Package ‘varycoef’

June 3, 2021

Type Package
Title Modeling Spatially Varying Coefficients
Version 0.3.1
Description Implements a maximum likelihood estimation (MLE)
 method for estimation and prediction of Gaussian process-based
 spatially varying coefficient (SVC) models
 (Dambon et al. (2021a) <doi:10.1016/j.spasta.2020.100470>),
 Covariance tapering (Furrer et al. (2006) <doi:10.1198/10618606X132178>) can be applied such
 that the method scales to large data. Further, it implements a joint variable selection of the
 fixed and random effects (Dambon et al. (2021b) <arXiv:2101.01932>).
License GPL-2
URL https://github.com/jakobdambon/varycoef
BugReports https://github.com/jakobdambon/varycoef/issues
Depends R (>= 3.5.0), spam
Imports glmnet, lhs, mlr, mlrMBO, RandomFields, optimParallel (>= 0.8-1), ParamHelpers, pbapply, smoof, sp
Suggests DiceKriging, gstat, knitr, microbenchmark, parallel,
 markdown, R.rsp, spData
VignetteBuilder knitr, R.rsp
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Jakob A. Dambon [aut, cre] (<https://orcid.org/0000-0001-5855-2017>),
 Fabio Sigrist [ctb] (<https://orcid.org/0000-0002-3994-2244>),
 Reinhard Furrer [ctb] (<https://orcid.org/0000-0002-6319-2332>)
Maintainer Jakob A. Dambon <jakob.dambon@math.uzh.ch>
Repository CRAN
Date/Publication 2021-06-03 13:00:02 UTC
R topics documented:

- `check_cov_lower` 2
- `coef.SVC_mle` 3
- `cov_par` .. 4
- `fitted.SVC_mle` 4
- `fullSVC_line` 5
- `fullSVC_reggrid` 6
- `GLS_chol` .. 7
- `house` ... 9
- `IC.SVC_mle` 10
- `init_bounds_optim` 11
- `logLik.SVC_mle` 12
- `nlocs` .. 13
- `nobs.SVC_mle` 13
- `own_dist` ... 14
- `plot.SVC_mle` 15
- `predict.SVC_mle` 16
- `prep_par_output` 19
- `print.summary.SVC_mle` 20
- `print.SVC_mle` 20
- `residuals.SVC_mle` 21
- `sample_fullSVC` 21
- `Sigma_y` .. 22
- `summary.SVC_mle` 22
- `SVC_mle` .. 24
- `SVC_mle_control` 28
- `SVC_selection` 32
- `SVC_selection_control` 33
- `varycoef` ... 35

Index

37

check_cov_lower

Check Lower Bound of Covariance Parameters

Description

Ensures that the covariance parameters define a positive definite covariance matrix. It takes the vector $(\rho_1, \sigma_1^2, ..., \rho_q, \sigma_q^2, \tau^2)$ and checks if all $\rho_k > 0$, all $\sigma_k^2 \geq 0$, and $\tau^2 > 0$.

Usage

```r
check_cov_lower(cv, q)
```
coef.SVC_mle

Arguments

- **cv** (numeric(2*q+1))
 Covariance vector of SVC model.
- **q** (numeric(1))
 Integer indicating the number of SVCs.

Value

logical(1) with TRUE if all conditions above are fulfilled.

Examples

```r
# first one is true, all other are false
check_cov_lower(c(0.1, 0, 0.2, 1, 0.2), q = 2)
check_cov_lower(c(0 , 0, 0.2, 1, 0.2), q = 2)
check_cov_lower(c(0.1, 0, 0.2, 1, 0 ), q = 2)
check_cov_lower(c(0.1, 0, 0.2, -1, 0 ), q = 2)
```

coef.SVC_mle | Extract Mean Effects

Description

Method to extract the mean effects from an SVC_mle or SVC_selection object.

Usage

```r
## S3 method for class 'SVC_mle'
coef(object, ...)

## S3 method for class 'SVC_selection'
coef(object, ...)
```

Arguments

- **object** SVC_mle or SVC_selection object
- **...** further arguments

Value

named vector with mean effects, i.e. \(\mu \) from SVC_mle

Author(s)

Jakob Dambon
coV_par
 Extract Covariance Parameters Function to extract the covariance parameters from an SVC_mle or SVC_selection object.

Description
 Extract Covariance Parameters
 Function to extract the covariance parameters from an SVC_mle or SVC_selection object.

Usage
 cov_par(...)
 ## S3 method for class 'SVC_mle'
 cov_par(object, ...)
 ## S3 method for class 'SVC_selection'
 cov_par(object, ...)

Arguments
 ...
 further arguments
 object
 SVC_mle or SVC_selection object

Value
 vector with covariance parameters with the following attributes:
 - "GRF", character, describing the covariance function used for the GP, see SVC_mle_control.
 - "tapering", either NULL if no tapering is applied of the taper range.

Author(s)
 Jakob Dambon

fitted.SVC_mle
 Extract Model Fitted Values

Description
 Method to extract the fitted values from an SVC_mle object. This is only possible if save.fitted was set to TRUE in the control of the function call.
fullSVC_line

Usage

```r
## S3 method for class 'SVC_mle'
fitted(object, ...)
```

Arguments

- **object**: `SVC_mle` object
- **...**: further arguments

Value

Data frame, fitted values to given data, i.e., the SVC as well as the response and their locations

Author(s)

Jakob Dambon

fullSVC_line

Sample Function for GP-based SVC Model on Real Line

Description

Samples SVC data on a real line. The SVCs parameters and the sample locations have to be provided. The SVCs are assumed to have an Matern covariance function. The sampled model matrix contains an intercept as a first column and further covariates sampled from a standard normal. The SVCs are sampled according to their given parametrization and at respective observation locations. The error vector sampled from a nugget effect. Finally, the response vector is computed.

Usage

```r
fullSVC_line(df.pars, nugget.sd, locs)
```

Arguments

- **df.pars**: `(data.frame(p,3))` Contains the mean and covariance parameters of SVCs. The four columns must have the names "mean", "nu", "var", and "scale".
- **nugget.sd**: `(numeric(1))` Standard deviation of the nugget / error term.
- **locs**: `(numeric(n))` The vector contains the observation locations and therefore defines the number of observations to be n.
fullSVC_reggrid

Sample Function for GP-based SVC Models on Regular Grid

Description

Samples SVC data on a regular quadratic (Cartesian) grid. The SVCs have all mean 0 and an Matern covariance function is used.

Usage

fullSVC_reggrid(m, p, cov_pars, nugget, seed = 123, given.locs = NULL)

Arguments

m (numeric(1))
Number of observations in one dimension, i.e., the square root number of total number of observation locations \(n = m^2 \).

p (numeric(1))
Number of SVCs.
GLS_chol

`cov_pars` (data.frame(p,2))
Contains the covariance parameters of SVCs. The two columns must have the names "nu", "var" and "scale". These covariance parameters are then used for sampling the respective SVCs.

`nugget` (numeric(1))
Variance of the nugget / error term.

`seed` (numeric(1))
Seed set within the function for sampling.

`given.locs` (NULL or data.frame(n,2))
If NULL, the observations locations are sampled from a regular grid. Otherwise, the data.frame contains the observation locations. The data frame must have two columns of name "x" and "y". The number of observations is then the number of rows n.

Value
(data.frame(m*m, p+3))
Data frame with p+3 columns: first p are SVCs followed by a nugget and two columns for coordinates, i.e., locations. Number of observations is m*m.

Examples

```r
# number of SVC
p <- 3
# sqrt of total number of observations
m <- 20
# covariance parameters
(pars <- data.frame(
  nu = rep(0.5, p),
  var = c(0.1, 0.2, 0.3),
  scale = c(0.3, 0.1, 0.2)
))

# function to sample SVCs
sp.SVC <- fullSVC_reggrid(m = m, p = p,
  cov_pars = pars,
  nugget = nugget.var)

head(sp.SVC)
```

GLS_chol

`GLS Estimate using Cholesky Factor`
Description

Computes the GLS estimate using the formula:

\[\mu_{GLS} = (X^\top \Sigma^{-1} X)^{-1} X^\top \Sigma^{-1} y. \]

The computation is done depending on the input class of the Cholesky factor \(R \). It relies on the classical \texttt{solve} or on using \texttt{forwardsolve} and \texttt{backsolve} functions of package \texttt{spam}, see \texttt{solve}. This is much faster than computing the inverse of \(\Sigma \), especially since we have to compute the Cholesky decomposition of \(\Sigma \) either way.

Usage

\texttt{GLS_chol(R, X, y)}

\texttt{## S3 method for class 'spam.chol.NgPeyton'}
\texttt{GLS_chol(R, X, y)}

\texttt{## S3 method for class 'matrix'}
\texttt{GLS_chol(R, X, y)}

Arguments

- \(R \) (\texttt{spam.chol.NgPeyton} or \texttt{matrix}(n,n))
 Cholesky factor of the covariance matrix \(\Sigma \). If covariance tapering and sparse matrices are used, then the input is of class \texttt{spam.chol.NgPeyton}. Otherwise, \(R \) is the output of a standard \texttt{chol}, i.e., a simple matrix.
- \(X \) (\texttt{matrix}(n,p))
 Data / design matrix.
- \(y \) (\texttt{numeric}(n))
 Response vector.

Value

A \texttt{numeric}(p) vector, i.e., the mean effects.

Author(s)

Jakob Dambon

Examples

generate data
n <- 10
X <- cbind(1, 20+1:n)
y <- rnorm(n)
A <- matrix(rnorm(n^2)*2-1, ncol=n)
Sigma <- t(A) %*% A
two possibilities
using standard Cholesky decomposition
R_mat <- chol(Sigma); str(R_mat)
```
mu_mat <- GLS_chol(R_mat, X, y)
## using spam
R_spam <- chol(as.spam(Sigma)); str(R_spam)
mu_spam <- GLS_chol(R_spam, X, y)
# should be identical to the following
mu <- solve(crossprod(X, solve(Sigma, X))) %*%
crossprod(X, solve(Sigma, y))
## check
abs(mu - mu_mat)
abs(mu - mu_spam)
```

Description

A dataset containing the prices and other attributes of 25,357 houses in Lucas County, Ohio. The selling dates span years 1993 to 1998. Data taken from house (spData package) and slightly modified to a data.frame.

Usage

```
house
```

Format

A data frame with 25357 rows and 25 variables:

- **price** (integer) selling price, in US dollars
- **yrbuilt** (integer) year the house was built
- **stories** (factor) levels are "one", "bilevel", "multilvl", "one+half", "two", "two+half", "three"
- **TLA** (integer) total living area, in square feet.
- **wall** (factor) levels are "stucdrvt", "ccbtile", "metlvnyl", "brick", "stone", "wood", "partbrk"
- **beds, baths, halfbaths** (integer) number of corresponding rooms / facilities.
- **frontage, depth** dimensions of the lot. Unit is feet.
- **garage** (factor) levels are "no garage", "basement", "attached", "detached", "carport"
- **garagesqft** (integer) garage area, in square feet. If garage == "no garage", then garagesqft == 0.
- **rooms** (integer) number of rooms
- **lotsize** (integer) area of lot, in square feet
- **sdate** (Date) selling date, in format yyyy-mm-dd
- **avalue** (int) appraised value
- **long, lat** (numeric) location of houses. Longitude and Latitude are given in CRS(+init=epsg:2834), the Ohio North State Plane. Units are meters.
IC.SVC_mle

Source

IC.SVC_mle Conditional Akaike’s and Bayesian Information Criteria

Description
Methods to calculate information criteria for SVC_mle objects. Currently, two are supported: the conditional Akaike’s Information Criteria \(cAIC = \frac{-2}{\text{likelihood}} + 2 \times (\text{edof} + df) \) and the Bayesian Information Criteria \(BIC = \frac{-2}{\text{likelihood}} + \log(n) \times \text{npar} \). Note that the Akaike’s Information Criteria is of the corrected form, that is: \(\text{edof} \) is the effective degrees of freedom which is derived as the trace of the hat matrices and \(df \) is the degree of freedoms with respect to mean parameters.

Usage

```r
## S3 method for class 'SVC_mle'
BIC(object, ...)

## S3 method for class 'SVC_mle'
AIC(object, conditional = "BW", ...)
```

Arguments

- `object` SVC_mle object
- `...` further arguments
- `conditional` string. If `conditional = "BW"`, the conditional AIC is calculated.

Value

numeric, value of information criteria

Author(s)

Jakob Dambon
Setting of Optimization Bounds and Initial Values

Description

Sets bounds and initial values for optim by extracting potentially given values from SVC_mle_control and checking them, or calculating them from given data. See Details.

Usage

init_bounds_optim(control, p, q, id_obj, med_dist, y_var, OLS_mu)

Arguments

control (SVC_mle_control output, i.e. list)

p (numeric(1))
Number of fixed effects

q (numeric(1))
Number of SVCs

id_obj (numeric(2*q*1+q))
Index vector to identify the arguments of objective function.

med_dist (numeric(1))
Median distance between observations

y_var (numeric(1))
Variance of response y

OLS_mu (numeric(p))
Coefficient estimates of ordinary least squares (OLS).

Details

If values are not provided, then they are set in the following way. Let \(d \) be the median distance med_dist, let \(s_y^2 \) be the variance of the response y_var, and let \(b_j \) be the OLS coefficients of the linear model. The computed values are given in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower bound</th>
<th>Initial Value</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>(\frac{d}{1000})</td>
<td>(\frac{d}{4})</td>
<td>(10d)</td>
</tr>
<tr>
<td>Variance</td>
<td>0</td>
<td>(\frac{s_y^2}{q+1})</td>
<td>(10s_y^2)</td>
</tr>
<tr>
<td>Nugget</td>
<td>(10^{-6})</td>
<td>(\frac{s_y^2}{q+1})</td>
<td>(10s_y^2)</td>
</tr>
<tr>
<td>Mean (j)</td>
<td>(-\text{Inf})</td>
<td>(b_j)</td>
<td>\text{Inf}</td>
</tr>
</tbody>
</table>

Value

A list with three entries: lower, init, and upper.
logLik.SVC_mle

Author(s)
Jakob Dambon

logLik.SVC_mle
Extract the Likelihood

Description
Method to extract the computed (penalized) log (profile) Likelihood from an SVC_mle object.

Usage
S3 method for class 'SVC_mle'
logLik(object, ...)

Arguments

object SVC_mle object
...
further arguments

Value
an object of class logLik with attributes

- "penalized", logical, if the likelihood (FALSE) or some penalized likelihood (TRUE) was optimized.
- "profileLik", logical, if the optimization was done using the profile likelihood (TRUE) or not.
- "nobs", integer of number of observations
- "df", integer of how many parameters were estimated. **Note:** This includes only the covariance parameters if the profile likelihood was used.

Author(s)
Jakob Dambon
nlocs

Extract Number of Unique Locations Function to extract the number of unique locations in the data set used in an MLE of the SVC_mle object.

Description

Extract Number of Unique Locations
Function to extract the number of unique locations in the data set used in an MLE of the SVC_mle object.

Usage

nlocs(object)

Arguments

object SVC_mle object

Value

integer with the number of unique locations

Author(s)

Jakob Dambon

nobs.SVC_mle

Extract Number of Observations

Description

Method to extract the number of observations used in MLE for an SVC_mle object.

Usage

S3 method for class 'SVC_mle'

nobs(object, ...)

Arguments

object SVC_mle object

... further arguments
own_dist

Value

an integer of number of observations

Author(s)

Jakob Dambon

Description

Computes (Cross-) Distances

Usage

own_dist(x, y = NULL, taper = NULL, ...)

Arguments

x (matrix)
Matrix containing locations

y (NULL or matrix)
If NULL, computes the distances between x. Otherwise, computes cross-distances, i.e., pair-wise distances between rows of x and y.

taper (NULL or numeric(1))
If NULL, all distances are considered. Otherwise, only distances shorter than taper are used. Hence the output will be a sparse matrix of type spam.

... Further arguments for either dist or nearest.dist.

Value

A matrix or spam object.
Description

Method to plot the residuals from an `SVC_mle` object. For this, `save.fitted` has to be `TRUE` in `SVC_mle_control`.

Usage

```r
## S3 method for class 'SVC_mle'
plot(x, which = 1:2, ...)
```

Arguments

- `x`: (SVC_mle)
- `which`: (numeric)
 - A numeric vector and subset of 1:2 indicating which of the 2 plots should be plotted.
- `...`: further arguments

Value

A maximum 2 plots
- Tukey-Anscombe plot, i.e. residuals vs. fitted
- QQ-plot

Author(s)

Jakob Dambon

See Also

`legend SVC_mle`

Examples

```r
## ---- toy example ----
## sample data
# setting seed for reproducibility
set.seed(123)
m <- 7
# number of observations
n <- m*m
# number of SVC
p <- 3
# sample data
```
y <- rnorm(n)
X <- matrix(rnorm(n*p), ncol = p)
locations on a regular m-by-m-grid
locs <- expand.grid(seq(0, 1, length.out = m),
 seq(0, 1, length.out = m))

preparing for maximum likelihood estimation (MLE)
controls specific to MLE
control <- SVC_mle_control(
 # initial values of optimization
 init = rep(0.1, 2*p+1),
 # using profile likelihood
 profileLik = TRUE
)

controls specific to optimization procedure, see help(optim)
opt.control <- list(
 # number of iterations (set to one for demonstration sake)
 maxit = 1,
 # tracing information
 trace = 6
)

starting MLE
fit <- SVC_mle(y = y, X = X, locs = locs,
 control = control,
 optim.control = opt.control)

output: convergence code equal to 1, since maxit was only 1
summary(fit)

plot residuals
only QQ-plot
plot(fit, which = 2)

two plots next to each other
oldpar <- par(mfrow = c(1, 2))
plot(fit)
par(oldpar)

predict.SVC_mle

Prediction of SVCs (and response variable)

Description

Prediction of SVCs (and response variable)
Usage

S3 method for class 'SVC_mle'
predict(
 object,
 newlocs = NULL,
 newX = NULL,
 newW = NULL,
 compute.y.var = FALSE,
 ...
)

Arguments

object (SVC_mle)
 Model obtained from SVC_mle function call.
newlocs (NULL or matrix(n.new,2))
 If NULL, then function uses observed locations of model to estimate SVCs. Otherwise, these are the new locations the SVCs are predicted for.
newX (NULL or matrix(n.new,q))
 If provided (together with newW), the function also returns the predicted response variable.
newW (NULL or matrix(n.new,p))
 If provided (together with newX), the function also returns the predicted response variable.
compute.y.var (logical(1))
 If TRUE and the response is being estimated, the predictive variance of each estimate will be computed.
... further arguments

Value

The function returns a data frame of n.new rows and with columns

- SVC_1,...,SVC_p: the predicted SVC at locations newlocs.
- y.pred, if newX and newW are provided
- y.var, if newX and newW are provided and compute.y.var is set to TRUE.
- loc_x, loc_y, the locations of the predictions

Author(s)

Jakob Dambon

References

See Also

SVC_mle

Examples

```r
## ---- toy example ----
## sample data
# setting seed for reproducibility
set.seed(123)
m <- 7
# number of observations
n <- m*m
# number of SVC
p <- 3
# sample data
y <- rnorm(n)
X <- matrix(rnorm(n*p), ncol = p)
# locations on a regular m-by-m-grid
locs <- expand.grid(seq(0, 1, length.out = m),
                    seq(0, 1, length.out = m))

## preparing for maximum likelihood estimation (MLE)
# controls specific to MLE
control <- SVC_mle_control(
    # initial values of optimization
    init = rep(0.1, 2*p+1),
    # lower bound
    lower = rep(1e-6, 2*p+1),
    # using profile likelihood
    profileLik = TRUE
)
# controls specific to optimization procedure, see help(optim)
opt.control <- list(
    # number of iterations (set to one for demonstration sake)
    maxit = 1,
    # tracing information
    trace = 6
)

## starting MLE
fit <- SVC_mle(y = y, X = X, locs = locs,
               control = control,
               optim.control = opt.control)

## output: convergence code equal to 1, since maxit was only 1
summary(fit)

## prediction
# new location
newlocs <- matrix(0.5, ncol = 2, nrow = 2)
```
new data
X.new <- matrix(rnorm(2*p), ncol = p)

predicting SVCs
predict(fit, newlocs = newlocs)

predicting SVCs and calculating response
predict(fit, newlocs = newlocs,
 newX = X.new, newW = X.new)

predicting SVCs, calculating response and predictive variance
predict(fit, newlocs = newlocs,
 newX = X.new, newW = X.new,
 compute.y.var = TRUE)

prep_par_output Preparation of Parameter Output

Description
Prepares and computes the ML estimates and their respective standard errors.

Usage
prep_par_output(output_par, Sigma_final, Rstruct, profileLik, X, y, H, q)

Arguments
output_par (numeric)
Found optimal value of optim.

Sigma_final (spam or matrix(n,n))
Covariance matrix Sigma of SVC under final covariance parameters.

Rstruct (NULL or spam.chol.NgPeyton)
If covariance tapering is used, the Cholesky factor has been calculated previ-
ously and can be used to efficiently update the Cholesky factor of Sigma_final,
which is an spam object.

profileLik (logical(1))
Indicates if optimization has been conducted over full or profile likelihood.

X (matrix(n,p)) Design matrix

y (numeric(p)) Response vector

H (NULL or matrix) Hessian of MLE

q (numeric(1)) Number of SVC

Value
A list with two data.frame. Each contains the estimated parameters with their standard errors of
the fixed and random effects, respectively.
print.SVC_mle

Printing Method for summary.SVC_mle

Description

Printing Method for summary.SVC_mle

Usage

```r
## S3 method for class 'summary.SVC_mle'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

Arguments

- `x` *summary.SVC_mle*
- `digits` the number of significant digits to use when printing.
- `...` further arguments

Value

The printed output of the summary in the console.

See Also

- `summary.SVC_mle`
- `SVC_mle`

print.SVC_mle

Print Method for SVC_mle

Description

Method to print an SVC_mle object.

Usage

```r
## S3 method for class 'SVC_mle'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

Arguments

- `x` *SVC_mle* object
- `digits` (numeric) Number of digits to be plotted.
- `...` further arguments

Author(s)

Jakob Dambon
residuals.SVC_mle

Extract Model Residuals

Description
Method to extract the residuals from an SVC_mle object. This is only possible if save.fitted was set to TRUE.

Usage

```r
## S3 method for class 'SVC_mle'
residuals(object, ...)
```

Arguments

- `object`: SVC_mle object
- `...`: further arguments

Value

(numeric(n)) Residuals of model

Author(s)

Jakob Dambon

sample_fullSVC

Sample Function for GP-based SVC Model for Given Locations

Description
Samples SVC data at given locations. The SVCs parameters and the covariance function have to be provided. The sampled model matrix contains an intercept as a first column and further covariates sampled from a standard normal. The SVCs are sampled according to their given parametrization and at respective observation locations. The error vector sampled from a nugget effect. Finally, the response vector is computed.

Usage

```r
sample_fullSVC(
  df.pars,
  nugget.sd,
  locs,
  cov.name = c("exp", "sph", "mat32", "mat52", "wend1", "wend2")
)
```
Arguments

- **df.pars** (data.frame(p,3))
 Contains the mean and covariance parameters of SVCs. The three columns must have the names "mean", "var", and "scale".

- **nugget.sd** (numeric(1))
 Standard deviation of the nugget / error term.

- **locs** (numeric(n) or matrix(n,d))
 The numeric vector or matrix contains the observation locations and therefore defines the number of observations to be n. For a vector, we assume locations on the real line, i.e., d = 1.

- **cov.name** (character(1))
 Character defining the covariance function, c.f. SVC_mle_control.

Value

list
Returns a list with the response y, model matrix X, a matrix beta containing the sampled SVC at given locations, a vector eps containing the error, and a matrix locs containing the original locations.

Examples

```r
set.seed(123)
# SVC parameters
(df.pars <- data.frame(
  var = c(2, 1),
  scale = c(3, 1),
  mean = c(1, 2))
# nugget standard deviation
tau <- 0.5
# sample locations
s <- sort(runif(500, min = 0, max = 10))
SVCdata <- sample_fullSVC(
  df.pars = df.pars, nugget.sd = tau, locs = s, cov.name = "mat32"
)
```

Sigma_y
Covariance Matrix of GP-based SVC Model

Description

Builds the covariance matrix of y (p. 6, Dambon et al. (2021) doi: [10.1016/j.spasta.2020.100470](https://doi.org/10.1016/j.spasta.2020.100470)) for a given set of covariance parameters and other, pre-defined objects (like the outer-products, covariance function, and, possibly, a taper matrix).
Usage

Sigma_y(x, cov_func, outer.W, taper = NULL)

Arguments

x (numeric(2q+1))
Non negative vector containing the covariance parameters in the following order: \(\rho_1, \sigma^2_1, \cdots, \rho_q, \sigma^2_q, \tau^2 \). Note that the odd entries, i.e., the ranges and the nugget variance, have to be greater than 0, otherwise the covariance matrix is not well-defined (singularities or not-invertible).

cov_func (function)
A covariance function that works on the pre-defined distance matrix \(d \). It takes a numeric vector as an input, the first entry being the range, the second being the variance (also called partial sill). Usually, it is defined as, e.g.: function(pars) spam::cov.exp(d, pars) or any other covariance function defined for two parameters.

outer.W (list(q))
A list of length \(q \) containing the outer products of the random effect covariates in a lower triangular, (possibly sparse) matrix. If tapering is applied, the list entries, i.e., the outer products have to be given as spam objects.

taper (NULL or spam)
If covariance tapering is applied, this argument contains the taper matrix, which is a spam object. Otherwise, it is NULL.

Value

Returns a positive-definite covariance matrix \(y \), which is needed in the MLE. Specifically, a Cholesky Decomposition is applied on the covariance matrix.

Author(s)

Jakob Dambon

References

Examples

locations
locs <- 1:6
random effects covariates
W <- cbind(rep(1, 6), 5:10)
distance matrix with and without tapering
d <- as.matrix(dist(locs))
distance matrix with and without tapering
tap_dist <- 2
summary.SVC_mle

Description

Method to construct a summary.SVC_mle object out of a SVC_mle object.

Usage

```r
## S3 method for class 'SVC_mle'
summary(object, ...)
```

Arguments

- `object` SVC_mle object
- `...` further arguments

Value

object of class summary.SVC_mle with summarized values of the MLE.

Author(s)

Jakob Dambon

See Also

SVC_mle
SVC_mle

MLE of SVC model

Description

Conducts a maximum likelihood estimation (MLE) for a Gaussian process-based SVC model as described in Dambon et al. (2021) doi: 10.1016/j.spasta.2020.100470. More specifically, the model is defined as:

\[
y(s) = X\mu + W\eta(s) + \epsilon(s)
\]

where:

- \(y \) is the response (vector of length \(n \))
- \(X \) is the data matrix for the fixed effects covariates. The dimensions are \(n \) times \(p \). This leads to \(p \) fixed effects.
- \(\mu \) is the vector containing the fixed effects
- \(W \) is the data matrix for the SVCs modeled by GPs. The dimensions are \(n \) times \(q \). This leads to \(q \) SVCs in the model.
- \(\eta \) are the SVCs represented by a GP.
- \(\epsilon \) is the nugget effect

The MLE is an numeric optimization that runs `optim` or (if parallelized) `optimParallel`.

Usage

```r
SVC_mle(...)  
## Default S3 method:  
SVC_mle(y, X, locs, W = NULL, control = NULL, optim.control = list(), ...)  
## S3 method for class 'formula'  
SVC_mle(  
  formula,  
  data,  
  RE_formula = NULL,  
  locs,  
  control,  
  optim.control = list(),  
  ...  
)
```

Arguments

... further arguments

y (numeric(n))
Response vector.

X (matrix(n,p))
Design matrix. Intercept has to be added manually.

locs (matrix(n,d))
Locations in a d-dimensional space. May contain multiple observations at single location.

W (NULL or matrix(n,q))
If NULL, the same matrix as provided in X is used. This fits a full SVC model, i.e., each covariate effect is modeled with a mean and an SVC. In this case we have p = q. If optional matrix W is provided, SVCs are only modeled for covariates within matrix W.

control (list)
Control parameters given by SVC_mle_control.

optim.control (list)
Control arguments for optimization function, see Details in optim.

formula Formula describing the fixed effects in SVC model. The response, i.e. LHS of the formula, is not allowed to have functions such as sqrt() or log().

data data frame containing the observations

RE_formula Formula describing the random effects in SVC model. Only RHS is considered. If NULL, the same RHS of argument formula for fixed effects is used.

Value

Object of class SVC_mle if control$extract_fun = FALSE, meaning that a MLE has been conducted. Otherwise, if control$extract_fun = TRUE, the function returns a list with two entries:

- obj.fun: the objective function used in the optimization
- args: the arguments to evaluate the objective function.

For further details, see description of SVC_mle_control.

Author(s)

Jakob Dambon

References

See Also

predict.SVC_mle
Examples

```r
## ---- toy example ----
## sample data
# setting seed for reproducibility
set.seed(123)

m <- 7
# number of observations
n <- m*m
# number of SVC
p <- 3
# sample data
y <- rnorm(n)
X <- matrix(rnorm(n*p), ncol = p)
# locations on a regular m-by-m-grid
locs <- expand.grid(seq(0, 1, length.out = m),
                    seq(0, 1, length.out = m))

## preparing for maximum likelihood estimation (MLE)
# controls specific to MLE
control <- SVC_mle_control(
    # initial values of optimization
    init = rep(0.1, 2*p+1),
    # lower bound
    lower = rep(1e-6, 2*p+1),
    # using profile likelihood
    profileLik = TRUE
)

# controls specific to optimization procedure, see help(optim)
opt.control <- list(
    # number of iterations (set to one for demonstration sake)
    maxit = 1,
    # tracing information
    trace = 6
)

## starting MLE
fit <- SVC_mle(y = y, X = X, locs = locs,
               control = control,
               optim.control = opt.control)
class(fit)

## output: convergence code equal to 1, since maxit was only 1
summary(fit)

## extract the optimization arguments, including objective function
control$extract_fun <- TRUE
opt <- SVC_mle(y = y, X = X, locs = locs,
               control = control)

# objective function and its arguments of optimization
class(opt$obj_fun)
```
class(opt$args)

single evaluation with initial value
do.call(opt$obj_fun,
 c(list(x = control$init), opt$args))

---- real data example ----
require(sp)
get data set
data("meuse", package = "sp")

construct data matrix and response, scale locations
y <- log(meuse$cadmium)
X <- model.matrix(~1+dist+lime+elev, data = meuse)
locs <- as.matrix(meuse[, 1:2])/1000

starting MLE
the next call takes a couple of seconds
fit <- SVC_mle(y = y, X = X, locs = locs,
 # has 4 fixed effects, but only 3 random effects (SVC)
 # elev is missing in SVC
 W = X[, 1:3],
 control = SVC_mle_control(
 # initial values for 3 SVC
 # 7 = (3 * 2 covariance parameters + nugget)
 init = c(rep(c(0.4, 0.2), 3), 0.2),
 profileLik = TRUE
))

summary and residual output
summary(fit)
plot(fit)

predict
new locations
newlocs <- expand.grid(
 x = seq(min(locs[, 1]), max(locs[, 1]), length.out = 30),
 y = seq(min(locs[, 2]), max(locs[, 2]), length.out = 30))
predict SVC for new locations
SVC <- predict(fit, newlocs = as.matrix(newlocs))
visualization
sp.SVC <- SVC
coordinates(sp.SVC) <- ~loc_1+loc_2
spplot(sp.SVC, colorkey = TRUE)
Description

Function to set up control parameters for \texttt{SVC} \texttt{mle}. In the following, we assume the GP-based SVC model to have \(q \) GPs which model the SVCs and \(p \) fixed effects.

Usage

\texttt{SVC_mle_control(...)}

\texttt{SVC_mle_control(object, ...)}

Default S3 method:

\begin{verbatim}
SVC_mle_control(
 cov.name = c("exp", "sph", "mat32", "mat52", "wend1", "wend2"),
 tapering = NULL,
 parallel = NULL,
 init = NULL,
 lower = NULL,
 upper = NULL,
 save.fitted = TRUE,
 profileLik = FALSE,
 mean.est = c("GLS", "OLS"),
 pc.prior = NULL,
 extract_fun = FALSE,
 hessian = TRUE,
 dist = list(method = "euclidean"),
 ...
)
\end{verbatim}

S3 method for class 'SVC_mle'

\texttt{SVC_mle_control(object, ...)}

Arguments

\begin{itemize}
 \item \texttt{...} Further Arguments yet to be implemented
 \item \texttt{cov.name} (character(1)) Name of the covariance function of the GPs. Currently, the following are implemented: "exp" for the exponential, "sph" for spherical, "mat32" and "mat52" for Matern class covariance functions with smoothness 3/2 or 5/2, as well as "wend1" and "wend2" for Wendland class covariance functions with kappa 1 or 2.
 \item \texttt{tapering} (NULL or numeric(1)) If \texttt{NULL}, no tapering is applied. If a scalar is given, covariance tapering with this taper range is applied, for all Gaussian processes modeling the SVC. Only defined for Matern class covariance functions, i.e., set \texttt{cov.name} either to "exp", "mat32", or "mat52".
 \item \texttt{parallel} (NULL or list) If \texttt{NULL}, no parallelization is applied. If cluster has been established, define arguments for parallelization with a list, see documentation of \texttt{optimParallel}.
\end{itemize}

See Examples.
init (NULL or numeric(2q+1+p*as.numeric(profileLik)))
Initial values for optimization procedure. If NULL is given, an initial vector is calculated (see Details). Otherwise, the vector is assumed to consist of q-times (alternating) range and variance, the nugget variance and if profileLik = TRUE p mean effects.

lower (NULL or numeric(2q+1+p*as.numeric(profileLik)))
Lower bound for init in optim. Default NULL calculates the lower bounds (see Details).

upper (NULL or numeric(2q+1+p*as.numeric(profileLik)))
Upper bound for init in optim. Default NULL calculates the upper bounds (see Details).

save.fitted (logical(1))
If TRUE, calculates the fitted values and residuals after MLE and stores them. This is necessary to call residuals and fitted methods afterwards.

profileLik (logical(1))
If TRUE, MLE is done over profile Likelihood of covariance parameters.

mean.est (character(1))
If profileLik = TRUE, the means have to be estimated seperately for each step. "GLS" uses the generalized least square estimate while "OLS" uses the ordinary least squares estimate.

pc.prior (NULL or numeric(4))
If numeric vector is given, penalized complexity priors are applied. The order is \(\rho_0, \alpha_\rho, \sigma_0, \alpha_\sigma\) to give some prior believes for the range and the standard deviation of GPs, such that \(P(\rho < \rho_0) = \alpha_\rho, P(\sigma > \sigma_0) = \alpha_\sigma\). This regulates the optimization process. Currently, only supported for GPs with of Matérn class covariance functions. Based on the idea by Fulgstad et al. (2018) doi: 10.1080/01621459.2017.1415907.

extract_fun (logical(1))
If TRUE, the function call of SVC_mle stops before the MLE and gives back the objective function of the MLE as well as all used arguments. If FALSE, regular MLE is conducted.

hessian (logical(1))
If TRUE, Hessian matrix is computed, see optim. This required to give the standard errors for covariance parameters and to do a Wald test on the variances, see summary.SVC_mle.

dist (list)
List containing the arguments of dist or nearest.dist. This controls the method of how the distances and therefore dependency structures are calculated. The default gives Euclidean distances in a \(d\)-dimensional space. Further editable arguments are \(p, miles, R\), see respective help files of dist or nearest.dist.

object (SVC_mle)
The function then extracts the control settings from the function call used to compute in the given SVC_mle object.
Details

If not provided, the initial values as well as the lower and upper bounds are calculated given the provided data. In particular, we require the median distance between observations, the variance of the response and, the ordinary least square (OLS) estimates, see \texttt{init_bounds_optim}.

The argument \texttt{extract_fun} is useful, when one wants to modify the objective function. Further, when trying to parallelize the optimization, it is useful to check whether a single evaluation of the objective function takes longer than 0.05 seconds to evaluate, cf. Gerber and Furrer (2019) doi: 10.32614/RJ2019030. Platform specific issues can be sorted out by the user by setting up their own optimization.

Value

A list with which \texttt{SVC_mle} can be controlled.

Author(s)

Jakob Dambon

See Also

\texttt{SVC_mle}

Examples

```r
control <- SVC_mle_control(init = rep(0.3, 10))
# or
control <- SVC_mle_control()
control$init <- rep(0.3, 10)

# Code for setting up parallel computing
require(parallel)
# exchange number of nodes (1) for detectCores()-1 or appropriate number
cl <- makeCluster(1, setup_strategy = "sequential")
clusterEvalQ(cl = cl,
  {library(spam)
   library(varycoef))
# use this list for parallel argument in SVC_mle_control
parallel.control <- list(cl = cl, forward = TRUE, loginfo = TRUE)
# SVC_mle goes here ...
# DO NOT FORGET TO STOP THE CLUSTER!
stopCluster(cl); rm(cl)
```
SVC_selection

SVC Model Selection

Description

This function implements the variable selection for Gaussian process-based SVC models using a penalized maximum likelihood estimation (PMLE, Dambon et al., 2021, <arXiv:2101.01932>). It jointly selects the fixed and random effects of GP-based SVC models.

Usage

SVC_selection(obj.fun, mle.par, control, ...)

Arguments

obj.fun (SVC_obj_fun)
Function of class SVC_obj_fun. This is the output of SVC_mle with the SVC_mle_control parameter extract_fun set to TRUE. This objective function comprises of the whole SVC model on which the selection should be applied.

mle.par (numeric(2*q+1))
Numeric vector with estimated covariance parameters of unpenalized MLE.

control (list)
List of control parameters for variable selection. Output of SVC_selection_control.

...
Further arguments.

Value

Returns an object of class SVC_selection. It contains parameter estimates under PMLE and the optimization as well as choice of the shrinkage parameters.

Author(s)

Jakob Dambon

References

SVC_selection_control

SVC Selection Parameters

Description

Function to set up control parameters for `SVC_selection`. The underlying Gaussian Process-based SVC model is defined in `SVC_mle`. `SVC_selection` then jointly selects fixed and random effects of the GP-based SVC model using a penalized maximum likelihood estimation (PMLE). In this function, one can set the parameters for the PMLE and its optimization procedures (Dambon et al., 2021, <arXiv:2101.01932>).

Usage

```r
SVC_selection_control(
  IC.type = c("BIC", "cAIC_BW", "cAIC_VB"),
  method = c("grid", "MBO"),
  r.lambda = c(1e-10, 10),
  n.lambda = 10L,
  n.init = 10L,
  n.iter = 10L,
  CD.conv = list(N = 20L, delta = 1e-06, logLik = TRUE),
  hessian = FALSE,
  adaptive = FALSE,
  parallel = NULL,
  optim.args = list()
)
```

Arguments

- `IC.type` (character(1))
 Select Information Criterion.

- `method` (character(1))
 Select optimization method for lambdas, i.e., shrinkage parameters. Either model-based optimization (MBO, Bischl et al., 2017 <arXiv:1703.03373>) or over grid.

- `r.lambda` (numeric(2))
 Range of lambdas, i.e., shrinkage parameters.

- `n.lambda` (numeric(1))
 If grid method is selected, number of lambdas per side of grid.

- `n.init` (numeric(1))
 If MBO method is selected, number of initial values for surrogate model.

- `n.iter` (numeric(1))
 If MBO method is selected, number of iteration steps of surrogate models.

- `CD.conv` (list(3))
 List containing the convergence conditions, i.e., first entry is the maximum number of iterations, second value is the relative change necessary to stop iteration,
third is logical to toggle if relative change in log likelihood (TRUE) or rather the parameters themselves (FALSE) is the criteria for convergence.

hessian

(logical(1))

If TRUE, Hessian will be computed for final model.

adaptive

(logical(1))

If TRUE, adaptive LASSO is executed, i.e., the shrinkage parameter is defined as $\lambda_j := \lambda / |\theta_j|$.

parallel

(list)

List with arguments for parallelization, see documentation of `optimParallel`.

optim.args

(list)

List of further arguments of `optimParallel`, such as the lower bounds.

Value

A list of control parameters for SVC selection.

Author(s)

Jakob Dambon

References

Examples

```r
# Initializing parameters and switching logLik to FALSE
selection_control <- SVC_selection_control(
  CD.conv = list(N = 20L, delta = 1e-06, logLik = FALSE))

# or
selection_control <- SVC_selection_control()
selection_control$CD.conv$logLik <- FALSE
```
Description

This package offers functions to estimate and predict Gaussian process-based spatially varying coefficient (SVC) models. Briefly described, one generalizes a linear regression equation such that the coefficients are no longer constant, but have the possibility to vary spatially. This is enabled by modeling the coefficients using Gaussian processes with (currently) either an exponential or spherical covariance function. The advantages of such SVC models are that they are usually quite easy to interpret, yet they offer a very high level of flexibility.

Estimation and Prediction

The ensemble of the function `SVC_mle` and the method `predict` estimates the defined SVC model and gives predictions of the SVC as well as the response for some pre-defined locations. This concept should be rather familiar as it is the same for the classical regression (`lm`) or local polynomial regression (`loess`), to name a couple. As the name suggests, we are using a maximum likelihood estimation (MLE) approach in order to estimate the model. The predictor is obtained by the empirical best linear unbiased predictor. A detailed tutorial with examples is given in a vignette; call `vignette("example",package = "varycoef")`. We also refer to the original article Dambon et al. (2021a) which lays the methodological foundation of this package.

With the before mentioned `SVC_mle` function one gets an object of class `SVC_mle`. And like the method `predict` for predictions, there are several more methods in order to diagnose the model, see `methods(class = "SVC_mle")`.

Variable Selection

As of version 0.3.0 of varycoef, a joint variable selection of both fixed and random effect of the Gaussian process-based SVC model is implemented. It uses a penalized maximum likelihood estimation (PMLE) which is implemented via a gradient descent. The estimation of the shrinkage parameter is available using a model-based optimization (MBO). Here, we use the framework by Bischl et al. (2017). The methodological foundation of the PMLE is described in Dambon et al. (2021b).

Author(s)

Jakob Dambon

References

Examples

vignette("manual", package = "varycoef")
methods(class = "SVC_mle")
Index

* datasets
 house, 9

AIC.SVC_mle (IC.SVC_mle), 10
BIC.SVC_mle (IC.SVC_mle), 10

check_cov_lower, 2
cocl, 8
coeff.SVC_mle, 3
coeff.SVC_selection (coeff.SVC_mle), 3
cov_par, 4
dist, 14, 30

fitted, 30
fitted.SVC_mle, 4
fullSVC_line, 5
fullSVC_regrid, 6

GLS_chol, 7

house, 9, 9

IC.SVC_mle, 10
init_bounds_optim, 11, 31

legend, 15
lm, 35
loess, 35
logLik.SVC_mle, 12

nearest.dist, 14, 30
nlocs, 13
nobs.SVC_mle, 13

optim, 11, 19, 25, 26, 30
optimParallel, 25, 29, 34
own_dist, 14

plot.SVC_mle, 15
predict.SVC_mle, 16, 26

prep_par_output, 19
print.summary.SVC_mle, 20
print.SVC_mle, 20

residuals, 30
residuals.SVC_mle, 21

sample_fullSVC, 21
Sigma_y, 22
solve, 8
spam, 14, 23
summary.SVC_mle, 20, 24, 30
SVC_mle, 3–5, 10, 12, 13, 15, 17, 18, 20, 21,
24, 25, 29–33, 35
SVC_mle_control, 4, 11, 15, 22, 26, 28, 32
SVC_selection, 3, 4, 32, 33
SVC_selection_control, 32, 33

varycoef, 35