Package ‘vntrs’

October 18, 2021

Title Variable Neighborhood Trust Region Search
Version 0.1.0
Date 2021-10-09
Imports trust
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Lennart Oelschläger [aut, cre]
(⟨https://orcid.org/0000-0001-5421-9313⟩)
Maintainer Lennart Oelschläger <lennart.oelschlaeger@uni-bielefeld.de>
Repository CRAN
Date/Publication 2021-10-18 14:30:02 UTC

R topics documented:

check_controls .. 2
check_f ... 2
initialize ... 3
interruption ... 4
local ... 5
select_neighbors ... 6
unique_optimum .. 7
vntrs ... 8

Index 10
check_controls

Description
This function checks the input controls for the vntrs package.

Usage
check_controls(controls)

Arguments
controls Either NULL or a named list with the following elements. Missing elements are set to the default values in parentheses.
 • init_runs (5): The number of initial searches.
 • init_min (-1): The minimum argument value for the random initialization.
 • init_max (1): The maximum argument value for the random initialization.
 • init_iterlim (20): The number of iterations for the initial searches.
 • neighborhoods (5): The number of nested neighborhoods.
 • neighbors (5): The number of neighbors in each neighborhood.
 • beta (0.05): A non-negative weight factor to account for the function’s curvature in the selection of the neighbors. If beta = 0, the curvature is ignored. The higher the value, the higher the probability of selecting a neighbor in the direction of the highest function curvature.
 • iterlim (1000): The maximum number of iterations to be performed before the local search is terminated.
 • tolerance (1e-6): A positive scalar giving the tolerance for comparing different optimal arguments for equality.
 • time_limit (NULL): The time limit in seconds for the algorithm.

Value
The checked and filled list controls.

check_f

Description
This function checks the input f for the vntrs package.

Usage
check_f(f, npar, controls)
initialize

Arguments

\texttt{f} \quad A function that computes value, gradient, and Hessian of the function to be optimized and returns them as a named list with elements value, gradient, and hessian.

\texttt{npar} \quad The number of parameters of \texttt{f}.

\texttt{controls} \quad Either \texttt{NULL} or a named list with the following elements. Missing elements are set to the default values in parentheses.

- \texttt{init_runs} (5): The number of initial searches.
- \texttt{init_min} (-1): The minimum argument value for the random initialization.
- \texttt{init_max} (1): The maximum argument value for the random initialization.
- \texttt{init_iterlim} (20): The number of iterations for the initial searches.
- \texttt{neighborhoods} (5): The number of nested neighborhoods.
- \texttt{neighbors} (5): The number of neighbors in each neighborhood.
- \texttt{beta} (0.05): A non-negative weight factor to account for the function’s curvature in the selection of the neighbors. If \texttt{beta} = 0, the curvature is ignored. The higher the value, the higher the probability of selecting a neighbor in the direction of the highest function curvature.
- \texttt{iterlim} (1000): The maximum number of iterations to be performed before the local search is terminated.
- \texttt{tolerance} (1e-6): A positive scalar giving the tolerance for comparing different optimal arguments for equality.
- \texttt{time_limit} (\texttt{NULL}): The time limit in seconds for the algorithm.

Value

No return value, called for side-effects.

\texttt{initialize} \quad \textit{Initialize VNTRS.}

Description

Function that initializes the variable neighborhood trust region search.

Usage

\texttt{initialize(f, npar, minimize, controls)}

Arguments

\texttt{f} \quad A function that computes value, gradient, and Hessian of the function to be optimized and returns them as a named list with elements value, gradient, and hessian.

\texttt{npar} \quad The number of parameters of \texttt{f}.
minimize If TRUE, \(f \) gets minimized. If FALSE, maximized.

controls Either NULL or a named list with the following elements. Missing elements are set to the default values in parentheses.

- \(\text{init_runs} (5) \): The number of initial searches.
- \(\text{init_min} (-1) \): The minimum argument value for the random initialization.
- \(\text{init_max} (1) \): The maximum argument value for the random initialization.
- \(\text{init_iterlim} (20) \): The number of iterations for the initial searches.
- \(\text{neighborhoods} (5) \): The number of nested neighborhoods.
- \(\text{neighbors} (5) \): The number of neighbors in each neighborhood.
- \(\beta (0.05) \): A non-negative weight factor to account for the function’s curvature in the selection of the neighbors. If \(\beta = 0 \), the curvature is ignored. The higher the value, the higher the probability of selecting a neighbor in the direction of the highest function curvature.
- \(\text{iterlim} (1000) \): The maximum number of iterations to be performed before the local search is terminated.
- \(\text{tolerance} (1e-6) \): A positive scalar giving the tolerance for comparing different optimal arguments for equality.
- \(\text{time_limit} (\text{NULL}) \): The time limit in seconds for the algorithm.

Value

A list of

- the list \(L \) of identified optima which contains lists with
 - value and
 - argument
 of each identified optimum.
- best initial point \(x_{\text{best}} \).

interruption

Interrupt local search.

Description

This function checks if the local search can be interrupted prematurely.

Usage

\[
\text{interruption}(f, \text{point}, L, \text{minimize})
\]
Arguments

- **f**
 A function that computes value, gradient, and Hessian of the function to be optimized and returns them as a named list with elements `value`, `gradient`, and `hessian`.

- **point**
 The current location of the local search.

- **L**
 A list of identified optima which contains lists with
 - `value`
 - `argument`
 of each identified optimum.

- **minimize**
 If TRUE, f gets minimized. If FALSE, maximized.

Value

TRUE for premature interruption, FALSE if not.

local
Perform trust region local search.

Description

Function that links to trust.

Usage

`local(f, parinit, minimize, controls, L)`

Arguments

- **f**
 A function that computes value, gradient, and Hessian of the function to be optimized and returns them as a named list with elements `value`, `gradient`, and `hessian`.

- **parinit**
 Passed on to trust.

- **minimize**
 If TRUE, f gets minimized. If FALSE, maximized.

- **controls**
 Either NULL or a named list with the following elements. Missing elements are set to the default values in parentheses.
 - `init_runs` (5): The number of initial searches.
 - `init_min` (~1): The minimum argument value for the random initialization.
 - `init_max` (1): The maximum argument value for the random initialization.
 - `init_iterlim` (20): The number of iterations for the initial searches.
 - `neighborhoods` (5): The number of nested neighborhoods.
 - `neighbors` (5): The number of neighbors in each neighborhood.
select_neighbors

• beta (0.05): A non-negative weight factor to account for the function’s curvature in the selection of the neighbors. If beta = 0, the curvature is ignored. The higher the value, the higher the probability of selecting a neighbor in the direction of the highest function curvature.
• iterlim (1000): The maximum number of iterations to be performed before the local search is terminated.
• tolerance (1e-6): A positive scalar giving the tolerance for comparing different optimal arguments for equality.
• time_limit (NULL): The time limit in seconds for the algorithm.

L A list of identified optima which contains lists with
 • value and
 • argument
 of each identified optimum.

Value
A list of
 • success: A boolean, determining whether the local search successfully converged.
 • value: The value at the point where the local search terminated.
 • argument: The point where the local search terminated.

Description
Function that selects neighbors around a given point x.

Usage
select_neighbors(f, x, neighborhoodExpansion, controls)

Arguments
f A function that computes value, gradient, and Hessian of the function to be optimized and returns them as a named list with elements value, gradient, and hessian.
x A point in the domain of f.
neighborhoodExpansion A scaling factor, specifying the expansion of the neighborhood.
controls Either NULL or a named list with the following elements. Missing elements are set to the default values in parentheses.
 • init_runs (5): The number of initial searches.
unique_optimum

- **init_min** (-1): The minimum argument value for the random initialization.
- **init_max** (1): The maximum argument value for the random initialization.
- **init_iterlim** (20): The number of iterations for the initial searches.
- **neighborhoods** (5): The number of nested neighborhoods.
- **neighbors** (5): The number of neighbors in each neighborhood.
- **beta** (0.05): A non-negative weight factor to account for the function’s curvature in the selection of the neighbors. If beta = 0, the curvature is ignored. The higher the value, the higher the probability of selecting a neighbor in the direction of the highest function curvature.
- **iterlim** (1000): The maximum number of iterations to be performed before the local search is terminated.
- **tolerance** (1e-6): A positive scalar giving the tolerance for comparing different optimal arguments for equality.
- **time_limit** (NULL): The time limit in seconds for the algorithm.

Value

A list points in the domain of \(f \) which neighbors of \(x \).

Description

This function checks if a new optimum argument is not yet contained in \(L \).

Usage

unique_optimum(L, argument, tolerance)

Arguments

- **L**
 - A list of identified optima which contains lists with
 - **value**
 - **argument**
 - of each identified optimum.
- **argument**
 - The argument of a candidate optimum.
- **tolerance**
 - A non-negative numeric value. For an identified optimum and a candidate optimum, if all coordinate differences are smaller than tolerance, they are considered as equal.

Value

A boolean. If TRUE, argument is not contained in \(L \). If FALSE, argument is already contained in \(L \).
vntrs

Variable neighborhood trust region search.

Description

This function performs variable neighborhood trust region search.

Usage

vntrs(f, npar, minimize = TRUE, controls = NULL, quiet = TRUE, seed = NULL)

Arguments

f

A function that computes value, gradient, and Hessian of the function to be
optimized and returns them as a named list with elements value, gradient,
and hessian.

npar

The number of parameters of f.

minimize

If TRUE, f gets minimized. If FALSE, maximized.

controls

Either NULL or a named list with the following elements. Missing elements are
set to the default values in parentheses.

- init_runs (5): The number of initial searches.
- init_min (-1): The minimum argument value for the random initialization.
- init_max (1): The maximum argument value for the random initialization.
- init_iterlim (20): The number of iterations for the initial searches.
- neighborhoods (5): The number of nested neighborhoods.
- neighbors (5): The number of neighbors in each neighborhood.
- beta (0.05): A non-negative weight factor to account for the function’s
curvature in the selection of the neighbors. If beta = 0, the curvature is
ignored. The higher the value, the higher the probability of selecting a
neighbor in the direction of the highest function curvature.
- iterlim (1000): The maximum number of iterations to be performed be-
fore the local search is terminated.
- tolerance (1e-6): A positive scalar giving the tolerance for comparing
different optimal arguments for equality.
- time_limit (NULL): The time limit in seconds for the algorithm.

quiet

If TRUE, progress messages are suppressed.

seed

Set a seed for the sampling of the random starting points.

Value

A data frame. Each row contains information of an identified optimum. The first npar columns
"p1","p2",...,"p<npar>" store the argument values, the next column "value" has the optimal function
values and the last column "global" contains TRUE for global optima and FALSE for local optima.
References

Examples

```r
rosenbrock = function(x) {
  stopifnot(is.numeric(x))
  stopifnot(length(x) == 2)
  f = expression(100 * (x2 - x1^2)^2 + (1 - x1)^2)
  g1 = D(f, "x1")
  g2 = D(f, "x2")
  h11 = D(g1, "x1")
  h12 = D(g1, "x2")
  h22 = D(g2, "x2")
  x1 = x[1]
  x2 = x[2]
  f = eval(f)
  g = c(eval(g1), eval(g2))
  h = rbind(c(eval(h11), eval(h12)), c(eval(h12), eval(h22))
  list(value = f, gradient = g, hessian = h)
}
vntrs(f = rosenbrock, npar = 2, seed = 1, controls = list(neighborhoods = 1))
```
Index

check_controls, 2
check_f, 2
initialize, 3
interruption, 4
local, 5
select_neighbors, 6
trust, 5
unique_optimum, 7
vntrs, 8