

)

## example 3 precompiled stoplist
dtm_st <- dtm_stopper(

dtm,
stop_list = get_stoplist("snowball2014")

)

## example 4, stop top 2
dtm_st <- dtm_stopper(

dtm,
stop_termrank = 2L

)

## example 5, stop docfreq
dtm_st <- dtm_stopper(

dtm,
stop_docfreq = c(2, 5)

)

find_projection Find the ’projection matrix’ to a semantic vector



16 find_rejection

Description

"Project" each word in a word embedding matrix of D dimension along a vector of D dimensions,
extracted from the same embedding space. The vector can be a single word, or a concept vector
obtained from get_centroid(), get_direction(), or get_regions().

Usage

find_projection(wv, vec)

Arguments

wv Matrix of word embedding vectors (a.k.a embedding model) with rows as words.

vec Vector extracted from the embeddings

Details

All the vectors in the matrix A are projected onto the a vector, v, to find the projection matrix, P ,
defined as:

P =
A · v
v · v

∗ v

Value

A new word embedding matrix, each row of which is parallel to vector.

find_rejection Find the ’rejection matrix’ from a semantic vector

Description

"Reject" each word in a word embedding matrix of D dimension from a vector of D dimensions,
extracted from the same embedding space. The vector can be a single word, or a concept vector
obtained from get_centroid(), get_direction(), or get_regions().

Usage

find_rejection(wv, vec)

Arguments

wv Matrix of word embedding vectors (a.k.a embedding model) with rows as words.

vec Vector extracted from the embeddings

Value

A new word embedding matrix, each row of which is rejected from vector.



find_transformation 17

find_transformation Find a specified matrix transformation

Description

Given a matrix, B, of word embedding vectors (source) with terms as rows, this function finds a
transformed matrix following a specified operation. These include: centering (i.e. translation) and
normalization (i.e. scaling). In the first, B is centered by subtracting column means. In the second,
B is normalized by the L2 norm. Both have been found to improve word embedding representations.
The function also finds a transformed matrix that approximately aligns B, with another matrix, A,
of word embedding vectors (reference), using Procrustes transformation (see details).

Usage

find_transformation(wv, ref = NULL, method = c("align", "norm", "center"))

Arguments

wv Matrix of word embedding vectors (a.k.a embedding model) with rows as terms
(the source matrix to be transformed).

ref If method = "align", this is the reference matrix toward which the source ma-
trix is to be aligned.

method Character vector indicating the method to use for the transformation. Current
methods include: "align", "norm", and "center" – see details.

Details

Aligning a source matrix of word embedding vectors, B, to a reference matrix, A, has primarily
been used as a post-processing step for embeddings trained on longitudinal corpora for diachronic
analysis or for cross-lingual embeddings. Aligning preserves internal (cosine) distances, while
orient the source embeddings to minimize the sum of squared distances (and is therefore a Least
Squares problem). Alignment is accomplished with the following steps:

• translation: centering by column means

• scaling: scale (normalizes) by the L2 Norm

• rotation/reflection: rotates and a reflects to minimize sum of squared differences, using singu-
lar value decomposition

Alignment is asymmetrical, and only outputs the transformed source matrix, B. Therefore, it is
typically recommended to align B to A, and then A to B. However, simplying centering and
norming A after may be sufficient.

Value

A new word embedding matrix, transformed using the specified method.



18 get_anchors

References

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. (2018). ’A robust self-learning method for fully
unsupervised cross-lingual mappings of word embeddings.’ In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics. 789-798
Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2019. ’An effective approach to unsupervised
machine translation.’ In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics. 194-203
Hamilton, William L., Jure Leskovec, and Dan Jurafsky. (2018). ’Diachronic Word Embeddings
Reveal Statistical Laws of Semantic Change.’ https://arxiv.org/abs/1605.09096v6.
Lin, Zefeng, Xiaojun Wan, and Zongming Guo. (2019). ’Learning Diachronic Word Embeddings
with Iterative Stable Information Alignment.’ Natural Language Processing and Chinese Comput-
ing. 749-60. doi: 10.1007/9783030322335_58.
Schlechtweg et al. (2019). ’A Wind of Change: Detecting and Evaluating Lexical Semantic Change
across Times and Domains.’ https://arxiv.org/abs/1906.02979v1. Shoemark et a. (2019).
’Room to Glo: A Systematic Comparison of Semantic Change Detection Approaches with Word
Embeddings.’ Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. 66-76. doi: 10.18653/v1/D191007 Borg and Groenen. (1997). Modern Multidimen-
sional Scaling. New York: Springer. 340-342

ft_wv_sample Sample of fastText embeddings

Description

These are a sample of the English fastText embeddings including 770 words matching those used
in the jfk_speech. These are intended to be used for example code.

Usage

ft_wv_sample

Format

A matrix of 770 rows and 300 columns

get_anchors Gets anchor terms from precompiled anchor lists

Description

Produces a data.frame of juxtaposed word pairs used to extract a semantic direction in word em-
beddings. Can be used as input to get_direction().

Usage

get_anchors(relation)

https://arxiv.org/abs/1605.09096v6
https://doi.org/10.1007/978-3-030-32233-5_58
https://arxiv.org/abs/1906.02979v1
https://doi.org/10.18653/v1/D19-1007


get_anchors 19

Arguments

relation String indicating a semantic relation, 26 relations are available in the dataset
(see details) but should be used as a starting point.

Details

Sets of juxtaposed "anchor" pairs are adapted from published work and associated with a particular
semantic relation. These should be used as a starting point, not as "ground truth."

Available relations include:

• activity

• affluence

• age

• attractiveness

• borders

• concreteness

• cultivation

• dominance

• education

• gender

• government

• purity

• safety

• sexuality

• skills

• status

• valence

• whiteness

Value

returns a tibble with two columns

Author(s)

Dustin Stoltz

Examples

gen <- get_anchors(relation = "gender")



20 get_centroid

get_centroid Word embedding semantic centroid extractor

Description

The function outputs an averaged vector from a set of anchor terms’ word vectors. This average is
roughly equivalent to the intersection of the contexts in which each word is used. This semantic
centroid can be used for a variety of ends, and specifically as input to CMDist(). get_centroid()
requires a list of terms, string of terms, data.frame or matrix. In the latter two cases, the first column
will be used. The vectors are aggregated using the simple average. Terms can be repeated, and are
therefore "weighted" by their counts.

Usage

get_centroid(anchors, wv, missing = "stop")

Arguments

anchors List of terms to be averaged

wv Matrix of word embedding vectors (a.k.a embedding model) with rows as words.

missing what action to take if terms are not in embeddings. If action = "stop" (default),
the function is stopped and an error messages states which terms are missing.
If action = "remove", missing terms or rows with missing terms are removed.
Missing terms will be printed as a message.

Value

returns a one row matrix

Author(s)

Dustin Stoltz

Examples

# load example word embeddings
data(ft_wv_sample)

space1 <- c("spacecraft", "rocket", "moon")

cen1 <- get_centroid(anchors = space1, wv = ft_wv_sample)

space2 <- c("spacecraft rocket moon")
cen2 <- get_centroid(anchors = space2, wv = ft_wv_sample)

identical(cen1, cen2)



get_direction 21

get_direction Word embedding semantic direction extractor

Description

get_direction() outputs a vector corresponding to one pole of a "semantic direction" built from
sets of antonyms or juxtaposed terms. The output can be used as an input to CMDist() and CoCA().

Usage

get_direction(anchors, wv, method = "paired", missing = "stop", n_dirs = 1L)

Arguments

anchors Two column data frame of juxtaposed ’anchor’ terms

wv Matrix of word embedding vectors (a.k.a embedding model) with rows as terms.

method Indicates the method used to generate vector offset. Default is ’paired’. See
details.

missing what action to take if terms are not in embeddings. If action = "stop" (default),
the function is stopped and an error messages states which terms are missing.
If action = "remove", missing terms or rows with missing terms are removed.
Missing terms will be printed as a message.

n_dirs If method = "PCA", an integer indicating how many directions to return. Default
= 1L, indicating a single, bipolar, direction.

Details

Semantic directions can be estimated in using a few methods:

• ’paired’ (default): each individual term is subtracted from exactly one other paired term. there
must be the same number of terms for each side of the direction (although one word may be
used more than once).

• ’pooled’: terms corresponding to one side of a direction are first averaged, and then these
averaged vectors are subtracted. A different number of terms can be used for each side of the
direction.

• ’L2’: the vector is calculated the same as with ’pooled’ but is then divided by the L2 ’Eu-
clidean’ norm

• ’PCA’: vector offsets are calculated for each pair of terms, as with ’paired’, and if n_dirs =
1L (the default) then the direction is the first principal component. Users can return more than
one direction by increasing the n_dirs parameter.

Value

returns a one row matrix



22 get_regions

Author(s)

Dustin Stoltz

References

Bolukbasi, T., Chang, K. W., Zou, J., Saligrama, V., and Kalai, A. (2016). Quantifying and reducing
stereotypes in word embeddings. arXiv preprint https://arxiv.org/abs/1606.06121v1.
Bolukbasi, Tolga, Kai-Wei Chang, James Zou, Venkatesh Saligrama, Adam Kalai (2016). ’Man Is
to Computer Programmer as Woman Is to Homemaker? Debiasing Word Embeddings.’ Proceed-
ings of the 30th International Conference on Neural Information Processing Systems. 4356-4364.
https://dl.acm.org/doi/10.5555/3157382.3157584.
Taylor, Marshall A., and Dustin S. Stoltz. (2020) ’Concept Class Analysis: A Method for Identify-
ing Cultural Schemas in Texts.’ Sociological Science 7:544-569. doi: 10.15195/v7.a23.
Taylor, Marshall A., and Dustin S. Stoltz. (2020) ’Integrating semantic directions with concept
mover’s distance to measure binary concept engagement.’ Journal of Computational Social Science
1-12. doi: 10.1007/s42001020000758.
Kozlowski, Austin C., Matt Taddy, and James A. Evans. (2019). ’The geometry of culture: Ana-
lyzing the meanings of class through word embeddings.’ American Sociological Review 84(5):905-
949. doi: 10.1177/0003122419877135.
Arseniev-Koehler, Alina, and Jacob G. Foster. (2020). ’Machine learning as a model for cultural
learning: Teaching an algorithm what it means to be fat.’ arXiv preprint https://arxiv.org/abs/
2003.12133v2.

Examples

# load example word embeddings
data(ft_wv_sample)

# create anchor list
gen <- data.frame(

add = c("woman"),
subtract = c("man")

)

dir <- get_direction(anchors = gen, wv = ft_wv_sample)

dir <- get_direction(
anchors = gen, wv = ft_wv_sample,
method = "PCA", n = 1L

)

get_regions Word embedding semantic region extractor

https://arxiv.org/abs/1606.06121v1
https://dl.acm.org/doi/10.5555/3157382.3157584
https://doi.org/10.15195/v7.a23
https://doi.org/10.1007/s42001-020-00075-8
https://doi.org/10.1177/0003122419877135
https://arxiv.org/abs/2003.12133v2
https://arxiv.org/abs/2003.12133v2


get_regions 23

Description

Given a set of word embeddings of d dimensions and v vocabulary, get_regions() finds k seman-
tic regions in d dimensions. This, in effect, learns latent topics from an embedding space (a.k.a.
topic modeling), which are directly comparable to both terms (with cosine similarity) and docu-
ments (with Concept Mover’s distance using CMDist()).

Usage

get_regions(
wv,
k_regions = 5L,
max_iter = 20L,
algorithm = "hamerly",
seed = 0

)

Arguments

wv Matrix of word embedding vectors (a.k.a embedding model) with rows as words.

k_regions Integer indicating the k number of regions to return

max_iter Integer indicating the maximum number of iterations before k-means terminates.

algorithm Character indicating the algorithm to use for the Lloyd iteration (’naive’, ’pelleg-
moore’, ’elkan’, ’hamerly’ (default), ’dualtree’, or ’dualtree-covertree’).

seed Integer indicating a random seed. Default is 0, which calls ’std::time(NULL)’.

Details

To group words into more encompassing "semantic regions" we use k-means clustering. We choose
k-means primarily for it’s ubiquity and the wide range of available diagnostic tools for k-means
cluster.

A word embedding matrix of d dimensions and v vocabulary is "clustered" into k semantic regions
which have d dimensions. Each region is represented by a single point defined by the d dimensional
vector. The process discretely assigns all word vectors are assigned to a given region so as to
minimize some error function, however as the resulting regions are in the same dimensions as the
word embeddings, we can measure each terms similarity to each region. This, in effect, is a mixed
membership topic model similar to topic modeling by Latent Dirichlet Allocation.

We use the kmeans function from the mlpack package, which offers several algorithms for each
"Lloyd iteration," we use the "naive" as the default. Options include:

• "naive": O(kN) Lloyd’s approach

• "pelleg-moore": Pelleg-Moore tree-based algorithm

• "elkan": Elkan’s triangle-inequality based algorithm

• "hamerly" (default): Hamerly’s modification to Elkan’s algorithm

• "dualtree": dual-tree k-means

• "dualtree-covertree": dual-tree k-means sing the cover tree



24 get_stoplist

Value

returns a matrix of class "dgCMatrix" with k rows and d dimensions

Author(s)

Dustin Stoltz

References

Butnaru, Andrei M., and Radu Tudor Ionescu. (2017) ’From image to text classification: A novel
approach based on clustering word embeddings.’ Procedia computer science. 112:1783-1792.
doi: 10.1016/j.procs.2017.08.211.
Zhang, Yi, Jie Lu, Feng Liu, Qian Liu, Alan Porter, Hongshu Chen, and Guangquan Zhang. (2018).
’Does Deep Learning Help Topic Extraction? A Kernel K-Means Clustering Method with Word
Embedding.’ Journal of Informetrics. 12(4):1099-1117. doi: 10.1016/j.joi.2018.09.004.
Arseniev-Koehler, Alina and Cochran, Susan D and Mays, Vickie M and Chang, Kai-Wei and Fos-
ter, Jacob Gates (2021) ’Integrating topic modeling and word embedding to characterize violent
deaths’ doi: 10.31235/osf.io/nkyaq

Examples

# load example word embeddings
data(ft_wv_sample)

my.regions <- get_regions(
wv = ft_wv_sample,
k_regions = 10L,
max_iter = 10L,
algorithm = "hamerly",
seed = 01984

)

get_stoplist Gets stoplist from precompiled lists

Description

Provides access to 8 precompiled stoplists, including the most commonly used stoplist from the
Snowball stemming package ("snowball2014"), text2map’s tiny stoplist ("tiny2020"), a few histor-
ically important stop lists. This aims to be a transparent and well-document collection of stoplists.
Only includes English language stoplists at the moment.

Usage

get_stoplist(source = "tiny2020", language = "en", tidy = FALSE)

https://doi.org/10.1016/j.procs.2017.08.211
https://doi.org/10.1016/j.joi.2018.09.004
https://doi.org/10.31235/osf.io/nkyaq


get_stoplist 25

Arguments

source Character indicating source, default = "tiny2020"

language Character (default = "en") indicating language of stopwords by ISO 639-1 code,
currently only English is supported.

tidy logical (default = FALSE), returns a tibble

Details

There is no such thing as a stopword! But, there are tons of precompiled lists of words that someone
thinks we should remove from our texts. (See for example: https://github.com/igorbrigadir/stopwords)
One of the first stoplists is from C.J. van Rijsbergen’s "Information retrieval: theory and practice"
(1979) and includes 250 words. text2map’s very own stoplist tiny2020 is a lean 34 words.

Below are stoplists available with get_stoplist:

• "tiny2020": Tiny (2020) list of 33 words (Default)

• "snowball2001": Snowball stemming package’s (2001) list of 127 words

• "snowball2014": Updated Snowball (2014) list of 175 words

• "van1979": C. J. van Rijsbergen’s (1979) list of 250 words

• "fox1990": Christopher Fox’s (1990) list of 421 words

• "smart1993": Original SMART (1993) list of 570 words

• "onix2000": ONIX (2000) list of 196 words

• "nltk2001": Python’s NLTK (2009) list of 179 words

The Snowball (2014) stoplist is likely the most commonly, it is the default in the stopwords pack-
age, which is used by quanteda, tidytext and tokenizers packages, followed closely by the
Smart (1993) stoplist, the default in the tm package. The word counts for SMART (1993) and
ONIX (2000) are slightly different than in other places because of duplicate words.

Value

Character vector of words to be stopped, if tidy = TRUE, a tibble is returned

Author(s)

Dustin Stoltz



26 plot.CoCA

jfk_speech Full Text of JFK’s Rice Speech

Description

This is a data frame for the text of JFK’s Rice Speech "We choose to go to the moon." Each row is
a 10 word string of the speech – roughly a sentence. This is intended to be used for example code.

Usage

jfk_speech

Format

A data frame with 2 columns

Variables

Variables:

• sentence_id. Order and unique ID for the sentence

• sentence. The text of a sentence

plot.CoCA Plot CoCA

Description

Plot CoCA

Usage

## S3 method for class 'CoCA'
plot(
x,
module = NULL,
cutoff = 0.05,
repulse = 1.86,
min = 0.15,
max = 1,
main = NULL,
...

)



print.CoCA 27

Arguments

x CoCA object returned by CoCA()

module index for which module to plot (default = NULL)

cutoff minimum absolute value of correlations to plot

repulse repulse radius in the spring layout

min edges with absolute weights under this value are not shown (default = 0.15)

max highest weight to scale the edge widths too (default = 1)

main title for plot (default = NULL)

... Arguments to be passed to methods

Value

returns qgraph object

print.CoCA Prints CoCA class information

Description

Prints CoCA class information

Usage

## S3 method for class 'CoCA'
print(x, ...)

Arguments

x CoCA object returned by CoCA()

... Arguments to be passed to methods

Value

prints a message indicating the classes and sizes



28 stoplists

stoplists A dataset of stoplists

Description

A dataset containing eight English stoplist. Is used with the get_stoplist() function.

Usage

stoplists

Format

A data frame with 1775 rows and 2 variables.

Details

The stoplists include:

• "tiny2020": Tiny (2020) list of 33 words (Default)

• "snowball2001": Snowball (2001) list of 127 words

• "snowball2014": Updated Snowball (2014) list of 175 words

• "van1979": van Rijsbergen’s (1979) list of 250 words

• "fox1990": Christopher Fox’s (1990) list of 421 words

• "smart1993": Original SMART (1993) list of 570 words

• "onix2000": ONIX (2000) list of 196 words

• "nltk2001": Python’s NLTK (2009) list of 179 words

Tiny 2020, is a very small stop list of the most frequent English conjunctions, articles, prepositions,
and demonstratives (N=17). Also includes the 8 forms of the copular verb "to be" and the 8 most
frequent personal (singular and plural) pronouns (minus gendered and possessive pronouns).

No contractions are included.

Variables

Variables:

• words. words to be stopped

• source. source of the list



tiny_gender_tagger 29

tiny_gender_tagger A very tiny "gender" tagger

Description

Provides a small dictionary which matches common English pronouns and nouns to conventional
gender categories ("masculine" or "feminine"). There are 20 words in each category.

Usage

tiny_gender_tagger()

Value

returns a tibble with two columns

Author(s)

Dustin Stoltz

vocab_builder A fast unigram vocabulary builder

Description

A streamlined function to take raw texts from a column of a data.frame and produce a list of all
the unique tokens. Tokenizes by the fixed, single whitespace, and then extracts the unique tokens.
This can be used as input to dtm_builder() to standardize the vocabulary (i.e. the columns) across
multiple DTMs. Prior to building the vocabulary, texts should have whitespace trimmed, if desired,
punctuation removed and terms lowercased.

Usage

vocab_builder(data, text)

Arguments

data Data.frame with one column of texts
text Name of the column with documents’ text

Value

returns a list of unique terms in a corpus

Author(s)

Dustin Stoltz



Index

∗ datasets
anchor_lists, 2
ft_wv_sample, 18
jfk_speech, 26
stoplists, 28

anchor_lists, 2

CMDist, 3, 7
CMDist(), 6, 20, 21, 23
CoCA, 3, 5, 6
CoCA(), 21, 27

dtm_builder, 8, 14
dtm_builder(), 6
dtm_melter, 10
dtm_resampler, 11
dtm_stats, 12
dtm_stopper, 13

find_projection, 15
find_rejection, 16
find_transformation, 17
ft_wv_sample, 18

get_anchors, 3, 18
get_anchors(), 2
get_centroid, 3, 5, 20
get_centroid(), 4, 5, 16
get_direction, 3, 5, 7, 21
get_direction(), 2, 4–6, 16, 18
get_regions, 22
get_regions(), 4, 5, 16, 23
get_stoplist, 24, 25
get_stoplist(), 28

jfk_speech, 26

plot.CoCA, 26
print.CoCA, 27

stoplists, 28

tiny_gender_tagger, 29

vocab_builder, 29

30


	anchor_lists
	CMDist
	CoCA
	dtm_builder
	dtm_melter
	dtm_resampler
	dtm_stats
	dtm_stopper
	find_projection
	find_rejection
	find_transformation
	ft_wv_sample
	get_anchors
	get_centroid
	get_direction
	get_regions
	get_stoplist
	jfk_speech
	plot.CoCA
	print.CoCA
	stoplists
	tiny_gender_tagger
	vocab_builder
	Index

