
Using the vennLasso Package

Jared Huling

2020-06-02

Contents

vennLasso Intro 1

Model Setup . 1
Borrowing Strength Across Subpopulations via Hierarchical Importance 2
Loss Function for Hierarchical Selection . 3

Using the vennLasso Package 4

Installation . 4
An Example with Simulated Data . 4

Cross Validation for Tuning Parameter Selection . 7
Confidence Intervals Using the Adaptive Lasso . 8

References 8

vennLasso Intro

The vennLasso package is an implementation of the methods proposed in Huling et al. (2018) https:
//doi.org/10.1111/biom.12769. The underlying methodology is motivated by the need to address population
heterogeneity in hospital system-wide risk modeling applications, however it can be used in a wide variety
of settings. It is useful for high-dimensional modeling scenarios where heterogeneity is defined by several
binary factors which stratify the population into multiple subpopulations. For example, vennLasso can be
used in a hospital-wide risk modeling application if covariate effects in risk models differ for subpopulations
of patients with different chronic conditions. Here the chronic conditions are the binary stratifying factors.
The vennLasso provides computation for a variable selection method which yields variable selection patterns
which adhere to the hierarchical nature of the relationships between the various subpopulations.

If the chronic conditions congestive heart failure (CHF), chronic obstructive pulmonary disorder (COPD),
and diabetes are used as the stratifying factors, the subpopulations may look like in Figure 1.

Model Setup

We allow for covariate effects to vary based on a set of binary stratifying factors by positing separate
(generalized) linear models for each subpopulation (defined by the presence of specific combinations of these
binary factors). Denote Yik as the response for patient i of subpopulation k, Xik is the vector of length pk of
covariate values for patient i of subpopulation k, and g(· as a known link function. Continuing the example
with models stratified based on CHF, COPD, and diabetes, the posited models are the following:

E[Yik|Xik] = g−1(Xikβk,•), i = 1, . . . , nk

,

1

https://doi.org/10.1111/biom.12769
https://doi.org/10.1111/biom.12769

CHF Diabetes

COPD

n = 385

n = 1504

n = 269

n = 230

n = 3031 n = 5939

n = 989

None

n = 29632

Figure 1: Sample sizes for each subpopulation in the motivating cohort

where k ∈ {H, P , D, HP , HD, PD, HPD, none},

H = Congestive Heart Failure

P = Chronic Obstructive Pulmonary Disease

D = Diabetes

HP = CHF + COPD

. . .

none = None of H, P , or D,

Xk is of dimension nk × pk, and βk,• = (βk,1, . . . , βk,p). Note that different covariates are allowed for different
subpopulations. This can be useful if there are variables specific to particular stratifying factors, e.g. the
particular location of a heart failure is only relevant for patients with any heart failures.

The vennLasso package provides estimation and variable selection for the parameters in these models. The
variable selection is performed in a scientifically-plausible manner that adheres to the inherent relationships
between the subpopulations. Furthermore, the manner in which the variable selection is performed allows for
the borrowing of strength across subpopulations.

Borrowing Strength Across Subpopulations via Hierarchical Importance

Consider for a moment a simpler scenario where models are stratified based on only CHF and diabetes. The
variable selection performed by vennLasso is based on an assumption of hierarchical variable selection. This
assumption has two components, outlined in Figure 2 and for models with three stratifying factors in Figure
3. The first component of the hierarchical assumption is that if a particular variable is not important for a

2

given subpopulation, it is not important for all ‘descendent’ subpopulations, i.e. subpopulations that only
have any of the binary factors present in the given subpopulation. For example, the P subpopulation is a
descendent of the HPD subpopulation. The second component is that if a particular variable is important
for a given subpopulation, it should be important for all ‘parent’ subpopulations, i.e. any subpopulations
that have at least all of the stratifying factor present in the given subpopulation. For example, the HPD

subpopulation is a parent of the HP subpopulation.

For the jth variable

βHD,j = 0

βH,j = 0 and βD,j = 0

βHD,j 6= 0

βH,j 6= 0 or βD,j 6= 0

Figure 2: Hierarchical selection patterns for models with two stratifying factors.

HPD

HP

H

PD

P

HD

D= 0

= 0

HPD

HP

H

PD

P

HD

D 6= 0

6= 0

6= 0

Figure 3: The two highlighted groups represent hierarchical selection patterns.

Loss Function for Hierarchical Selection

The vennLasso package estimates coefficients with the hierarchical variable selection patterns described
above using the penalized likelihood framework:

f(β) =

K∑

k=1

ℓk(βk,•) − λP (β)

where ℓk are log-likelihood functions (or negative loss), P is an overlapping group lasso penalty with special
structure to induce hierarchical selection patterns, and β = (βH,•, βP ,•, . . . , βHP D,•, βnone,•) is the vector of
all coefficients for all models. For simplicity here, we assume here that the number of variables is the same
for each subpopulation, however the generalization to allow different variables for different subpopulations is
straightforward and described in [insert reference].

The form of P is a group lasso penalty with overlapping groups:

3

P (β) =

p∑

j=1

∑

G∈G

λG,j ||βG,j ||2,

where βG,j ≡ {βk,j , k ∈ G}. The particular structure of the groups in G determines patterns of selection.
The group structure for models stratified on CHF, COPD, and diabetes is the following:

G = {HPD, HP , HD, PD, H, P , D, none}

• HPD = {HPD, HP , HD, PD, H, P , D}

• HP = {HP , H, P}

• · · ·

• P = {P}.

This group structure naturally generalizes to scenarios with an arbitrary number of stratifying factors. See
[insert reference] for more details.

The vennLasso package minimizes (??) using a combined alternating direction method of multipliers (ADMM)
and proximal Newton algorithm as described in the Supplementary Material of [insert reference].

Using the vennLasso Package

Installation

Install vennLasso from GitHub:

install.packages("devtools")

devtools::install_github("jaredhuling/vennLasso")

Load the vennLasso package:

library(vennLasso)

An Example with Simulated Data

Using the genHierSparseData() function we will simulate data where covariate effects differ based on the
presence of three binary factors. We will investigate how to use the vennLasso package using this data.

set.seed(123)

dat.sim <- genHierSparseData(ncats = 3, # number of binary stratifying factors

nvars = 50, # number of variables

nobs = 150, # number of observations per subpopulation

nobs.test = 5000,

hier.sparsity.param = 0.6, # the following two parameters

prop.zero.vars = 0.5, # determine how many variables

family = "gaussian") # have no impact on response

design matrices

x <- dat.sim$x # one for training

x.test <- dat.sim$x.test # one for testing

response vectors

4

y <- dat.sim$y

y.test <- dat.sim$y.test

binary stratifying factors

grp <- dat.sim$group.ind

grp.test <- dat.sim$group.ind.test

The vennLasso model can be fit with the vennLasso() function. The adaptive version of the penalty can be
fit by choosing adaptive.lasso = TRUE:

fit1 <- vennLasso(x = x, y = y, groups = grp, adaptive.lasso = TRUE)

The estimated coefficients are stored in a 3-dimensional array. The first dimension indexes the subpopulations,
the second dimension indexes the variables, and the third dimension indexes the tuning parameter λ. In the
following, we take a peak at the estimated coefficients for a fixed value of λ:

round(fit1$beta[,1:10,35], 3)

(Intercept) V1 V2 V3 V4 V5 V6 V7 V8 V9

0,0,0 0.020 0 0.000 0.053 0 0 -0.336 0.000 0.000 0.064

0,0,1 -0.020 0 0.000 0.000 0 0 0.000 0.000 0.000 0.000

0,1,0 -0.088 0 0.000 0.000 0 0 0.000 0.000 0.000 -0.006

0,1,1 0.141 0 0.512 0.000 0 0 0.000 0.079 0.000 0.002

1,0,0 -0.016 0 0.000 0.000 0 0 0.000 0.000 0.000 0.000

1,0,1 -0.046 0 0.000 0.000 0 0 0.000 0.000 0.000 0.000

1,1,0 -0.057 0 0.000 0.000 0 0 0.000 0.000 0.000 0.020

1,1,1 0.115 0 0.300 0.000 0 0 0.000 0.192 -0.111 0.446

Each row is labeled based on which binary factors are present for each subpopulation. For example the row
labeled ‘0,1,0’ is the vector of estimated coefficients for the subpopulation defined by those who have only the
second binary factor, the row labeled ‘1,1,0’ is the coefficients for the subpopulation of those with the first
and second binary factor but not the third, and so on.

Now compare the estimated coefficients above with the true coefficients that generated the data (the true
intercepts are all zero):

round(dat.sim$beta.mat[,1:9], 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

0,0,0 0 0.000 0 0.000 0 -0.372 0.000 0.000 0.259

0,0,1 0 0.000 0 0.000 0 0.000 0.000 0.000 0.000

0,1,0 0 0.000 0 0.000 0 0.000 0.000 0.000 -0.338

0,1,1 0 0.492 0 0.000 0 0.000 0.417 0.000 0.331

1,0,0 0 0.000 0 0.000 0 0.000 0.000 0.000 0.000

1,0,1 0 0.000 0 0.000 0 0.000 0.000 0.000 0.000

1,1,0 0 0.337 0 -0.265 0 0.000 0.000 0.000 0.289

1,1,1 0 0.342 0 0.270 0 0.000 0.384 -0.376 0.486

The coefficient paths for each subpopulation can be plotted by using the plot() function on fitted vennLasso

objects:

layout(matrix(1:9, ncol = 3))

for (i in 1:nrow(fit1$beta)) plot(fit1, which.subpop = i, xvar = "loglambda")

5

−4 −6 −8 −10 −12

−
0.

4
0.

0
0.

2
0.

4

0,0,0

Log Lambda

C
oe

ffi
ci

en
ts

−4 −6 −8 −10 −12

−
0.

2
0.

0
0.

1
0.

2

0,0,1

Log Lambda

C
oe

ffi
ci

en
ts

−4 −6 −8 −10 −12

−
0.

3
−

0.
1

0.
0

0.
1

0,1,0

Log Lambda

C
oe

ffi
ci

en
ts

−4 −6 −8 −10 −12
−

0.
4

0.
0

0.
2

0.
4

0.
6

0,1,1

Log Lambda

C
oe

ffi
ci

en
ts

−4 −6 −8 −10 −12

−
0.

1
0.

1
0.

3
0.

5

1,0,0

Log Lambda

C
oe

ffi
ci

en
ts

−4 −6 −8 −10 −12

−
0.

2
0.

0
0.

2

1,0,1

Log Lambda

C
oe

ffi
ci

en
ts

−4 −6 −8 −10 −12

−
0.

4
−

0.
2

0.
0

0.
2

1,1,0

Log Lambda

C
oe

ffi
ci

en
ts

−4 −6 −8 −10 −12

−
0.

4
0.

0
0.

2
0.

4

1,1,1

Log Lambda

C
oe

ffi
ci

en
ts

Figure 4: Coefficient paths for each subpopulation. The subpopulation denoted by ‘0,1,1’ is the subpopulation
of samples who have the second and third binary factor but not the first, the ‘0,1,0’ subpopulation is the
subpopulation of those who have only the second binary factor, and so on.

6

Cross Validation for Tuning Parameter Selection

Typical for penalized regression methods, the tunining parameter must be selected. The cv.vennLasso()

function provides a routine to select the tuning parameter via k-fold cross validation. In the following example
we use 5-fold cross validation:

cvfit1 <- cv.vennLasso(x = x, y = y, groups = grp, adaptive.lasso = TRUE, nfolds = 5)

The tuning parameter which minimizes the cross validation error can be accessed via:

cvfit1$lambda.min

[1] 0.001470784

The curve and standard errors of the cross validation error can be plotted by using the plot() function on a
fitted cv.vennLasso object:

plot(cvfit1)

−12 −10 −8 −6 −4

1.
0

1.
2

1.
4

1.
6

log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

380 378 368 349 311 241 149 78 44 31 20 6 1 0 0

Mean−Squared Error

We can then use the model with the minimum cross validation error to generate predictions for the test set.
Note that in addition to the design matrix, we must also provide the stratifying factors for the test set.

preds <- predict(cvfit1,

newx = x.test,

group.mat = grp.test,

s = "lambda.min")

mean((y.test - preds) ^ 2)

[1] 1.091483

mean((y.test - mean(y.test)) ^ 2)

[1] 1.683741

7

Confidence Intervals Using the Adaptive Lasso

fit2 <- vennLasso(x = x, y = y, groups = grp,

adaptive.lasso = TRUE,

gamma = 1,

conf.int = 0.90) # specify the confidence level (90% here) for CIs

round(fit2$lower.ci[,7:11,35], 3)

V6 V7 V8 V9 V10

0,0,0 -0.475 0.000 0.000 -0.095 0.235

0,0,1 0.000 0.000 0.000 0.000 0.000

0,1,0 0.000 0.000 0.000 -0.135 0.000

0,1,1 0.000 -0.055 0.000 -0.125 0.000

1,0,0 0.000 0.000 0.000 0.000 0.000

1,0,1 0.000 0.000 0.000 0.000 0.000

1,1,0 0.000 0.000 0.000 -0.116 0.000

1,1,1 0.000 0.062 -0.249 0.309 0.000

round(fit2$upper.ci[,7:11,35], 3)

V6 V7 V8 V9 V10

0,0,0 -0.197 0.000 0.000 0.222 0.488

0,0,1 0.000 0.000 0.000 0.000 0.000

0,1,0 0.000 0.000 0.000 0.124 0.000

0,1,1 0.000 0.214 0.000 0.129 0.000

1,0,0 0.000 0.000 0.000 0.000 0.000

1,0,1 0.000 0.000 0.000 0.000 0.000

1,1,0 0.000 0.000 0.000 0.156 0.000

1,1,1 0.000 0.322 0.027 0.582 0.000

References

Huling, Jared, Menggang Yu, Muxuan Liang, and Maureen Smith. 2018. “Risk Prediction for Heterogeneous
Populations with Application to Hospital Admission Prediction.” Biometrics. https://doi.org/10.1111/biom.
12769.

8

https://doi.org/10.1111/biom.12769
https://doi.org/10.1111/biom.12769

	vennLasso Intro
	Model Setup
	Borrowing Strength Across Subpopulations via Hierarchical Importance
	Loss Function for Hierarchical Selection

	Using the vennLasso Package
	Installation
	An Example with Simulated Data
	Cross Validation for Tuning Parameter Selection
	Confidence Intervals Using the Adaptive Lasso

	References

