Package ‘tmbstan’

December 14, 2021

Type Package
Title MCMC Sampling from 'TMB' Model Object using 'Stan'
Version 1.0.3
Date 2021-12-14
Author Kasper Kristensen
Maintainer Kasper Kristensen <kaskr@dtu.dk>
Description Enables all 'rstan' functionality for a 'TMB' model object, in particular MCMC sampling and chain visualization. Sampling can be performed with or without Laplace approximation for the random effects.
Imports methods, Rcpp
Depends rstan, TMB (>= 1.7.12)
LinkingTo StanHeaders, rstan, BH, Rcpp, RcppEigen, TMB, RcppParallel
License GPL (>= 3)
BugReports https://github.com/kaskr/tmbstan/issues
NeedsCompilation yes
SystemRequirements GNU make
RoxygenNote 7.1.2
Repository CRAN
Date/Publication 2021-12-14 22:20:02 UTC

R topics documented:
tmbstan

Index
tmbstan

Draw MCMC samples from a TMB model object using Stan

Description

Draw MCMC samples from a TMB model object using Stan

Usage

tmbstan(obj, ..., lower = numeric(0), upper = numeric(0), laplace = FALSE,
 silent = TRUE, debug = FALSE)

Arguments

obj TMB model object.
... Passed to rstan::sampling with some modifications - see details.
lower Vector of lower parameter bounds.
upper Vector of upper parameter bounds.
laplace Apply the Laplace approximation to random subset of parameters ? The default
disables the Laplace approximation.
silent Be silent during samling ?
debug Should not be used.

Details

tmbstan works for models with or without random effects.

By default a full Bayesian analysis is carried out, i.e. both parameters and random effects are sam-
pled using MCMC. Models with random effects will thus have the Laplace approximation disabled.
It is possible to mix the Laplace approximation with MCMC by setting laplace=TRUE. All meth-
ods provided by the rstan package can be applied to a fitted object. Get a complete list using
methods(class="stanfit").

Lower and upper bounds can be set using lower and upper. The bounds can be specified in one of
two ways. Either in short format, i.e. have the same length as obj$par. Remaining parameters (the
random effects) are set as unbounded in this case. Otherwise the bounds must be in long format,
i.e. have the same length as the full parameter vector objenvpar including the random effects.
In both cases -Inf and Inf are valid components of lower and upper respectively. Note that initial
values must be within the specified bounds.

The function arguments ... are passed to rstan's fitting function, see ?rstan::sampling. A few
notable arguments are:

- chains The number of chains.
- iter The number of iterations.
- init Initial values for the sampler. Behaves like rstan with some additions:
 - Default is "random" - see ?stan.
- Special values 0 and "0" are allowed - see ?stan.
- Additional special characters "par" and "last.par.best" are allowed and will be looked up in the TMB model object. The value "par" signifies to start from the defaults of the model object. If an optimization has been carried out, the intial value "last.par.best" will start from the MLE.
- We also allow to pass a single numeric vector, or a list of numeric vectors. List length must match the number of chains. Vector lengths must match the number of sampled parameters. Names are currently ignored.
- Parameters that do not follow the previous scheme (e.g. characters) are passed on to rstan unchanged. If in doubt, use rstan::get_inits to inspect the applied initial values.

- seed Random seed.

Value

Object of class stanfit

Examples

runExample("simple")
fit <- tmbstan(obj, chains=1)
class(fit) ## "stanfit"

The available methods are
methods(class="stanfit")

Not run:
Pairs plot
pairs(fit, pars=names(obj$par))

End(Not run)

Trace plot
traceplot(fit, pars=names(obj$par), inc_warmup=TRUE)
Index

tmbstan, 2