Package ‘trajeR’

February 21, 2022

Type Package

Title Group Based Modeling Trajectory

and Noel (2022), [https://orbilu.uni.lu/], thesis.

Version 0.9.0.5

Date 2022-02-14

Author Cédric NOEL - Jang Schiltz

Maintainer Cédric NOEL <<cedric.noel@univ-lorraine.fr>>

License GPL (>= 2)

Imports Rcpp (>= 1.0.4.6), minpack.lm, numDeriv, ucminf, MASS, capushe

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.2

Encoding UTF-8

URL https://github.com/gitedric/trajeR

BugReports https://github.com/gitedric/trajeR/issues

Depends R (>= 2.10)

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-02-21 13:30:01 UTC
\textbf{R topics documented:}

adequacy ... 2
AvePP ... 3
ConflIntT .. 4
diffaitbeta ... 5
fait ... 5
GroupProb .. 6
GroupProfiles .. 7
OCC ... 7
plotrajeR ... 8
plotrajeR.Trajectory.BETA .. 9
plotrajeR.Trajectory.CNORM 10
plotrajeR.Trajectory.LOGIT 11
plotrajeR.Trajectory.NL .. 12
plotrajeR.Trajectory.POIS 13
plotrajeR.Trajectory.ZIP ... 14
print.Trajectory.BETA ... 15
print.Trajectory.CNORM ... 16
print.Trajectory.LOGIT ... 16
print.Trajectory.NL .. 17
print.Trajectory.POIS .. 17
print.Trajectory.ZIP .. 18
propAssign ... 19
trajeR ... 19
trajeR.BETA .. 22
trajeR.CNORM .. 24
trajeR.LOGIT ... 27
trajeR.NL .. 29
trajeR.POIS .. 31
trajeR.ZIP ... 33
trajeRAIC ... 35
trajeRBIC .. 36
trajeRSH ... 37

\textbf{Index} 38

\begin{tabular}{ll}
adequacy & \textit{Adequacy of the model} \\
\end{tabular}

\textbf{Description}

Calculate the summary of the five methods: assignment proportion, average posterior probability, confidence interval, odds of Correct Classification.

\textbf{Usage}

\texttt{adequacy(sol, Y, A, nb = 10000, alpha = 0.98)}
AvePP

Arguments

sol Trajectory's object. An object of type Trajectory.
Y Matrix. A matrix containing the variables in the model.
A Matrix. A matrix containing the time variable data.
nb Integer. The numbers of repetitions in the bootstrap method.
alpha Real. The degree of confidence of the interval.

Value

A table of reals. A table with 5 rows: the estimate probabilities, the two bounds of the confidence interval, the proportion of assignment, the Average Posterior Probability and the Odds of Correct Classification.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
adequacy(sol, Y = data[, 2:6], A = data[, 7:11])

AvePP Average Posterior Probability

Description

Calculate the Average Posterior Probability. Average Posterior Probability (AvePP) is the average posterior probability of membership for each group for those individuals that were assigned to.

Usage

AvePP(sol, Y, A, X = NULL)

Arguments

sol Trajectory's object. An object of type Trajectory.
Y Matrix. A matrix containing the variables in the model.
A Matrix. A matrix containing the time variable data.
X Matrix. An optional matrix that modifies the probability of belong to group. By default its value is a one column matrix with value 1.

Value

A vector of reals. The average posterior probability.
Examples

```r
data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
AvePP(sol, Y = data[, 2:6], A = data[, 7:11])
```

ConfIntT

Confidence interval

Description

Calculate the confidence interval of the probabilities with bootstrap method. We have to specify the number of the repetitions of bootstrap and the degree of confidence.

Usage

```r
ConfIntT(sol, Y, A, nb = 10000, alpha = 0.98)
```

Arguments

- `sol`: Trajectory's object. An object of type Trajectory.
- `Y`: Matrix. A matrix containing the variables in the model.
- `A`: Matrix. A matrix containing the time variable data.
- `nb`: An integer. The number of repetitions in the bootstrap method.
- `alpha`: A number. The degree of confidence of the interval.

Value

A vector of reals. The two bounds of the confidence interval given a degree of confidence.

Examples

```r
data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
ConfIntT(sol, Y = data[, 2:6], A = data[, 7:11])
```
diffaitbeta

Description

Differential

Usage

diffaitbeta(betak, i, t, A, TCOV, fct, diffct)

Arguments

- **betak**: Vector of integer.
- **i**: Integer.
- **t**: Real.
- **A**: Matrix of real.
- **TCOV**: Matrix of real.
- **fct**: Function.
- **diffct**: Function.

Value

real. Compute the value of the differential function fct for individual i, time t and group k.

fait

Description

Function fait

Usage

fait(betak, i, t, A, TCOV, fct, diffct)

Arguments

- **betak**: Vector of integer.
- **i**: Integer.
- **t**: Real.
- **A**: Matrix of real.
- **TCOV**: Matrix of real.
- **fct**: Function.
- **diffct**: Function.
GroupProb

Value

real. Cumpute the value of the function fct for individual i, time t and group k.

<table>
<thead>
<tr>
<th>GroupProb</th>
<th>Membership’s probabilities</th>
</tr>
</thead>
</table>

Description

GroupProb calculate the membership probability of each value of the data.

Usage

GroupProb(Obj, Y, A, TCOV = NULL, X = NULL)

Arguments

- **Obj**: Trajectory’s object. A trajectory object that is return by trajeR function.
- **Y**: Matrix. A real matrix. The data.
- **A**: Matrix. A real matrix. The time variable.
- **TCOV**: Matrix. A real matrix. Optional, by default the value is NULL. It contained the time dependent covariate.
- **X**: Matrix. A real matrix. Optional, by default the value is NULL. It contained a covariate that modify the probability membership.

Value

a real matrix. For each individual i in the data, this matrix contained the membership probability of each group.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
GroupProb(sol, Y=data[, 2:6], A=data[, 7:11])
GroupProfiles

Profiles of each group

Description

GroupProfiles calculate the profile of a group regarding covariate. It is a cross tabulation of individual level trajectory group assignments with individual level characteristic that might be associated with trajectory group membership.

Usage

GroupProfiles(sol, Y, A, X)

Arguments

sol Trajectory's object. A object of type trajectory.
Y Matirx. A matrix containing the variables in the model.
A Matrix. A matrix containing the time variable data.
X Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.

Value

A table of real.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], Risk = data[,12],
degre = c(2,2), Model = "CNORM", Method = "L")
GroupProfiles(sol, Y = data[, 2:6], A = data[, 7:11], X = data[,12])

OCC

Odds of Correct Classification

Description

Calculate Odds of Correct Classification. The Odds of Correct Classification for group k (OCCj) is the ratio between the odds of a correct classification into group j on the basis of the posterior probability rule and the odds of correct assignment based on random assignments with the probability of assignment to group j is done with π_{ik}, the probability estimate by the model.

Usage

OCC(sol, Y, A)
plotrajeR

Arguments

sol
Trajectory’s object. An object of type Trajectory.

Y
Matrix. A matrix containing the variables in the model.

A
Matrix. A matrix containing the time variable data.

Value

A vector of reals. The Odds of Correct Classification.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
OCC(sol, Y = data[, 2:6], A = data[, 7:11])

plotrajeR

Description

plot trajectory

Usage

plotrajeR(Obj, ...)

Arguments

Obj
an object of class "Trajectory".

... optional parameters

Value

a graphic.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
plotrajeR(sol)
plot BETA trajectory

Usage

S3 method for class 'Trajectory.BETA'
plotrajeR(
 Obj,
 plotcov = NULL,
 col = "black",
 Y = NULL,
 A = NULL,
 Risk = NULL,
 TCOV = NULL,
 mean = FALSE,
 alpha = 1,
 ...
)

Arguments

Obj an object of class "Trajectory.LOGIT".
plotcov an optional vector or matrix with the same length as the time period. Default value is NULL.
col an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
Y Matrix. A matrix containing the variables in the model.
A Matrix. A matrix containing the time variable data.
Risk Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
TCOV Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
mean an optional logical. Indicate if the mean of each group and time value must be draw.
alpha an optional real. Indicate the alpha channel of the points color.
... optional parameters

Value

a graphic.
Description

plot CNORM trajectory

Usage

S3 method for class 'Trajectory.CNORM'
plotrajeR(
 Obj,
 plotcov = NULL,
 col = "black",
 Y = NULL,
 A = NULL,
 Risk = NULL,
 mean = FALSE,
 alpha = 1,
 ...
)

Arguments

- **Obj**
 - an object of class "Trajectory.CNORM".
- **plotcov**
 - an optional vector or matrix with the same length as the time period. Default value is NULL.
- **col**
 - an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
- **Y**
 - Matrix. A matrix containing the variables in the model.
- **A**
 - Matrix. A matrix containing the time variable data.
- **Risk**
 - Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
- **mean**
 - an optional logical. Indicate if the mean of each group and time value must be draw.
- **alpha**
 - an optional real. Indicate the alpha channel of the points color.
- **...**
 - optional parameters

Value

- a graphic.
plotrajeR.Trajectory.LOGIT

Description

plot LOGIT trajectory

Usage

```r
## S3 method for class 'Trajectory.LOGIT'
plotrajeR(
  Obj,
  plotcov = NULL,
  dec = 1,
  col = "black",
  Y = NULL,
  A = NULL,
  Risk = NULL,
  mean = FALSE,
  alpha = 1,
  ...
)
```

Arguments

- `Obj`: an object of class "Trajectory.LOGIT".
- `plotcov`: an optional vector or matrix with the same length as the time period. Default value is NULL.
- `dec`: an optional real. It precise the shift to draw the data points.
- `col`: an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
- `Y`: Matrix. A matrix containing the variables in the model.
- `A`: Matrix. A matrix containing the time variable data.
- `Risk`: Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
- `mean`: an optional logical. Indicate if the mean of ech group and time value must be draw.
- `alpha`: an optional real. Indicate the alpha channel of the points color.
- `...`: optional parameters

Value

a graphic.
plot Non Linear trajectory

S3 method for class 'Trajectory.NL'
plotrajeR(
 Obj,
 plotcov = NULL,
 col = "black",
 Y = NULL,
 A = NULL,
 Risk = NULL,
 mean = FALSE,
 alpha = 1,
 TCOV = NULL,
 ...
)

Arguments

- **Obj**
 - an object of class "Trajectory.LOGIT".
- **plotcov**
 - an optional vector or matrix with the same length as the time period. Default value is NULL.
- **col**
 - an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
- **Y**
 - Matrix. A matrix containing the variables in the model.
- **A**
 - Matrix. A matrix containing the time variable data.
- **Risk**
 - Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
- **mean**
 - an optional logical. Indicate if the mean of each group and time value must be draw.
- **alpha**
 - an optional real. Indicate the alpha channel of the points color.
- **TCOV**
 - Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
- **...**
 - optional parameters

Value

- a graphic.
Description

plot POIS trajectory

Usage

```r
## S3 method for class 'Trajectory.POIS'
plotrajeR(
  Obj,
  plotcov = NULL,
  dec = 0,
  col = "black",
  Y = NULL,
  A = NULL,
  Risk = NULL,
  TCOV = NULL,
  mean = FALSE,
  alpha = 1,
  ...
)
```

Arguments

- `Obj`: an object of class "Trajectory.POIS".
- `plotcov`: an optional vector or matrix with the same length as the time period. Default value is NULL.
- `dec`: an optional real. It precise the shift to draw the data points.
- `col`: an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
- `Y`: Matrix. A matrix containing the variables in the model.
- `A`: Matrix. A matrix containing the time variable data.
- `Risk`: Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
- `TCOV`: Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
- `mean`: an optional logical. Indicate if the mean of ech group and time value must be draw.
- `alpha`: an optional real. Indicate the alpha channel of the points color.
- `...`: optional parameters
Value

A graphic.

Description

plot ZIP trajectory

Usage

S3 method for class 'Trajectory.ZIP'
plotTrajeR(
 Obj,
 plotcov = NULL,
 dec = 1,
 col = "black",
 Y = NULL,
 A = NULL,
 Risk = NULL,
 TCOV = NULL,
 mean = FALSE,
 alpha = 1,
 ...
)

Arguments

Obj an object of class "Trajectory.LOGIT".
plotcov an optional vector or matrix with the same length as the time period. Default value is NULL.
dec an optional real. It precise the shift to draw the data points.
col an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
Y Matrix. A matrix containing the variables in the model.
A Matrix. A matrix containing the time variable data.
Risk Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
TCOV Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
mean an optional logical. Indicate if the mean of each group and time value must be draw.
alpha on optional real. Indicate the alpha channel of the points color.

Value
a graphic.

Description
Print method for an object of class "Trajectory.BETA".

Usage
S3 method for class 'Trajectory.BETA'
print(x, ...)

Arguments
x Trajectory's object. An object of class "Trajectory.BETA".
...
optional parameters

Value
The print of Obj.

Examples
data = read.csv(system.file("extdata", "BETA2gr.csv", package = "trajeR"))
data = as.matrix(data)
data[,2:6] = data[,2:6]*(nrow(data[,2:6])-1+0.5)/nrow(data[,2:6])
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], itermax = 50,
 degre = c(2,2), degre.phi = c(1,1), Model = "BETA", Method = "L")
sol
print.Trajectory.CNORM

Print CNORM

Description

Print method for an object of class "Trajectory.CNORM".

Usage

```r
## S3 method for class 'Trajectory.CNORM'
print(x, ...)
```

Arguments

- `x`
 Trajectory's object. An object of class "Trajectory.CNORM".

- `...`
 optional parameters

Value

The print of Obj.

Examples

```r
data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
sol
```

print.Trajectory.LOGIT

Print LOGIT

Description

Print method for an object of class "Trajectory.LOGIT".

Usage

```r
## S3 method for class 'Trajectory.LOGIT'
print(x, ...)
```

Arguments

- `x`
 Trajectory's object. An object of class "Trajectory.LOGIT".

- `...`
 optional parameters
Value

The print of Obj.

Examples

```r
data = read.csv(system.file("extdata", "LOGIT2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(1,2), Model = "LOGIT", Method = "L")
sol
```

Description

Print method for an object of class "Trajectory.NL".

Usage

```r
## S3 method for class 'Trajectory.NL'
print(x, ...)
```

Arguments

- `x`: Trajectory's object. An object of class "Trajectory.NL".
- `...`: optional parameters

Value

The print of Obj.

Description

Print method for an object of class "Trajectory.POIS".

Usage

```r
## S3 method for class 'Trajectory.POIS'
print(x, ...)
```

Arguments

- `x`: Trajectory's object. An object of class "Trajectory.POIS".
- `...`: optional parameters
Value

The print of Obj.

Examples

```r
data = read.csv(system.file("extdata", "POIS2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11],
              degre = c(2, 2), Model = "POIS", Method = "L", hessian = FALSE)
sol
```

Description

Print method for an object of class "Trajectory.ZIP".

Usage

```r
## S3 method for class 'Trajectory.ZIP'
print(x, ...)
```

Arguments

- `x`
 Trajectory's object. An object of class "Trajectory.ZIP".
- `...`
 optional parameters

Value

The print of Obj.

Examples

```r
data = read.csv(system.file("extdata", "ZIP2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11],
              degre = c(1, 2), degre.nu = c(1, 1), Model = "ZIP", Method = "L")
sol
```
propAssign

Assignment proportion

Description

Calculate the proportion of individuals in a given group. That is the ratio of the number of individuals in one group and all the individuals.

Usage

propAssign(sol, Y, A)

Arguments

sol
Trajectory’s object. An object of type Trajectory.

Y
Matrix. A matrix containing the variables in the model.

A
Matrix. A matrix containing the time variable data.

Value

A vector of real. The proportion.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
propAssign(sol, Y = data[, 2:6], A = data[, 7:11])

trajeR

Fitting longitudinal mixture models

Description

trajeR is used to fit longitudinal mixture models. It used 3 types of mixture models: LOGIT, ZIP and censored Normal.

Usage

trajeR(
Y,
A,
Risk = NULL,
TCOV = NULL,
degre = NULL,
degre.nu = 0,
degre.phi = 0,
Model,
Method = "L",
ssigma = FALSE,
ymax = max(Y, na.rm = TRUE) + 1,
ymin = min(Y, na.rm = TRUE) - 1,
hessian = TRUE,
itermax = 100,
paraminit = NULL,
ProbIRLS = TRUE,
regr = 1,
fct = NULL,
diffct = NULL,
nbvar = NULL,
gn.nl = NULL,
nls.lm.iter = 50
)

Arguments

Y Matrix. A matrix containing the variables in the model.
A Matrix. A matrix containing the time variable data.
Risk Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
TCOV Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
degre Vector of integer. The degree of every polynomial function.
degre.nu Vector of integer. The degree of all Poisson part for a ZIP model.
degre.phi Vector of integer. The degree of beta parametr for a BETA model.
Model String. The model used. The value are LOGIT for a Logit Mixture model, CNORM for a Censored Normal Mixture Model or ZIP for Zero Inflated Poisson Mixture model.
Method String. Determine the method used for find the parameters of the model. The value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation Maximization method with Iterative Weighted Least Square.
ssigma Logical. By default its value is FALSE. For the CNORM model, indicate if we want the same sigma for all normal density function.
ymax Real. For the CNORM model, indicate the maximum value of the data. It concern only the model with censored data. By default its value is the maximum value of the data plus 1.
ymin Real. For the CNORM model, indicate the minimum value of the data. It concern only the model with censored data. By default its value is the maximum value of the data minus 1.
hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If the method use is Likelihood, the hessian is calculated by inverting the Information's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function int he package MASS. If the method is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax Integer. Indicate the maximal number of iteration for optim function or for the EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial value based of the range or the standard deviation.

ProbIRLS Logical. Indicate the method to sue in the search of predictor's probability. If TRUE (by default) we use IRLS method and if FALSE we use optimization method.

refgr Integer. The number of reference group. By default is 1.

fct Function. The definition of the function f in the definition in nonlinear model.

diffct Function. The differential of the function f in the nonlinear model.

nbvar Integer. The number of variable in the nonlinear model.

ng.nl Integer. The number of group for a non linear model.

nls.lmiter Integer. In the case of non linear model, the maximum number of iterations allowed.

Details

Models for trajeR is, by default, a polynomial regression of the time value parameters for each groups. The number fo group is controlled by the integer ng. We can speccify the dege of the polynomial shape for each groups by the vector dege.

Value

return an object of class "Trajectory.LOGIT". The generic accessor functions beta, delta, theta, sd, tab, Likelihood, ng, model and method extract various useful features of the value returned by trajeR.

An object of class "Trajectory.LOGIT" is a list containing at least the following components:

beta a vector of the parameters beta.

delta a vector of the parameter delta. Only if we use time covariate.

theta a vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.

sd a vector of the standrad deviation of the parameters.

tab a matrix with all the parameters and standard deviation.

Likelihood a real with the Likelihood obtained by the parameters.

ng a integer with the number of group.

model a string with the model used.

method a string with the method used.
Examples

```r
## Not run:
load("data/dataNORM01.RData")
solL = trajeR(data[,1:5], data[,6:10], ng = 3, degree=c(2,2,2),
Model="CNORM", Method = "L", ssigma = FALSE,
        hessian = TRUE)
## End(Not run)
```

trajeR.BETA
Internal function to fit Beta regression

Description

Internal function to fit Beta regression

Usage

```r
trajeR.BETA(
    Y,
    A,
    X,
    TCOV,
    ng,
    nx,
    n,
    nbeta,
    nphi,
    nw,
    ntheta,
    period,
    degre,
    theta,
    beta,
    phi,
    delta,
    pi,
    Method,
    hessian,
    itermax,
    paraminit,
    EMIRLS,
    refgr
)
```
Arguments

Y Matrix. A matrix containing the variables in the model.
A Matrix. A matrix containing the time variable data.
X Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
TCOV Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
ng Integer. The number of groups.
x Integer. The number of covariates.
n Integer. Number of individuals.
nbeta Vector of integers. Number of beta parameters for each group.
nphi Vector of integers. Number of phi parameters for each group.
nw Integer. Number of time dependent covariate.
ntheta Vector of integers. Number of theta parameters for each group.
period Integer.
degree Vector of integer. The degree of every polynomial function.
theta Vector of real. The parameter for calculated the group membership probability.
beta Vector of real. The beta parameter.
phi Vector of real. The phi parameter.
delta Vector of real. The delta parameter.
pi Vector of real. The group membership probability.
Method String. Determine the method used for find the parameters of the model. The value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation Maximization method with Iterative Weighted Least Square.
hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If the method use is Likelihood, the hessian is calculated by inverting the Information’s Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function int he package MASS. If the method is EM or EMIWRLS, the hessian is calculated by using Louis method.
itermax Integer. Indicate the maximal number of iteration for optim function or for the EM algorithm.
paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial value based of the range or the standard deviation.
EMIRLS Boolean. True if we use EMIRLS method.
refgr Integer. The number of reference group. By default is 1.
trajeR.CNORM

Value

return a object of class Trajectory.NL

- beta - vector of the parameter beta.
- sigma - vector of the parameters sigma.
- delta - vector of the parameter delta. Only if we use time covariate.
- theta - vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.
- sd - vector of the standard deviation of the parameters.
- tab - a matrix with all the parameters and standard deviation.
- Model - a string with the model used.
- groups - a integer with the number of group.
- Names - strings with the name of the parameters.
- Method - a string with the method used.
- Size - a integer with the number of individuals.
- Likelihood - a real with the Likelihood obtained by the parameters.
- Time - a vector with the first row of time values.
- degre - a vector with the degree of the polynomial shape.

Description

Internal function to fit CNORM Model

Usage

trajeR.CNORM(
 Y, # Y matrix of continuous observations
 A, # A matrix of covariates
 X, # X matrix of predictors
 TCOV, # TCOV matrix of time covariates
 ng, # ng matrix of group indicators
 nx, # nx matrix of predictor indicators
 n, # n matrix of individual indicators
 nbeta, # nbeta matrix of beta parameters
 nw, # nw matrix of time covariate parameters
 ntheta, # ntheta matrix of theta parameters
 period, # period matrix of polynomial period
 degre, # degre matrix of polynomial degree
 theta, # theta matrix of parameters
 beta, # beta matrix of time covariate parameters
)
Arguments

Y
Matrix. A matrix containing the variables in the model.

A
Matrix. A matrix containing the time variable data.

X
Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.

TCOV
Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.

ng
Integer. The number of groups.

nx
Integer. The number of covariates.

n
Integer. Number of individuals.

nbeta
Vector of integers. Number of beta parameters for each group.

nw
Integer. Number of time dependent covariate.

ntheta
Vector of integers. Number of theta parameters for each group.

period
Integer.

degree
Vector of integer. The degree of every polynomial function.

theta
Vector of real. The parameter for calculated the group membership probability.

beta
Vector of real. The beta parameter.

sigma
Vector of real. The sigma parameter.

delta
Vector of real. The delta parameter.

pi
Vector of real. The group membership probability.

Method
String. Determine the method used for find the parameters of the model. The value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation Maximization method with Iterative Weighted Least Square.

ssigma
Logical. By default its value is FALSE. For the CNORM model, indicate if we want the same sigma for all normal density function.

ymax
Real. For the CNORM model, indicate the maximum value of the data. It concern only the model with censored data. By default its value is the maximum value of the data plus 1.
ymin

Real. For the CNORM model, indicate the minimum value of the data. It concern only the model with censored data. By default its value is the maximum value of the data minus 1.

hessian

Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If the method use is Likelihood, the hessian is calculated by inverting the Information’s Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function in the package MASS. If the method is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax

Integer. Indicate the maximal number of iteration for optim function or for the EM algorithm.

paraminit

Vector. The vector of initial parameters. By default trajeR calculate the initial value based of the range or the standard deviation.

EMIRLS

Boolean. True if we use EMIRLS method.

refgr

Integer. The number of reference group. By default is 1.

Value

return a object of class Trajectory.CNORM

- beta - vector of the parameter beta.
- sigma - vector of the parameters sigma.
- delta - vector of the parameter delta. Only if we use time covariate.
- theta - vector with the parameter theta if there exist a coavriate X that modify the probability or the probability of group membership.
- sd - vector of the standard deviation of the parameters.
- tab - a matrix with all the parameters and standard deviation.
- Model - a string with the model used.
- groups - a integer with the number of group.
- Names - strings with the name of the parameters.
- Method - a string with the method used.
- Size - a integer with the number of individuals.
- Likelihood - a real with the Likelihood obtained by the parameters.
- Time - a vector with the first row of time values.
- degre - a vector with the degree of the polynomial shape.
- min - a real with the minimum value for censored data.
- max - a real with the maximum value for censored data.
trajeR.LOGIT

Internal function to fit LOGIT Model

Description

Internal function to fit LOGIT Model

Usage

```r
trajel.LOGIT(
  Y, A, X, TCOV, ng, nx, n, nbeta, nw, ntheta, period, degre, theta, beta, delta, pi, Method, hessian, itermax, paraminit, EMIRLS, refgr
)
```

Arguments

- **Y**: Matrix. A matrix containing the variables in the model.
- **A**: Matrix. A matrix containing the time variable data.
- **X**: Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
- **TCOV**: Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
- **ng**: Integer. The number of groups.
- **nx**: Integer. The number of covariates.
- **n**: Integer. Number of individuals.
nbeta
Vector of integers. Number of beta parameters for each group.

nw
Integer. Number of time dependent covariate.

ntheta
Vector of integers. Number of theta parameters for each group.

period
Integer.

degre
Vector of integer. The degree of every polynomial function.

theta
Vector of real. The parameter for calculated the group membership probability.

beta
Vector of real. The beta parameter.

delta
Vector of real. The delta parameter.

pi
Vector of real. The group membership probability.

Method
String. Determine the method used for find the parameters of the model. The value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation Maximization method with Iterative Weighted Least Square.

hessian
Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If the method use is Likelihood, the hessian is calculated by inverting the Information’s Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the \texttt{ginv} function in \texttt{MASS} package. If the method is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax
Integer. Indicate the maximal number of iteration for \texttt{optim} function or for the EM algorithm.

paraminit
Vector. The vector of initial parameters. By default \texttt{trajeR} calculate the initial value based of the range or the standard deviation.

EMIRLS
Boolean. True if we use EMIRLS method.

refgr
Integer. The number of reference group. By default is 1.

Value

return a object of class Trajectory.LOGIT

- beta - vector of the parameter beta.
- delta - vector of the parameter delta. Only if we use time covariate.
- theta - vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.
- sd - vector of the standard deviation of the parameters.
- tab - a matrix with all the parameters and standard deviation.
- Model - a string with the model used.
- groups - a integer with the number of group.
- Names - strings with the name of the parameters.
- Method - a string with the method used.
- Size - a integer with the number of individuals.
- Likelihood - a real with the Likelihood obtained by the parameters.
- Time - a vector with the first row of time values.
- degre - a vector with the degree of the polynomial shape.
Internal function to fit Non Linear Model

Description

Internal function to fit Non Linear Model

Usage

```r
trajeR.NL(
  Y,
  A,
  X,
  TCOV,
  ng,
  nx,
  n,
  nbeta,
  nw,
  ntheta,
  period,
  degre,
  theta,
  beta,
  sigma,
  pi,
  Method,
  ssigma,
  hessian,
  itermx,
  paraminit,
  EMIRLS,
  refgr,
  fct,
  diffct,
  nls.lm.liter
)
```

Arguments

- **Y**: Matrix. A matrix containing the variables in the model.
- **A**: Matrix. A matrix containing the time variable data.
- **X**: Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
- **TCOV**: Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ng</td>
<td>Integer. The number of groups.</td>
</tr>
<tr>
<td>nx</td>
<td>Integer. The number of covariates.</td>
</tr>
<tr>
<td>n</td>
<td>Integer. Number of individuals.</td>
</tr>
<tr>
<td>nbeta</td>
<td>Vector of integers. Number of beta parameters for each group.</td>
</tr>
<tr>
<td>nw</td>
<td>Integer. Number of time dependent covariate.</td>
</tr>
<tr>
<td>ntheta</td>
<td>Vector of integers. Number of theta parameters for each group.</td>
</tr>
<tr>
<td>period</td>
<td>Integer.</td>
</tr>
<tr>
<td>dege</td>
<td>Vector of integer. The degree of every polynomial function.</td>
</tr>
<tr>
<td>theta</td>
<td>Vector of real. The parameter for calculated the group membership probability.</td>
</tr>
<tr>
<td>beta</td>
<td>Vector of real. The beta parameter.</td>
</tr>
<tr>
<td>sigma</td>
<td>Vector of real. The sigma parameter.</td>
</tr>
<tr>
<td>pi</td>
<td>Vector of real. The group membership probability.</td>
</tr>
<tr>
<td>Method</td>
<td>String. Determine the method used for find the parameters of the model.</td>
</tr>
<tr>
<td>ssigma</td>
<td>Logical. By default its value is FALSE. For the CNORM model, indicate if we</td>
</tr>
<tr>
<td>hessian</td>
<td>Logical. Indicate if we want calculate the hessian matrix. Default is FALSE.</td>
</tr>
<tr>
<td>itermax</td>
<td>Integer. Indicate the maximal number of iteration for optim function or for</td>
</tr>
<tr>
<td>paraminit</td>
<td>Vector. The vector of initial parameters. By default trajeR calculate the</td>
</tr>
<tr>
<td>EMIRLS</td>
<td>Boolean. True if we use EMIRLS method.</td>
</tr>
<tr>
<td>refgr</td>
<td>Integer. The number of reference group. By default is 1.</td>
</tr>
<tr>
<td>fct</td>
<td>Function. The definition of the function f in the definition in nonlinear</td>
</tr>
<tr>
<td>diffct</td>
<td>Function. The differential of the function f in the nonlinear model.</td>
</tr>
<tr>
<td>nls.lmiter</td>
<td>Integer. In the case of non linear model, the maximum number of iterations</td>
</tr>
</tbody>
</table>

Value

return a object of class Trajectory.NL

- beta - vector of the parameter beta.
- sigma - vector of the parameters sigma.
- delta - vector of the parameter delta. Only if we use time covariate.
• theta - vector with the parameter theta if there exist a coavriate X that modify the probability or the probability of group membership.
• sd - vector of the standard deviation of the parameters.
• tab - a matrix with all the parameters and standard deviation.
• Model - a string with the model used.
• groups - a integer with the number of group.
• Names - strings with the name of the parameters.
• Method - a string with the method used.
• Size - a integer with the number of individuals.
• Likelihood - a real with the Likelihood obtained by the parameters.
• Time - a vector with the first row of time values.
• degre - a vector with the degree of the polynomial shape.
• fct - the defintion of the function used int this model.

trajeR.POIS
Internal function to fit poisson Model

Description

Internal function to fit poisson Model

Usage

```r
trajeR.POIS(
  Y,
  A,
  X,
  TCOV,
  ng,
  nx,
  n,
  nbeta,
  nw,
  ntheta,
  period,
  degre,
  theta,
  beta,
  delta,
  pi,
  Method,
  hessian,
  itermax,
)```

Arguments

Y          Matrix. A matrix containing the variables in the model.
A          Matrix. A matrix containing the time variable data.
X          Matrix. An optional matrix that modify the probability of belong to group. By
default its value is a matrix with one column with value 1.
TCOV       Matrix. An optional matrix containing the time covariate that influence the tra-
            jectory themselves. By default its value is NULL.
ng         Integer. The number of groups.
nx         Integer. The number of covariates.
n          Integer. Number of individuals.
nbeta      Vector of integers. Number of beta parameters for each group.
nw         Integer. Number of time dependent covariate.
ntheta     Vector of integers. Number of theta parameters for each group.
period     Integer.
degree     Vector of integer. The degree of every polynomial function.
theta      Vector of real. The parameter for calculated the group membership probability.
beta       Vector of real. The beta parameter.
delta      Vector of real. The delta parameter.
pi         Vector of real. The group membership probability.
Method     String. Determine the method used for find the parameters of the model. The
            value are L for the Maximum Likelihood Estimation, EM for Expectation Max-
            imization method with quasi newton method inside, EMIWRLS for Expectation
            Maximization method with Iterative Weighted Least Square.
heessian   Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If
            the method use is Likelihood, the hessian is calculated by inverting the Informa-
            tion’s Fisher Matrix. To avoid numerically singular matrix we find the pseudo
            inverse matrix by using the ginv function int he package MASS. If the method
            is EM or EMIWRLS, the hessian is calculated by using Louis method.
itermax    Integer. Indicate the maximal number of iteration for optim function or for the
            EM algorithm.
paraminit  Vector. The vector of initial parameters. By default trajeR calculate the initial
            value based of the range or the standard deviation.
EMIRLS     Boolean. True if we use EMIRLS method.
refgr      Integer. The number of reference group. By default is 1.
**Value**

return a object of class Trajectory.Pois

- beta - vector of the parameter beta.
- delta - vector of the parameter delta. Only if we use time covariate.
- theta - vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.
- sd - vector of the standard deviation of the parameters.
- tab - a matrix with all the parameters and standard deviation.
- Model - a string with the model used.
- groups - a integer with the number of group.
- Names - strings with the name of the parameters.
- Method - a string with the method used.
- Size - a integer with the number of individuals.
- Likelihood - a real with the Likelihood obtained by the parameters.
- Time - a vector with the first row of time values.
- degre - a vector with the degree of the polynomial shape for the Poisson part.

---

**trajeR.ZIP**

*Internal function to fit ZIP Model*

**Description**

Internal function to fit ZIP Model

**Usage**

```r
trajeR.ZIP(
 Y,
 A,
 X,
 TCOV,
 ng,
 nx,
 n,
 nbeta,
 nw,
 ntheta,
 period,
 degre,
 degre.nu,
 theta,
 beta,
```

```r
...continued...
```
nu,
delta,
pi,
Method,
hessian,
itermx,
paraminit,
EMIRLS,
refgr
)

**Arguments**

Y  Matrix. A matrix containing the variables in the model.
A  Matrix. A matrix containing the time variable data.
X  Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
TCOV Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
ng  Integer. The number of groups.
nx  Integer. The number of covariates.
n  Integer. Number of individuals.
nbeta Vector of integers. Number of beta parameters for each group.
w  Integer. Number of time dependent covariate.
ntheta Vector of integers. Number of theta parameters for each group.
period Integer.
degre Vector of integer. The degree of every polynomial function.
degre.nu Vector of integer. The degree of all Poisson part for a ZIP model.
theta Vector of real. The parameter for calculated the group membership probability.
beta Vector of real. The beta parameter.
nu Vector of real. The nu parameter.
delta Vector of real. The delta parameter.
pi  Vector of real. The group membership probability.
Method String. Determine the method used for find the parameters of the model. The value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation Maximization method with Iterative Weighted Least Square.
hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If the method use is Likelihood, the hessian is calculated by inverting the Information's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function int he package MASS. If the method is EM or EMIWRLS, the hessian is calculated by using Louis method.
itermax Integer. Indicate the maximal number of iteration for optim function or for the EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial value based of the range or the standard deviation.

EMIRLS Boolean. True if we use EMIRLS method.

refgr Integer. The number of reference group. By default is 1.

Value

return a object of class Trajectory.ZIP

- beta - vector of the parameter beta.
- delta - vector of the parameter delta. Only if we use time covariate.
- theta - vector with the parameter theta if there exist a coavriate X that modify the probability or the probability of group membership.
- nu - vector of the parameters nu.
- sd - vector of the standard deviation of the parameters.
- tab - a matrix with all the parameters and standard deviation.
- Model - a string with the model used.
- groups - a integer with the number of group.
- Names - strings with the name of the parameters.
- Method - a string with the method used.
- Size - a integer with the number of individuals.
- Likelihood - a real with the Likelihood obtained by the parameters.
- Time - a vector with the first row of time values.
- degre - a vector with the degree of the polynomial shape for the Poisson part.
- degre.nu - a vector with the degree of the polynomial shape for the exceeded zero state.

trajeRAIC AIC function to an trajectory object

Description

Calculate the AIC value to an trajectory object.

Usage

trajeRAIC(sol)

Arguments

sol 'Trajectory's object. An object of type trajectory.'
Value

A real.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
trajeRBIC(sol)

trajeRBIC

BIC function to an trajectory object

Description

Calculate the BIC value to an trajectory object.

Usage

trajeRBIC(sol)

Arguments

sol

Trajectory’s object. An object of type trajectory.

Value

A real.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
sol = trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2,2), Model = "CNORM", Method = "EM")
trajeRBIC(sol)
trajeRSH

Description

Calculate the Slope Heuristic value to a list of trajectory objects.

Usage

trajeRSH(l)

Arguments

l

List. A list of objects of type trajectory.

Value

A vector of real.

Examples

data = read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data = as.matrix(data)
degre = list(c(2,2), c(1,1), c(1,2), c(2,1), c(0,0), c(0,1), c(1,0), c(0,0), c(0,2), c(2,0))
sol = list()
for (i in 1:10) {
  sol[[i]] = trajeR(Y = data[, 2:6], A = data[, 7:11],
                   degre = degre[[i]], Model = "CNORM", Method = "EM")
}
trajeRSH(sol)
Index

adequacy, 2
AvePP, 3

ConfIntT, 4
diffaitbeta, 5
fait, 5

GroupProb, 6
GroupProfiles, 7

OCC, 7

plotrajeR, 8
plotrajeR.Trajectory.BETA, 9
plotrajeR.Trajectory.CNORM, 10
plotrajeR.Trajectory.LOGIT, 11
plotrajeR.Trajectory.NL, 12
plotrajeR.Trajectory.POIS, 13
plotrajeR.Trajectory ZIP, 14
print.Trajectory.BETA, 15
print.Trajectory.CNORM, 16
print.Trajectory.LOGIT, 16
print.Trajectory.NL, 17
print.Trajectory.POIS, 17
print.Trajectory.ZIP, 18
propAssign, 19

trajeR, 19
trajeR.BETA, 22
trajeR.CNORM, 24
trajeR.LOGIT, 27
trajeR.NL, 29
trajeR.POIS, 31
trajeR.ZIP, 33
trajeRAIC, 35
trajeRBIC, 36
trajeRSH, 37