Package ‘vtreat’

June 11, 2021

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>A Statistically Sound 'data.frame' Processor/Conditioner</td>
</tr>
<tr>
<td>Version</td>
<td>1.6.3</td>
</tr>
<tr>
<td>Date</td>
<td>2021-06-11</td>
</tr>
<tr>
<td>BugReports</td>
<td>https://github.com/WinVector/vtreat/issues</td>
</tr>
<tr>
<td>Maintainer</td>
<td>John Mount jmount@win-vector.com</td>
</tr>
<tr>
<td>Description</td>
<td>A 'data.frame' processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. 'vtreat' prepares variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems 'vtreat' defends against: 'Inf', 'NA', too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Reference: "'vtreat': a data.frame Processor for Predictive Modeling", Zumel, Mount, 2016, DOI:10.5281/zenodo.1173313.</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.4.0), wrapr (>= 2.0.7)</td>
</tr>
<tr>
<td>Imports</td>
<td>stats, digest</td>
</tr>
<tr>
<td>Suggests</td>
<td>rquery (>= 1.4.6), rqdatatable (>= 1.2.9), data.table (>= 1.12.2), isotone, lme4, knitr, rmarkdown, parallel, DBI, RSQLite, datasets, R.rsp, tinytest</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>knitr, R.rsp</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>7.1.1</td>
</tr>
<tr>
<td>ByteCompile</td>
<td>true</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
<tr>
<td>Author</td>
<td>John Mount [aut, cre], Nina Zumel [aut], Win-Vector LLC [cph]</td>
</tr>
<tr>
<td>Repository</td>
<td>CRAN</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2021-06-11 15:10:01 UTC</td>
</tr>
</tbody>
</table>
R topics documented:

apply_transform ... 3
as_rquery_plan ... 4
BinomialOutcomeTreatment 5
buildEvalSets ... 6
center_scale ... 8
classification_parameters 9
designTreatmentsC 9
designTreatmentsN 12
designTreatmentsZ 14
design_missingness_treatment 16
fit .. 17
fit_prepare .. 18
fit_transform ... 18
format.vtreatment ... 19
getSplitPlanAppLabels 20
get_feature_names .. 20
get_score_frame ... 21
get_transform ... 21
kWayCrossValidation 22
kWayStratifiedY .. 22
kWayStratifiedYReplace 23
makeCustomCoderCat 24
makeCustomCoderNum 25
makekWayCrossValidationGroupedByColumn 26
mkCrossFrameCExperiment 26
mkCrossFrameMExperiment 29
mkCrossFrameNExperiment 32
MultinomialOutcomeTreatment 35
multinomial_parameters 36
novel_value_summary 37
NumericOutcomeTreatment 38
oneWayHoldout .. 39
patch_columns_into_frame 39
ppCoderC .. 40
ppCoderN .. 41
prepare .. 41
prepare.multinomial_plan 42
prepare.simple_plan 43
prepare.treatmentplan 44
pre_comp_xval .. 46
print.multinomial_plan 47
print.simple_plan .. 47
print.treatmentplan 48
print.vtreatment .. 48
problemAppPlan .. 49
regression_parameters 49
apply_transform

Transform second argument by first.

Description

Apply first argument to second as a transform.

Usage

```r
apply_transform(vps, dframe, ..., parallelCluster = NULL)
```

Arguments

- **vps**: vtreat pipe step, object defining transform.
- **dframe**: data.frame, data to transform
- **...**: not used, forces later arguments to bind by name.
- **parallelCluster**: optional, parallel cluster to run on.

Value

transformed dframe
as_rquery_plan

Convert vtreatment plans into a sequence of rquery operations.

Description

Convert vtreatment plans into a sequence of rquery operations.

Usage

as_rquery_plan(treatmentplans, ..., var_restriction = NULL)

Arguments

treatmentplans: vtreat treatment plan or list of vtreat treatment plan sharing same outcome and outcome type.

... not used, force any later arguments to bind to names.

var_restriction: character, if not null restrict to producing these variables.

Value

list(optree_generator (ordered list of functions), temp_tables (named list of tables))

See Also

rquery_prepare

Examples

```r
if(requireNamespace("rquery", quietly = TRUE)) {
  dTrainC <- data.frame(x= c('a', 'a', 'a', 'b', NA, 'b'),
                        z = c(1, 2, NA, 4, 5, 6),
                        y = c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE),
                        stringsAsFactors = FALSE)
  dTrainC$id <- seq_len(nrow(dTrainC))
  treatmentsC <- designTreatmentsC(dTrainC, c("x", "z"), 'y', TRUE)
  print(prepare(treatmentsC, dTrainC))
  rqplan <- as_rquery_plan(list(treatmentsC))
  ops <- flatten_fn_list(rquery::local_td(dTrainC), rqplan$optree_generators)
  cat(format(ops))
}
```

```r
if(requireNamespace("rqdatatable", quietly = TRUE)) {
  treated <- rqdatatable::ex_data_table(ops, tables = rqplan$tables)
  print(treated[])
}
```

```r
if(requireNamespace("DBI", quietly = TRUE) &
   requireNamespace("RSQLite", quietly = TRUE)) {
  db <- DBI::dbConnect(RSQLite::SQLite(), ":memory:"
  source_data <- rquery::rq_copy_to(db, "dTrainC", dTrainC,
```
BinomialOutcomeTreatment

Stateful object for designing and applying binomial outcome treatments.

Description

Hold settings and results for binomial classification data preparation.

Usage

BinomialOutcomeTreatment(
 ...,
 var_list,
 outcome_name,
 outcome_target = TRUE,
 cols_to_copy = NULL,
 params = NULL,
 imputation_map = NULL
)

Arguments

... not used, force arguments to be specified by name.

var_list Names of columns to treat (effective variables).

outcome_name Name of column holding outcome variable. dframe[[outcome_name]] must be only finite and non-missing values.

outcome_target Value/level of outcome to be considered "success", and there must be a cut such that dframe[[outcome_name]]==outcome_target at least twice and dframe[[outcome_name]]!=outcome_target at least twice.

cols_to_copy list of extra columns to copy.

params parameters list from classification_parameters

imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.
buildEvalSets

Build set carve-up for out-of sample evaluation.

Details

Return a carve-up of seq_len(nRows). Very useful for any sort of nested model situation (such as data prep, stacking, or super-learning).

Usage

buildEvalSets(
 nRows,
 ...,
 dframe = NULL,
 y = NULL,
 splitFunction = NULL,
 nSplits = 3
)

Arguments

nRows scalar, >=1 number of rows to sample from.

... no additional arguments, declared to forced named binding of later arguments.

dframe (optional) original data.frame, passed to user splitFunction.

y (optional) numeric vector, outcome variable (possibly to stratify on), passed to user splitFunction.

splitFunction (optional) function taking arguments nSplits,nRows,dframe, and y; returning a user desired split.

nSplits integer, target number of splits.

Details

Also sets attribute "splitmethod" on return value that describes how the split was performed. attr(returnValue,'splitmethod') is one of: 'notsplit' (data was not split; corner cases like single row data sets), 'oneway' (leave one out holdout), 'kwaycross' (a simple partition), 'userfunction' (user supplied function was actually used), or a user specified attribute. Any user desired properties (such as stratification on y, or preservation of groups designated by original data row numbers) may not apply unless you see that 'userfunction' has been used.

The intent is the user splitFunction only needs to handle "easy cases" and maintain user invariants. If the user splitFunction returns NULL, throws, or returns an unacceptable carve-up then
vtreat::buildEvalSets returns its own eval set plan. The signature of splitFunction should be splitFunction(nRows,nSplits,dframe,y) where nSplits is the number of pieces we want in the carve-up, nRows is the number of rows to split, dframe is the original dataframe (useful for any group control variables), and y is a numeric vector representing outcome (useful for outcome stratification).

Note that buildEvalSets may not always return a partition (such as one row dataframes), or if the user split function chooses to make rows eligible for application a different number of times.

Value

list of lists where the app portion of the sub-lists is a disjoint carve-up of seq_len(nRows) and each list as a train portion disjoint from app.

See Also

kWayCrossValidation, kWayStratifiedY, and makekWayCrossValidationGroupedByColumn

Examples

use
buildEvalSets(200)

longer example
helper fns
fit models using experiment plan to estimate out of sample behavior
fitModelAndApply <- function(trainData, applicationData) {
 model <- lm(y~x, data=trainData)
 predict(model, newdata=applicationData)
}
simulateOutOfSampleTrainEval <- function(d, fitApplyFn) {
 eSets <- buildEvalSets(nrow(d))
 evals <- lapply(eSets, function(ei) { fitApplyFn(d[ei$train,], d[ei$app,]) })
 pred <- numeric(nrow(d))
 for(eii in seq_len(length(eSets))) {
 pred[eSets[[eii]]$app] <- evals[[eii]]
 }
 pred
}

run the experiment
set.seed(2352356)
example data
d <- data.frame(x=rnorm(5), y=rnorm(5),
 outOfSampleEst=NA, inSampleEst=NA)

fit model on all data
d$inSampleEst <- fitModelAndApply(d, d)
compute in-sample R^2 (above zero, falsely shows a relation until we adjust for degrees of freedom)
1-sum((d$y-d$inSampleEst)^2)/sum((d$y-mean(d$y))^2)

d$outOfSampleEst <- simulateOutOfSampleTrainEval(d, fitModelAndApply)
compute out-sample R^2 (not positive, # evidence of no relation)
1 - sum((d$y - d$outOfSampleEst)^2) / sum((d$y - mean(d$y))^2)

center_scale

Center and scale a set of variables.

Description

Center and scale a set of variables. Other columns are passed through.

Usage

center_scale(d, center, scale)

Arguments

d data.frame to work with
center named vector of variables to center
scale named vector of variables to scale

Value

d with centered and scaled columns altered

Examples

d <- data.frame(x = 1:5,
 y = c('a', 'a', 'b', 'b', 'b'))
vars_to_transform = "x"
t <- base::scale(as.matrix(d[, vars_to_transform, drop = FALSE]),
 center = TRUE, scale = TRUE)
t
centering <- attr(t, "scaled:center")
scaling <- attr(t, "scaled:scale")
center_scale(d, center = centering, scale = scaling)
classification_parameters

vtreat classification parameters.

Description

A list of settings and values for vtreat binomial classification fitting. Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameCExperiment, designTreatmentsC, and prepare.treatmentplan for details.

Usage

classification_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

designTreatmentsC Build all treatments for a data frame to predict a categorical outcome.

Description

Function to design variable treatments for binary prediction of a categorical outcome. Data frame is assumed to have only atomic columns except for dates (which are converted to numeric). Note: re-encoding high cardinality categorical variables can introduce undesirable nested model bias, for such data consider using mkCrossFrameCExperiment.

Usage

designTreatmentsC(
 dframe,
 varlist,
 outcomename,
 outcometarget = TRUE,
 ...,
 weights = c(),
 minFraction = 0.02,
 smFactor = 0,
 rareCount = 0,
 rareSig = NULL,
collarProb = 0,
codeRestriction = NULL,
customCoders = NULL,
splitFunction = NULL,
ncross = 3,
forceSplit = FALSE,
catScaling = TRUE,
verbose = TRUE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL
)

Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.

varlist Names of columns to treat (effective variables).

outcomename Name of column holding outcome variable. dframe[[outcomename]] must be only finite non-missing values.

outcometarget Value/level of outcome to be considered "success", and there must be a cut such that dframe[[outcomename]]==outcometarget at least twice and dframe[[outcomename]]!=outcometarget at least twice.

... no additional arguments, declared to forced named binding of later arguments

weights optional training weights for each row

minFraction optional minimum frequency a categorical level must have to be converted to an indicator column.

smFactor optional smoothing factor for impact coding models.

rareCount optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.

rareSig optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.

collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set during prepare.treatmentplan.

codeRestriction what types of variables to produce (character array of level codes, NULL means no restriction).

customCoders map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).

splitFunction (optional) see vtreap::buildEvalSets.

ncross optional scalar >=2 number of cross validation splits use in rescoring complex variables.

forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
catScaling optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.

verbose if TRUE print progress.

parallelCluster
(optional) a cluster object created by package parallel or package snow.

use_parallel logical, if TRUE use parallel methods (when parallel cluster is set).

missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Details

The main fields are mostly vectors with names (all with the same names in the same order):
- vars: (character array without names) names of variables (in same order as names on the other diagnostic vectors)
- varMoves: logical TRUE if the variable varied during hold out scoring, only variables that move will be in the treated frame
- # sig: an estimate significance of effect

See the vtreat vignette for a bit more detail and a worked example.

Columns that do not vary are not passed through.

Note: re-encoding high cardinality on training data can introduce nested model bias, consider using mkCrossFrameCExperiment instead.

Value

treatment plan (for use with prepare)

See Also

prepare.treatmentplan, designTreatmentsN, designTreatmentsZ, mkCrossFrameCExperiment

Examples

dTrainC <- data.frame(x=c('a','a','a','b','b','b'),
 z=c(1,2,3,4,5,6),
 y=c(FALSE,FALSE,TRUE,FALSE,TRUE,TRUE))
dTestC <- data.frame(x=c('a','b','c',NA),
 z=c(10,20,30,NA))
treatmentsC <- designTreatmentsC(dTrainC, colnames(dTrainC), 'y', TRUE)
dTestCTreated <- prepare(treatmentsC, dTestC, pruneSig=0.99)
designTreatmentsN
build all treatments for a data frame to predict a numeric outcome

Description

Function to design variable treatments for binary prediction of a numeric outcome. Data frame is assumed to have only atomic columns except for dates (which are converted to numeric). Note: each column is processed independently of all others. Note: re-encoding high cardinality on training data categorical variables can introduce undesirable nested model bias, for such data consider using `mkCrossFrameNExperiment`.

Usage

```r
designTreatmentsN(
  dframe,
  varlist,
  outcomename,
  ...,
  weights = c(),
  minFraction = 0.02,
  smFactor = 0,
  rareCount = 0,
  rareSig = NULL,
  collarProb = 0,
  codeRestriction = NULL,
  customCoders = NULL,
  splitFunction = NULL,
  ncross = 3,
  forceSplit = FALSE,
  verbose = TRUE,
  parallelCluster = NULL,
  use_parallel = TRUE,
  missingness_imputation = NULL,
  imputation_map = NULL
)
```

Arguments

- **dframe**: Data frame to learn treatments from (training data), must have at least 1 row.
- **varlist**: Names of columns to treat (effective variables).
- **outcomename**: Name of column holding outcome variable. `dframe[[outcomename]]` must be only finite non-missing values and there must be a cut such that `dframe[[outcomename]]` is both above the cut at least twice and below the cut at least twice.
- **weights**: no additional arguments, declared to forced named binding of later arguments
- **weights**: optional training weights for each row
minFraction optional minimum frequency a categorical level must have to be converted to an indicator column.
smFactor optional smoothing factor for impact coding models.
rareCount optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
rareSig optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.
collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set during `prepare.treatmentplan`.

codeRestriction what types of variables to produce (character array of level codes, NULL means no restriction).
customCoders map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).
splitFunction (optional) see `vtreat::buildEvalSets`.
ncross optional scalar >=2 number of cross validation splits use in rescoring complex variables.
forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
verbose if TRUE print progress.
parallelCluster (optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods (when parallel cluster is set).

missingness_imputation function of signature f(values: numeric, weights: numeric), simple missing value imputer.
imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Details
The main fields are mostly vectors with names (all with the same names in the same order):
- vars : (character array without names) names of variables (in same order as names on the other diagnostic vectors) - varMoves : logical TRUE if the variable varied during hold out scoring, only variables that move will be in the treated frame - sig : an estimate significance of effect

See the vtest vignette for a bit more detail and a worked example.

Columns that do not vary are not passed through.

Value
treatment plan (for use with `prepare`)

See Also
`prepare.treatmentplan, designTreatmentsC, designTreatmentsZ, mkCrossFrameNExperiment`
Examples

dTrainN <- data.frame(x=c('a','a','a','a','b','b','b'),
 z=c(1,2,3,4,5,6,7),y=c(0,0,0,1,0,1,1))
dTestN <- data.frame(x=c('a','b','c',NA),
 z=c(10,20,30,NA))
treatmentsN = designTreatmentsN(dTrainN,colnames(dTrainN),'y')
dTestNTreated <- prepare(treatmentsN,dTestN,pruneSig=0.99)

designTreatmentsZ
Design variable treatments with no outcome variable.

Description

Data frame is assumed to have only atomic columns except for dates (which are converted to numeric). Note: each column is processed independently of all others.

Usage

designTreatmentsZ(
 dframe,
 varlist,
 ...,
 minFraction = 0,
 weights = c(),
 rareCount = 0,
 collarProb = 0,
 codeRestriction = NULL,
 customCoders = NULL,
 verbose = TRUE,
 parallelCluster = NULL,
 use_parallel = TRUE,
 missingness_imputation = NULL,
 imputation_map = NULL
)

Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
... no additional arguments, declared to forced named binding of later arguments
minFraction optional minimum frequency a categorical level must have to be converted to an indicator column.
weights optional training weights for each row
designTreatmentsZ

rareCount optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set during prepare.treatmentplan.
codeRestriction what types of variables to produce (character array of level codes, NULL means no restriction).
customCoders map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).
verbose if TRUE print progress.
parallelCluster (optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods (if parallel cluster is set).
missingness_imputation function of signature f(values: numeric, weights: numeric), simple missing value imputer.
imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Details

The main fields are mostly vectors with names (all with the same names in the same order):
- vars : (character array without names) names of variables (in same order as names on the other diagnostic vectors)
- varMoves : logical TRUE if the variable varied during hold out scoring, only variables that move will be in the treated frame

See the vtreat vignette for a bit more detail and a worked example.
Columns that do not vary are not passed through.

Value
treatment plan (for use with prepare)

See Also

prepare.treatmentplan, designTreatmentsC, designTreatmentsN

Examples

dTrainZ <- data.frame(x=c('a', 'a', 'a', 'a', 'b', 'b', NA, 'e', 'e'),
 z=c(1, 2, 3, 4, 5, 6, NA, 9))
dTestZ <- data.frame(x=c('a', 'x', 'c', NA),
 z=c(10, 20, 30, NA))
treatmentsZ = designTreatmentsZ(dTrainZ, colnames(dTrainZ),
 rareCount=0)
dTrainZTreated <- prepare(treatmentsZ, dTrainZ)
design_missingness_treatment <- prepare(treatmentsZ, dTestZ)

design_missingness_treatment

Design a simple treatment plan to indicate missingness and perform simple imputation.

Description

Design a simple treatment plan to indicate missingness and perform simple imputation.

Usage

design_missingness_treatment(
 dframe,
 ...,
 varlist = colnames(dframe),
 invalid_mark = "_invalid_",
 drop_constant_columns = FALSE,
 missingness_imputation = NULL,
 imputation_map = NULL
)

Arguments

 dframe data.frame to drive design.
 ... not used, forces later arguments to bind by name.
 varlist character, names of columns to process.
 invalid_mark character, name to use for NA levels and novel levels.
 drop_constant_columns logical, if TRUE drop columns that do not vary from the treatment plan.
 missingness_imputation function of signature f(values: numeric), simple missing value imputer.
 imputation_map map from column names to functions of signature f(values: numeric), simple missing value imputers.

Value

 simple treatment plan.

See Also

 prepare.simple_plan
Examples

d <- wrapr::build_frame(
 "x1", "x2", "x3" |
 1 , 4 , "A" |
 NA , 5 , "B" |
 3 , 6 , NA)

plan <- design_missingness_treatment(d)
prepare(plan, d)

prepare(plan, data.frame(x1=NA, x2=NA, x3="E"))

fit

Fit first argument to data in second argument.

Description

Update the state of first argument to have learned or fit from second argument.

Usage

fit(vps, dframe, ..., weights = NULL, parallelCluster = NULL)

Arguments

vps vtreap pipe step, object specifying fit
dframe data.frame, data to fit from.
... not used, forces later arguments to bind by name.
weights optional, per-dframe data weights.
parallelCluster optional, parallel cluster to run on.

Details

Note: input vps is not altered, fit is in returned value.

Value

ew fit object
fit_prepare

Fit and prepare in a cross-validated manner.

Description

Update the state of first argument to have learned or fit from second argument, and compute a crossvalidated example of such a transform.

Usage

fit_prepare(vps, dframe, ..., weights = NULL, parallelCluster = NULL)

Arguments

vps vtreat pipe step, object specifying fit.
dframe data.frame, data to fit from.
... not used, forces later arguments to bind by name.
weights optional, per-dframe data weights.
parallelCluster optional, parallel cluster to run on.

Details

Note: input vps is not altered, fit is in returned list.

Value

@return named list containing: treatments and cross_frame

fit_transform

Fit and transform in a cross-validated manner.

Description

Update the state of first argument to have learned or fit from second argument, and compute a crossvalidated example of such a transform.

Usage

fit_transform(vps, dframe, ..., weights = NULL, parallelCluster = NULL)
Arguments

- **vps**: `vtr`eat pipe step, object specifying fit.
- **dframe**: `data.frame`, data to fit from.
- **...**: not used, forces later arguments to bind by name.
- **weights**: optional, per-dframe data weights.
- **parallelCluster**: optional, parallel cluster to run on.

Details

Note: input vps is not altered, fit is in returned list.

Value

@return named list containing: treatments and cross_frame

Format.vtreatment

Display treatment plan.

Description

Display treatment plan.

Usage

```r
# S3 method for class 'vtreatment'
format(x, ...)
```

Arguments

- **x**: treatment plan
- **...**: additional args (to match general signature).
getSplitPlanAppLabels
read application labels off a split plan.

Description
read application labels off a split plan.

Usage

```
getSplitPlanAppLabels(nRow, plan)
```

Arguments
- **nRow**: number of rows in original data.frame.
- **plan**: split plan

Value
vector of labels

See Also
- `kWayCrossValidation`, `kWayStratifiedY`, and `makekWayCrossValidationGroupedByColumn`

Examples

```r
plan <- kWayStratifiedY(3,2,rep(0,2),rep(0,2))  
getSplitPlanAppLabels(3, plan)
```

get_feature_names
Return feasible feature names.

Description
Return previously fit feature names.

Usage

```
get_feature_names(vps)
```

Arguments
- **vps**: vtreat pipe step, mutable object to read from.

Value
feature names
get_score_frame

Return score frame from vps.

Description

Return previously fit score frame.

Usage

get_score_frame(vps)

Arguments

vps vtreat pipe step, mutable object to read from.

Value

score frame

get_transform

Return underlying transform from vps.

Description

Return previously fit transform.

Usage

get_transform(vps)

Arguments

vps vtreat pipe step, mutable object to read from.

Value

transform
kWayCrossValidation
k-fold cross validation, a splitFunction in the sense of vtreat::buildEvalSets

Description

k-fold cross validation, a splitFunction in the sense of vtreat::buildEvalSets

Usage

```r
kWayCrossValidation(nRows, nSplits, dframe, y)
```

Arguments

- `nRows`: number of rows to split (>1).
- `nSplits`: number of groups to split into (>1,<=nRows).
- `dframe`: original data frame (ignored).
- `y`: numeric outcome variable (ignored).

Value

split plan

Examples

```r
kWayCrossValidation(7, 2, NULL, NULL)
```

kWayStratifiedY
k-fold cross validation stratified on y, a splitFunction in the sense of vtreat::buildEvalSets

Description

k-fold cross validation stratified on y, a splitFunction in the sense of vtreat::buildEvalSets

Usage

```r
kWayStratifiedY(nRows, nSplits, dframe, y)
```

Arguments

- `nRows`: number of rows to split (>1)
- `nSplits`: number of groups to split into (<nRows,>1).
- `dframe`: original data frame (ignored).
- `y`: numeric outcome variable try to have equidistributed in each split.
kWayStratifiedYReplace

Value
split plan

Examples

```r
set.seed(23255)
d <- data.frame(y=sin(1:100))
pStrat <- kWayStratifiedY(nrow(d),5,d,d$y)
problemAppPlan(nrow(d),5,pStrat,TRUE)
d$stratGroup <- vtreat::getSplitPlanAppLabels(nrow(d),pStrat)
pSimple <- kWayCrossValidation(nrow(d),5,d,d$y)
problemAppPlan(nrow(d),5,pSimple,TRUE)
d$simpleGroup <- vtreat::getSplitPlanAppLabels(nrow(d),pSimple)
summary(tapply(d$y,d$simpleGroup,mean))
summary(tapply(d$y,d$stratGroup,mean))
```

kWayStratifiedYReplace

k-fold cross validation stratified with replacement on y, a splitFunction in the sense of vtreat::buildEvalSets.

Description
Build a k-fold cross validation sample where training sets are the same size as the original data, and built by sampling disjoint from test/application sets (sampled with replacement).

Usage

```
kWayStratifiedYReplace(nRows, nSplits, dframe, y)
```

Arguments

- **nRows**
 number of rows to split (>1)
- **nSplits**
 number of groups to split into (<nRows,>1).
- **dframe**
 original data frame (ignored).
- **y**
 numeric outcome variable try to have equidistributed in each split.

Value
split plan
Examples

set.seed(23255)
d <- data.frame(y=sin(1:100))
pStrat <- kWayStratifiedYReplace(nrow(d),5,d,d$y)

makeCustomCoderCat

Make a categorical input custom coder.

Description

Make a categorical input custom coder.

Usage

makeCustomCoderCat(
 ..., customCode, coder, codeSeq, v, vcolin, zoY, zC, zTarget, weights = NULL, catScaling = FALSE)

Arguments

... not used, force arguments to be set by name
customCode code name
coder user supplied variable re-coder (see vignette for type signature)
codeSeq arguments to custom coder
v variable name
vcolin data column, character
zoY outcome column as numeric
zC if classification outcome column as character
zTarget if classification target class
weights per-row weights
catScaling optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.
Value

wrapped custom coder

Description

Make a numeric input custom coder.

Usage

```r
makeCustomCoderNum(
  ..., 
  customCode, 
  coder, 
  codeSeq, 
  v, 
  vcolin, 
  zoY, 
  zC, 
  zTarget, 
  weights = NULL, 
  catScaling = FALSE
)
```

Arguments

- `...` not used, force arguments to be set by name
- `customCode` code name
- `coder` user supplied variable re-coder (see vignette for type signature)
- `codeSeq` arguments to custom coder
- `v` variable name
- `vcolin` data column, numeric
- `zoY` outcome column as numeric
- `zC` if classification outcome column as character
- `zTarget` if classification target class
- `weights` per-row weights
- `catScaling` optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.

Value

wrapped custom coder
makelWayCrossValidationGroupedByColumn

Build a k-fold cross validation splitter, respecting (never splitting) groupingColumn.

Description

Build a k-fold cross validation splitter, respecting (never splitting) groupingColumn.

Usage

makelWayCrossValidationGroupedByColumn(groupingColumnName)

Arguments

groupingColumnName

name of column to group by.

Value

splitting function in the sense of vtreat::buildEvalSets.

Examples

d <- data.frame(y=sin(1:100))
d$group <- floor(seq_len(nrow(d))/5)
splitter <- makelWayCrossValidationGroupedByColumn('group')
split <- splitter(nrow(d),5,d,d$y)
d$splitLabel <- vtreat::getSplitsPlanAppLabels(nrow(d),split)
rowSums(table(d$group,d$splitLabel)>0)

mkCrossFrameCExperiment

Run categorical cross-frame experiment.

Description

Builds a designTreatmentsC treatment plan and a data frame prepared from dframe that is "cross" in the sense each row is treated using a treatment plan built from a subset of dframe disjoint from the given row. The goal is to try to and supply a method of breaking nested model bias other than splitting into calibration, training, test sets.
Usage

```r
mkCrossFrameCExperiment(
  dframe,
  varlist,
  outcomename,
  outcometarget,
  ..., weights = c(),
  minFraction = 0.02,
  smFactor = 0,
  rareCount = 0,
  rareSig = 1,
  collarProb = 0,
  codeRestriction = NULL,
  customCoders = NULL,
  scale = FALSE,
  doCollar = FALSE,
  splitFunction = NULL,
  ncross = 3,
  forceSplit = FALSE,
  catScaling = TRUE,
  verbose = TRUE,
  parallelCluster = NULL,
  use_parallel = TRUE,
  missingness_imputation = NULL,
  imputation_map = NULL
)
```

Arguments

- **dframe**: Data frame to learn treatments from (training data), must have at least 1 row.
- **varlist**: Names of columns to treat (effective variables).
- **outcomename**: Name of column holding outcome variable. `dframe[[outcomename]]` must be only finite non-missing values.
- **outcometarget**: Value/level of outcome to be considered "success", and there must be a cut such that `dframe[[outcomename]]` == `outcometarget` at least twice and `dframe[[outcomename]]` != `outcometarget` at least twice.
- **...**: no additional arguments, declared to forced named binding of later arguments
- **weights**: optional training weights for each row
- **minFraction**: optional minimum frequency a categorical level must have to be converted to an indicator column.
- **smFactor**: optional smoothing factor for impact coding models.
- **rareCount**: optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
- **rareSig**: optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.
collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set during prepare.treatmentplan.

codeRestriction what types of variables to produce (character array of level codes, NULL means no restriction).

customCoders map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).

catScaling optional if TRUE use glm() linkspace, if FALSE use lm() for scaling.

Value
named list containing: treatments, crossFrame, crossWeights, method, and evalSets

See Also
designTreatmentsC, designTreatmentsN, prepare.treatmentplan

Examples

categorical example
set.seed(23525)

we set up our raw training and application data
dTrainC <- data.frame(
 x = c('a', 'a', 'a', 'b', 'b', NA, NA),
 z = c(1, 2, 3, 4, NA, 6, NA),
 y = c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE))
dTestC <- data.frame(
 x = c('a', 'b', 'c', NA),
 z = c(10, 20, 30, NA))

we perform a vtreat cross frame experiment
and unpack the results into treatmentsC
and dTrainCTreated
unpack[
 treatmentsC = treatments,
 dTrainCTreated = crossFrame
] <- mkCrossFrameCExperiment(
 dframe = dTrainC,
 varlist = setdiff(colnames(dTrainC), 'y'),
 outcomename = 'y',
 outcometarget = TRUE,
 verbose = FALSE)

the treatments include a score frame relating new
derived variables to original columns
treatmentsC$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %.>%
 print(.)

the treated frame is a "cross frame" which
is a transform of the training data built
as if the treatment were learned on a different
disjoint training set to avoid nested model
bias and over-fit.
dTrainCTreated %.>%
 head(.) %.>%
 print(.)

Any future application data is prepared with
the prepare method.
dTestCTreated <- prepare(treatmentsC, dTestC, pruneSig=NULL)

dTestCTreated %.>%
 head(.) %.>%
 print(.)

mkCrossFrameMExperiment

Function to build multi-outcome vtreat cross frame and treatment plan.

Description

Please see vignette("MultiClassVtreat",package = "vtreat") https://winvector.github.io/vtreat/articles/MultiClassVtreat.html.
Usage

mkCrossFrameMExperiment(
 dframe,
 varlist,
 outcomeName,
 ...,
 weights = c(),
 minFraction = 0.02,
 smFactor = 0,
 rareCount = 0,
 rareSig = 1,
 collarProb = 0,
 codeRestriction = NULL,
 customCoders = NULL,
 scale = FALSE,
 doCollar = FALSE,
 splitFunction = vtreat::kWayCrossValidation,
 ncross = 3,
 forceSplit = FALSE,
 catScaling = FALSE,
 y_dependent_treatments = c("catB"),
 verbose = FALSE,
 parallelCluster = NULL,
 use_parallel = TRUE,
 missingness_imputation = NULL,
 imputation_map = NULL
)

Arguments

dframe data to learn from
varlist character, vector of independent variable column names.
outcomeName character, name of outcome column.
... not used, declared to forced named binding of later arguments
weights optional training weights for each row
minFraction optional minimum frequency a categorical level must have to be converted to an indicator column.
smFactor optional smoothing factor for impact coding models.
rareCount optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
rareSig optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.
collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set during prepare.multinomial_plan.
codeRestriction what types of variables to produce (character array of level codes, NULL means no restriction).

customCoders map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).

scale optional if TRUE replace numeric variables with regression ("move to outcome-scale").

doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.

splitFunction (optional) see vtreat::buildEvalSets.

ncross optional scalar>=2 number of cross-validation rounds to design.

forceSplit logical, if TRUE force cross-validated significance calculations on all variables.

catScaling optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.

y_dependent_treatments character what treatment types to build per-outcome level.

verbose if TRUE print progress.

parallelCluster (optional) a cluster object created by package parallel or package snow.

use_parallel logical, if TRUE use parallel methods.

missingness_imputation function of signature f(values: numeric, weights: numeric), simple missing value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Value a names list containing cross_frame, treat_m, score_frame, and fit_obj_id

See Also

prepare.multinomial_plan

Examples

numeric example
set.seed(23525)

we set up our raw training and application data
dTrainM <- data.frame(
 x = c('a', 'a', 'a', 'a', 'b', 'b', NA, NA),
 z = c(1, 2, 3, 4, 5, NA, 7, NA),
 y = c(0, 0, 1, 0, 1, 2, 1))
Run a numeric cross frame experiment.

Description

Builds a `designTreatmentsN` treatment plan and a data frame prepared from `dframe` that is "cross" in the sense each row is treated using a treatment plan built from a subset of `dframe` disjoint from the given row. The goal is to try to and supply a method of breaking nested model bias other than splitting into calibration, training, test sets.
Usage

```r
mkCrossFrameNExperiment(
  dframe,
  varlist,
  outcomename,
  ..., weights = c(),
  minFraction = 0.02,
  smFactor = 0,
  rareCount = 0,
  rareSig = 1,
  collarProb = 0,
  codeRestriction = NULL,
  customCoders = NULL,
  scale = FALSE,
  doCollar = FALSE,
  splitFunction = NULL,
  ncross = 3,
  forceSplit = FALSE,
  verbose = TRUE,
  parallelCluster = NULL,
  use_parallel = TRUE,
  missingness_imputation = NULL,
  imputation_map = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dframe</code></td>
<td>Data frame to learn treatments from (training data), must have at least 1 row.</td>
</tr>
<tr>
<td><code>varlist</code></td>
<td>Names of columns to treat (effective variables).</td>
</tr>
<tr>
<td><code>outcomename</code></td>
<td>Name of column holding outcome variable. dframe[[outcomename]] must be only finite non-missing values and there must be a cut such that dframe[[outcomename]] is both above the cut at least twice and below the cut at least twice.</td>
</tr>
<tr>
<td><code>...</code></td>
<td>no additional arguments, declared to forced named binding of later arguments</td>
</tr>
<tr>
<td><code>weights</code></td>
<td>optional training weights for each row</td>
</tr>
<tr>
<td><code>minFraction</code></td>
<td>optional minimum frequency a categorical level must have to be converted to an indicator column.</td>
</tr>
<tr>
<td><code>smFactor</code></td>
<td>optional smoothing factor for impact coding models.</td>
</tr>
<tr>
<td><code>rareCount</code></td>
<td>optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.</td>
</tr>
<tr>
<td><code>rareSig</code></td>
<td>optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.</td>
</tr>
<tr>
<td><code>collarProb</code></td>
<td>what fraction of the data (pseudo-probability) to collar data at if doCollar is set during <code>prepare.treatmentplan</code>.</td>
</tr>
</tbody>
</table>
codeRestriction
what types of variables to produce (character array of level codes, NULL means no restriction).

customCoders
map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).

scale
optional if TRUE replace numeric variables with regression ("move to outcome-scale").

doCollar
optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.

splitFunction
(optional) see vtreat::buildEvalSets.

ncross
optional scalar >= 2 number of cross-validation rounds to design.

forceSplit
logical, if TRUE force cross-validated significance calculations on all variables.

verbose
if TRUE print progress.

parallelCluster
(optional) a cluster object created by package parallel or package snow.

use_parallel
logical, if TRUE use parallel methods.

missingness_imputation
function of signature f(values: numeric, weights: numeric), simple missing value imputer.

imputation_map
map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Value
named list containing: treatments, crossFrame, crossWeights, method, and evalSets

See Also
designTreatmentsC, designTreatmentsN, prepare.treatmentplan

Examples

numeric example
set.seed(23525)

we set up our raw training and application data
dTrainN <- data.frame(
 x = c('a', 'a', 'a', 'a', 'b', 'b', NA, NA),
 z = c(1, 2, 3, 4, 5, NA, 7, NA),
 y = c(0, 0, 0, 1, 0, 1, 1, 1))
dTestN <- data.frame(
 x = c('a', 'b', 'c', NA),
 z = c(10, 20, 30, NA))
we perform a vtreat cross frame experiment
and unpack the results into treatmentsN
and dTrainNTreated
unpack[
 treatmentsN = treatments,
 dTrainNTreated = crossFrame
] <- mkCrossFrameNExperiment(
 dframe = dTrainN,
 varlist = setdiff(colnames(dTrainN), 'y'),
 outcome = 'y',
 verbose = FALSE)

the treatments include a score frame relating new
derived variables to original columns
treatmentsN$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %.>%
 print(.)

the treated frame is a "cross frame" which
is a transform of the training data built
as if the treatment were learned on a different
disjoint training set to avoid nested model
bias and over-fit.
dTrainNTreated %.>%
 head(.) %.>%
 print(.)

Any future application data is prepared with
the prepare method.
dTestNTreated <- prepare(treatmentsN, dTestN, pruneSig=NULL)

dTestNTreated %.>%
 head(.) %.>%
 print(.)

MultinomialOutcomeTreatment

Stateful object for designing and applying multinomial outcome treatments.

Description

Hold settings and results for multinomial classification data preparation.

Usage

MultinomialOutcomeTreatment(
 ...,
 var_list,
 outcome_name,
multinomial_parameters

cols_to_copy = NULL,
params = NULL,
imputation_map = NULL
)

Arguments

... not used, force arguments to be specified by name.
var_list Names of columns to treat (effective variables).
outcome_name Name of column holding outcome variable. dataframe[[outcome_name]] must be only finite non-missing values.
cols_to_copy list of extra columns to copy.
params parameters list from multinomial_parameters
imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameMExperiment and prepare.multinomial_plan for details.
Note: there currently is no designTreatmentsM, so MultinomialOutcomeTreatment$fit() is implemented in terms of MultinomialOutcomeTreatment$fit_transform()

Description

A list of settings and values for vtreat multinomial classification fitting. Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameMExperiment and prepare.multinomial_plan for details.

Usage

multinomial_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list
Report new/novel appearances of character values.

Usage

\[\text{novel}_\text{value}_\text{summary}(\text{dframe}, \text{trackedValues})\]

Arguments

- **dframe**: Data frame to inspect.
- **trackedValues**: optional named list mapping variables to know values, allows warnings upon novel level appearances (see `track_values`)

Value

frame of novel occurrences

See Also

- `prepare.treatmentplan`
- `track_values`

Examples

```r
set.seed(23525)
zip <- c(NA, paste('z', 1:10, sep = "_"))
N <- 10
d <- data.frame(zip = sample(zip, N, replace=TRUE),
                 zip2 = sample(zip, N, replace=TRUE),
                 y = runif(N))
dSample <- d[1:5, , drop = FALSE]
trackedValues <- track_values(dSample, c("zip", "zip2"))
novel_value_summary(d, trackedValues)
```
NumericOutcomeTreatment

Stateful object for designing and applying numeric outcome treatments.

Description

Hold settings and results for regression data preparation.

Usage

NumericOutcomeTreatment(
 ..., var_list, outcome_name, cols_to_copy = NULL, params = NULL, imputation_map = NULL)

Arguments

... not used, force arguments to be specified by name.

var_list Names of columns to treat (effective variables).

outcome_name Name of column holding outcome variable. dframe[[outcomename]] must be only finite non-missing values.

cols_to_copy list of extra columns to copy.

params parameters list from regression_parameters

imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameNExperiment, designTreatmentsN, and prepare.treatmentplan for details.
oneWayHoldout

One way holdout, a splitFunction in the sense of vtreat::buildEvalSets.

Description

Note one way holdout can leak target expected values, so it should not be preferred in nested modeling situations. Also, doesn’t respect nSplits.

Usage

\[
\text{oneWayHoldout}(nRows, nSplits, dframe, y)
\]

Arguments

- `nRows` number of rows to split (integer >1).
- `nSplits` number of groups to split into (ignored).
- `dframe` original data frame (ignored).
- `y` numeric outcome variable (ignored).

Value

split plan

Examples

\[
\text{oneWayHoldout}(3, \text{NULL}, \text{NULL}, \text{NULL})
\]

patch_columns_into_frame

Patch columns into data.frame.

Description

Add columns from new_frame into old_frame, replacing any columns with matching names in orig_frame with values from new_frame.

Usage

\[
\text{patch_columns_into_frame}(\text{orig_frame}, \text{new_frame})
\]

Arguments

- `orig_frame` data.frame to patch into.
- `new_frame` data.frame to take replacement columns from.
Value

patched data.frame

Examples

```
orig_frame <- data.frame(x = 1, y = 2)
new_frame <- data.frame(y = 3, z = 4)
patch_columns_into_frame(orig_frame, new_frame)
```

Description

Usage

```
ppCoderC(v, vcol, y, w = NULL)
```

Arguments

- **v**: character variable name
- **vcol**: character, independent or input variable
- **y**: logical, dependent or outcome variable to predict
- **w**: row/example weights

Value

scored training data column
Description

Usage

```r
ppCoderN(v, vcol, y, w = NULL)
```

Arguments

- **v**: character variable name
- **vcol**: character, independent or input variable
- **y**: numeric, dependent or outcome variable to predict
- **w**: row/example weights

Value

scored training data column

prepare

Apply treatments and restrict to useful variables.

Description

Apply treatments and restrict to useful variables.

Usage

```r
prepare(treatmentplan, dframe, ...)
```

Arguments

- **treatmentplan**: Plan built by designTreatmentsC() or designTreatmentsN()
- **dframe**: Data frame to be treated
- **...**: no additional arguments, declared to forced named binding of later arguments

See Also

`prepare.treatmentplan`, `prepare.simple_plan`, `prepare.monomial_plan`
prepare.multinomial_plan

Function to apply mkCrossFrameMExperiment treatments.

Description

Please see vignette("MultiClassVtreat",package = "vtreat") https://winvector.github.io/vtreat/articles/MultiClassVtreat.html.

Usage

```r
## S3 method for class 'multinomial_plan'
prepare(
  treatmentplan,  # multinomial_plan from mkCrossFrameMExperiment.
  dframe,         # new data to process.
  ...,            # not used, declared to forced named binding of later arguments
  pruneSig = NULL,# suppress variables with significance above this level
  scale = FALSE,  # optional if TRUE replace numeric variables with single variable model regressions ("move to outcome-scale"). These have mean zero and (for variables with significant less than 1) slope 1 when regressed (lm for regression problems/glm for classification problems) against outcome.
  doCollar = FALSE,# optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.
  varRestriction = NULL,# optional list of treated variable names to restrict to
  codeRestriction = NULL,# optional list of treated variable codes to restrict to
  trackedValues = NULL,# optional named list mapping variables to know values, allows warnings upon novel level appearances
  extracols = NULL, # check_for_duplicate_frames = TRUE
  parallelCluster = NULL,
  use_parallel = TRUE,
  check_for_duplicate_frames = TRUE
)
```

Arguments

treatmentplan: multinomial_plan from mkCrossFrameMExperiment.
dframe: new data to process.
...: not used, declared to forced named binding of later arguments
pruneSig: suppress variables with significance above this level
scale: optional if TRUE replace numeric variables with single variable model regressions ("move to outcome-scale"). These have mean zero and (for variables with significant less than 1) slope 1 when regressed (lm for regression problems/glm for classification problems) against outcome.
doCollar: optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.
varRestriction: optional list of treated variable names to restrict to
codeRestriction: optional list of treated variable codes to restrict to
trackedValues: optional named list mapping variables to know values, allows warnings upon novel level appearances (see track_values)
prepare.simple_plan

extracols extra columns to copy.
parallelCluster (optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods.
check_for_duplicate_frames logical, if TRUE check if we called prepare on same data.frame as design step.

Value

prepared data frame.

See Also

mkCrossFrameMExperiment, prepare

prepare.simple_plan Prepare a simple treatment.

Description

Prepare a simple treatment.

Usage

S3 method for class 'simple_plan'
prepare(treatmentplan, dframe, ...)

Arguments

treatmentplan A simple treatment plan.
dframe data.frame to be treated.
... not used, present for S3 signature consistency.

See Also

design_missingness_treatment, prepare

Examples

d <- wrapr::build_frame(
 "x1", "x2", "x3" |
 1 , 4 , "A" |
 NA , 5 , "B" |
 3 , 6 , NA)

plan <- design_missingness_treatment(d)
prepare.treatmentplan

```r
prepare(plan, d)
prepare(plan, data.frame(x1=NA, x2=NA, x3="E"))
```

prepare.treatmentplan
Apply treatments and restrict to useful variables.

Description

Use a treatment plan to prepare a data frame for analysis. The resulting frame will have new effective variables that are numeric and free of NaN/NA. If the outcome column is present it will be copied over. The intent is that these frames are compatible with more machine learning techniques, and avoid a lot of corner cases (NA,NaN, novel levels, too many levels). Note: each column is processed independently of all others. Also copies over outcome if present. Note: treatmentplan's are not meant for long-term storage, a warning is issued if the version of vtreat that produced the plan differs from the version running `prepare()`.

Usage

```r
## S3 method for class 'treatmentplan'
prepare(
  treatmentplan,
  dframe,
  ...
)
```

Arguments

- `treatmentplan` Plan built by `designTreatmentsC()` or `designTreatmentsN()`
- `dframe` Data frame to be treated
- `...` no additional arguments, declared to forced named binding of later arguments
- `pruneSig` suppress variables with significance above this level
- `scale` optional if TRUE replace numeric variables with single variable model regressions (‘move to outcome-scale’). These have mean zero and (for variables with significant less than 1) slope 1 when regressed (lm for regression problems/glm for classification problems) against outcome.
doCollar: optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.

varRestriction: optional list of treated variable names to restrict to

codeRestriction: optional list of treated variable codes to restrict to

trackedValues: optional named list mapping variables to know values, allows warnings upon novel level appearances (see \texttt{track} values)

extracols: extra columns to copy.

parallelCluster: (optional) a cluster object created by package parallel or package snow.

use_parallel: logical, if TRUE use parallel methods.

check_for_duplicate_frames: logical, if TRUE check if we called prepare on same data.frame as design step.

Value

treated data frame (all columns numeric- without NA, NaN)

See Also

\texttt{mkCrossFrameCExperiment}, \texttt{mkCrossFrameNExperiment}, \texttt{designTreatmentsC}, \texttt{designTreatmentsN}, \texttt{designTreatmentsZ}, \texttt{prepare}

Examples

```r
# categorical example
set.seed(23525)

# we set up our raw training and application data
dTrainC <- data.frame(
  x = c('a', 'a', 'a', 'b', 'b', NA, NA),
  z = c(1, 2, 3, 4, NA, 6, NA),
  y = c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE))

dTestC <- data.frame(
  x = c('a', 'b', 'c', NA),
  z = c(10, 20, 30, NA))

# we perform a vtreat cross frame experiment
# and unpack the results into treatmentsC
# and dTrainCTreated
unpack[ treatmentsC = treatments,
  dTrainCTreated = crossFrame ] <- mkCrossFrameCExperiment(
  dframe = dTrainC,
  varlist = setdiff(colnames(dTrainC), 'y'),
  outcomename = 'y',
  check_for_duplicate_frames = TRUE)
```

outcometarget = TRUE,
verbose = FALSE)

the treatments include a score frame relating new
derived variables to original columns
treatmentsC.scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %>%
 print()

the treated frame is a "cross frame" which
is a transform of the training data built
as if the treatment were learned on a different
disjoint training set to avoid nested model
bias and over-fit.
dTrainCTreated %>%
 head(.) %>%
 print(.)

Any future application data is prepared with
the prepare method.
dTestCTreated <- prepare(treatmentsC, dTestC, pruneSig=NULL)

dTestCTreated %>%
 head(.) %>%
 print(.)

pre_comp_xval **Pre-computed cross-plan (so same split happens each time).**

Description

Pre-computed cross-plan (so same split happens each time).

Usage

```r
pre_comp_xval(nRows, nSplits, splitplan)
```

Arguments

- `nRows`: number of rows to split (integer >1).
- `nSplits`: number of groups to split into (ignored).
- `splitplan`: split plan to actually use

Value

`splitplan`
Examples

```r
p1 <- oneWayHoldout(3, NULL, NULL, NULL)
p2 <- pre_comp_xval(3, 3, p1)
p2(3, 3)
```

print.multinomial_plan

Print treatmentplan.

Description

Print treatmentplan.

Usage

```r
## S3 method for class 'multinomial_plan'
print(x, ...)
```

Arguments

- `x` : treatmentplan
- `...` : additional args (to match general signature).

print.simple_plan

Print treatmentplan.

Description

Print treatmentplan.

Usage

```r
## S3 method for class 'simple_plan'
print(x, ...)
```

Arguments

- `x` : treatmentplan
- `...` : additional args (to match general signature).
print.treatmentplan

Description

Print treatmentplan.

Usage

```r
## S3 method for class 'treatmentplan'
print(x, ...)
```

Arguments

- `x`: treatmentplan
- `...`: additional args (to match general signature).

See Also

`designTreatmentsC`, `designTreatmentsN`, `designTreatmentsZ`, `prepare.treatmentplan`

print.vtreatment

Description

Print treatmentplan.

Usage

```r
## S3 method for class 'vtreatment'
print(x, ...)
```

Arguments

- `x`: treatmentplan
- `...`: additional args (to match general signature).

See Also

`designTreatmentsC`, `designTreatmentsN`, `designTreatmentsZ`, `prepare.treatmentplan`
ProblemAppPlan

check if appPlan is a good carve-up of 1:nRows into nSplits groups

Description

check if appPlan is a good carve-up of 1:nRows into nSplits groups

Usage

```r
problemAppPlan(nRows, nSplits, appPlan, strictCheck)
```

Arguments

- `nRows`: number of rows to carve-up
- `nSplits`: number of sets to carve-up into
- `appPlan`: carve-up to critique
- `strictCheck`: logical, if true expect application data to be a carve-up and training data to be a maximal partition and to match nSplits.

Value

problem with carve-up (null if good)

See Also

- `kWayCrossValidation`, `kWayStratifiedY`, and `makeKWayCrossValidationGroupedByColumn`

Examples

```r
plan <- kWayStratifiedY(3,2,NULL,NULL)
problemAppPlan(3,3,plan,TRUE)
```

RegressionParameters

vtreat regression parameters.

Description

rquery_prepare

Usage

regression_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

rquery_prepare
Materialize a treated data frame remotely.

Description

Materialize a treated data frame remotely.

Usage

rquery_prepare(
 db,
 rqplan,
 data_source,
 result_table_name,
 ...
 extracols = NULL,
 temporary = FALSE,
 overwrite = TRUE,
 attempt_nan_inf_mapping = FALSE,
 col_sample = NULL,
 return_ops = FALSE
)

materialize_treated(
 db,
 rqplan,
 data_source,
 result_table_name,
 ...
 extracols = NULL,
 temporary = FALSE,
 overwrite = TRUE,
 attempt_nan_inf_mapping = FALSE,
 col_sample = NULL,
 return_ops = FALSE
)
Arguments

- `db`: a db handle.
- `rqplan`: an query plan produced by `as_rquery_plan()`.
- `data_source`: relop, data source (usually a `relop_table_source`).
- `result_table_name`: character, table name to land result in.
- `extracols`: extra columns to copy.
- `temporary`: logical, if TRUE try to make result temporary.
- `overwrite`: logical, if TRUE try to overwrite result.
- `attempt_nan_inf_mapping`: logical, if TRUE attempt to map NaN and Infinity to NA/NULL (good on PostgreSQL, not on Spark).
- `col_sample`: sample of data to determine column types.
- `return_ops`: logical, if TRUE return operator tree instead of materializing.

Value

description of treated table.

Functions

- `materialize_treated`: old name for `rquery_prepare` function

See Also

- `as_rquery_plan`, `rqdatatable_prepare`

solveIsotone

Solve for best single-direction (non-decreasing or non-increasing) fit.

Description

Return a vector of length y that is a function of x (differs at must where x differs) obeying the either the same order constraints or the opposite order constraints as x. This vector is picked as close to y (by square-distance) as possible.

Usage

`solveIsotone(varName, x, y, w = NULL)`
solveNonDecreasing

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>varName</td>
<td>character, name of variable</td>
</tr>
<tr>
<td>x</td>
<td>numeric, factor, or character input (not empty, no NAs).</td>
</tr>
<tr>
<td>y</td>
<td>numeric (same length as x no NAs), output to match</td>
</tr>
<tr>
<td>w</td>
<td>numeric positive, same length as x (weights, can be NULL)</td>
</tr>
</tbody>
</table>

Details

Value

isotonicly adjusted y (non-decreasing)

Examples

```r
if(requireNamespace("isotone", quietly = TRUE)) {
  solveIsotone('v', 1:3, c(1,2,1))
}
```

solveNonDecreasing Solve for best non-decreasing fit using isotone regression (from the "isotone" package https://CRAN.R-project.org/package= isotone).

Description

Return a vector of length y that is a function of x (differs at must where x differs) obeying the same order constraints as x. This vector is picked as close to y (by square-distance) as possible.

Usage

solveNonDecreasing(varName, x, y, w = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>varName</td>
<td>character, name of variable</td>
</tr>
<tr>
<td>x</td>
<td>numeric, factor, or character input (not empty, no NAs).</td>
</tr>
<tr>
<td>y</td>
<td>numeric or castable to such (same length as x no NAs), output to match</td>
</tr>
<tr>
<td>w</td>
<td>numeric positive, same length as x (weights, can be NULL)</td>
</tr>
</tbody>
</table>

Details

solveNonIncreasing

Value
isotonicly adjusted y (non-decreasing)

Examples

if(requireNamespace("isotone", quietly = TRUE)) {
 solveNonDecreasing('v', 1:3, c(1,2,1))
}

solveNonIncreasing Solve for best non-increasing fit.

Description
Return a vector of length y that is a function of x (differs at most where x differs) obeying the opposite order constraints as x. This vector is picked as close to y (by square-distance) as possible.

Usage
solveNonIncreasing(varName, x, y, w = NULL)

Arguments
varName character, name of variable
x numeric, factor, or character input (not empty, no NAs).
y numeric (same length as x no NAs), output to match
w numeric positive, same length as x (weights, can be NULL)

Details

Value
isotonicly adjusted y (non-decreasing)

Examples

if(requireNamespace("isotone", quietly = TRUE)) {
 solveNonIncreasing('v', 1:3, c(1,2,1))
}
solve_piecewise

Solve as piecewise linear problem, numeric target.

Description

Return a vector of length y that is a piecewise function of x. This vector is picked as close to y (by square-distance) as possible for a set of x-only determined cut-points. Cross-validates for a good number of segments.

Usage

solve_piecewise(varName, x, y, w = NULL)

Arguments

- **varName**: character, name of variable
- **x**: numeric input (not empty, no NAs).
- **y**: numeric or castable to such (same length as x no NAs), output to match
- **w**: numeric positive, same length as x (weights, can be NULL)

Value

segmented y prediction

solve_piecewisec

Solve as piecewise logit problem, categorical target.

Description

Return a vector of length y that is a piecewise function of x. This vector is picked as close to y (by square-distance) as possible for a set of x-only determined cut-points. Cross-validates for a good number of segments.

Usage

solve_piecewisec(varName, x, y, w = NULL)

Arguments

- **varName**: character, name of variable
- **x**: numeric input (not empty, no NAs).
- **y**: numeric or castable to such (same length as x no NAs), output to match
- **w**: numeric positive, same length as x (weights, can be NULL)

Value

segmented y prediction
spline_variable

Spline variable numeric target.

Description
Return a spline approximation of data.

Usage
```r
spline_variable(varName, x, y, w = NULL)
```

Arguments
- **varName** character, name of variable
- **x** numeric input (not empty, no NAs).
- **y** numeric or castable to such (same length as x no NAs), output to match
- **w** numeric positive, same length as x (weights, can be NULL)

Value
spline y prediction

spline_variablec

Spline variable categorical target.

Description
Return a spline approximation of the change in log odds.

Usage
```r
spline_variablec(varName, x, y, w = NULL)
```

Arguments
- **varName** character, name of variable
- **x** numeric input (not empty, no NAs).
- **y** numeric or castable to such (same length as x no NAs), output to match
- **w** numeric positive, same length as x (weights, can be NULL)

Value
spline y prediction
square_window

Build a square windows variable, numeric target.

Description

Build a square moving average window (KNN in 1d). This is a high-frequency feature.

Usage

\[
\text{square_window}(\text{varName}, x, y, w = \text{NULL})
\]

Arguments

- **varName**: character, name of variable
- **x**: numeric input (not empty, no NAs).
- **y**: numeric or castable to such (same length as x no NAs), output to match
- **w**: numeric positive, same length as x (weights, can be NULL) IGNORED

Value

segmented y prediction

Examples

\[
d <- \text{data_frame}(x = \text{c(NA, 1:6)}, y = \text{c(0, 0, 0, 1, 1, 0, 0)})
\text{square_window}("v", dx, dy)
\]

square_windowc

Build a square windows variable, categorical target.

Description

Build a square moving average window (KNN in 1d). This is a high-frequency feature. Approximation of the change in log odds.

Usage

\[
\text{square_windowc}(\text{varName}, x, y, w = \text{NULL})
\]
track_values

Arguments

varName character, name of variable
x numeric input (not empty, no NAs).
y numeric or castable to such (same length as x no NAs), output to match
w numeric positive, same length as x (weights, can be NULL) IGNORED

Value

segmented y prediction

Examples

d <- data.frame(x = c(NA, 1:6), y = c(0, 0, 0, 1, 1, 0, 0))
square_window("v", dx, dy)

track_values Track unique character values for variables.

Description

Builds lists of observed unique character values of varlist variables from the data frame.

Usage

track_values(dframe, varlist)

Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).

Value

named list of values seen.

See Also

prepare.treatmentplan, novel_value_summary
Examples

```r
set.seed(23525)
zip <- c(NA, paste('z', 1:100, sep = "_"))
N <- 500
d <- data.frame(zip = sample(zip, N, replace=TRUE),
    zip2 = sample(zip, N, replace=TRUE),
    y = runif(N))
dSample <- d[1:300, , drop = FALSE]
tplan <- designTreatmentsN(dSample,
    c("zip", "zip2"), "y",
    verbose = FALSE)
trackedValues <- track_values(dSample, c("zip", "zip2"))
# don't normally want to catch warnings,
# doing it here as this is an example
# and must not have unhandled warnings.
tryCatch(
    prepare(tplan, d, trackedValues = trackedValues),
    warning = function(w) { cat(paste(w, collapse = "\n")) })
```

UnsupervisedTreatment Stateful object for designing and applying unsupervised treatments.

Description

Hold settings and results for unsupervised data preparation.

Usage

```r
UnsupervisedTreatment(
    ..., 
    var_list,
    cols_to_copy = NULL,
    params = NULL,
    imputation_map = NULL
)
```

Arguments

... not used, force arguments to be specified by name.

var_list Names of columns to treat (effective variables).

cols_to_copy list of extra columns to copy.

params parameters list from unsupervised_parameters

imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.
unsupervised_parameters

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, designTreatmentsZ and prepare.treatmentplan for details.

Note: for UnsupervisedTreatment fit_transform(d) is implemented as fit(d)$transform(d).

unsupervised_parameters

vtreat unsupervised parameters.

Description

Usage

unsupervised_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

value_variables_C

Value variables for prediction a categorical outcome.

Description

Value variables for prediction a categorical outcome.

Usage

value_variables_C(
 dframe,
 varlist,
 outcomename,
 outcometarget,
 ...,
 weights = c(),
 minFraction = 0.02,
 smFactor = 0,
value_variables_C

rareCount = 0,
rareSig = 1,
collarProb = 0,
scale = FALSE,
doCollar = FALSE,
splitFunction = NULL,
ncross = 3,
forceSplit = FALSE,
catScaling = TRUE,
verbose = FALSE,
parallelCluster = NULL,
use_parallel = TRUE,
customCoders = list(c.PiecewiseV.num = vtreat::solve_piecewisec, n.PiecewiseV.num = vtreat::solve_piecewise, c.knearest.num = vtreat::square_windowc, n.knearest.num = vtreat::square_window),
codeRestriction = c("PiecewiseV", "knearest", "clean", "isBAD", "catB", "catP"),
missingness_imputation = NULL,
imputation_map = NULL
)

Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
outcomename Name of column holding outcome variable. dframe[[outcomename]] must be only finite non-missing values.
outcometarget Value/level of outcome to be considered "success", and there must be a cut such that dframe[[outcomename]]==outcometarget at least twice and dframe[[outcomename]]!=outcometarget at least twice.
... no additional arguments, declared to forced named binding of later arguments
weights optional training weights for each row
minFraction optional minimum frequency a categorical level must have to be converted to an indicator column.
smFactor optional smoothing factor for impact coding models.
rareCount optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
rareSig optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.
collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set during prepare.treatmentplan.
scale optional if TRUE replace numeric variables with regression ("move to outcome-scale").
doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.
splitFunction (optional) see vtreat::buildEvalSets.
value_variables_N

ncross optional scalar>=2 number of cross-validation rounds to design.
forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
catScaling optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.
verbose if TRUE print progress.
parallelCluster (optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods.
customCoders additional coders to use for variable importance estimate.
codeRestriction codes to restrict to for variable importance estimate.
missingness_imputation function of signature f(values: numeric, weights: numeric), simple missing value imputer.
imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Value

 table of variable valuations

value_variables_N Value variables for prediction a numeric outcome.

Description

Value variables for prediction a numeric outcome.

Usage

value_variables_N(
 dframe,
 varlist,
 outcomename,
 ...,
 weights = c(),
 minFraction = 0.02,
 smFactor = 0,
 rareCount = 0,
 rareSig = 1,
 collarProb = 0,
 scale = FALSE,
 doCollar = FALSE,
 splitFunction = NULL,
 ncross = 3,
 forceSplit = FALSE,
value_variables_N

verbose = FALSE,
parallelCluster = NULL,
use_parallel = TRUE,
customCoders = list(c.PiecewiseV.num = vtreat::solve_piecewisec, n.PiecewiseV.num =
vtreat::solve_piecewise, c.knearest.num = vtreat::square_windowc, n.knearest.num =
vtreat::square_window),
codeRestriction = c("PiecewiseV", "knearest", "clean", "isBAD", "catB", "catP"),
missingness_imputation = NULL,
imputation_map = NULL
)

Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
outcomename Name of column holding outcome variable. dframe[[outcomename]] must be
only finite non-missing values and there must be a cut such that dframe[[outcomename]]
is both above the cut at least twice and below the cut at least twice.
...
weights optional training weights for each row
minFraction optional minimum frequency a categorical level must have to be converted to an
indicator column.
smFactor optional smoothing factor for impact coding models.
rareCount optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to 0 or off.
rareSig optional numeric, suppress levels from pooling at this significance value greater.
Defaults to NULL or off.
collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set
during prepare.treatmentplan.
scale optional if TRUE replace numeric variables with regression ("move to outcome-scale").
doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability
specified by collarProb during treatment design.
splitFunction (optional) see vtreat::buildEvalSets.
ncross optional scalar>=2 number of cross-validation rounds to design.
forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
verbose if TRUE print progress.
parallelCluster (optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods.
customCoders additional coders to use for variable importance estimate.
codeRestriction codes to restrict to for variable importance estimate.
variable_values

missingness_imputation
 function of signature f(values: numeric, weights: numeric), simple missing
 value imputer.

imputation_map
 map from column names to functions of signature f(values: numeric, weights:
 numeric), simple missing value imputers.

Value
 table of variable valuations

variable_values Return variable evaluations.

Description
 Return variable evaluations.

Usage
 variable_values(sf)

Arguments
 sf scoreFrame from from vtreat treatments

Value
 per-original variable evaluations

vnames New treated variable names from a treatmentplan$treatment item.

Description
 New treated variable names from a treatmentplan$treatment item.

Usage
 vnames(x)

Arguments
 x vtreatment item

See Also
 designTreatmentsC designTreatmentsN designTreatmentsZ
vorig

Original variable name from a treatmentplan$treatment item.

Description

Original variable name from a treatmentplan$treatment item.

Usage

vorig(x)

Arguments

x vtreatment item.

See Also

designTreatmentsC designTreatmentsN designTreatmentsZ

vtreat

vtreat: A Statistically Sound 'data.frame' Processor/Conditioner

Description

A 'data.frame' processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. 'vtreat' prepares variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems 'vtreat' defends against: 'Inf', 'NA', too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). 'vtreat::prepare' should be used as you would use 'model.matrix'.

Details

For more information:

• vignette('vtreat',package='vtreat')
• vignette(package='vtreat')
• Website: https://github.com/WinVector/vtreat
Index

apply_transform, 3
as_rquery_plan, 4, 51

BinomialOutcomeTreatment, 5
buildEvalSets, 6

center_scale, 8
classification_parameters, 9

design_missingness_treatment, 16, 43
designTreatmentsC, 6, 9, 13, 15, 26, 28, 34, 45, 48, 49, 63, 64
designTreatmentsN, 11, 12, 15, 28, 32, 34, 38, 45, 48, 49, 63, 64
designTreatmentsZ, 11, 13, 14, 45, 48, 59, 63, 64

fit, 17
fit_prepare, 18
fit_transform, 18
format.vtreatment, 19

get_feature_names, 20
get_score_frame, 21
get_transform, 21
getSplitPlanAppLabels, 20

kWayCrossValidation, 7, 20, 22, 49
kWayStratifiedY, 7, 20, 22, 49
kWayStratifiedYReplace, 23

makeCustomCoderCat, 24
makeCustomCoderNum, 25
makekWayCrossValidationGroupedByColumn, 7, 20, 26, 49
materialize_treated (rquery_prepare), 50
mkCrossFrameCExperiment, 6, 9, 11, 26, 45, 49

mkCrossFrameMExperiment, 29, 36, 43
mkCrossFrameNExperiment, 12, 13, 32, 38, 45, 49

multinomial_parameters, 36
MultinomialOutcomeTreatment, 35

novel_value_summary, 37, 57
NumericOutcomeTreatment, 38

oneWayHoldout, 39
patch_columns_into_frame, 39
ppCoderC, 40
ppCoderN, 41
pre_comp_xval, 46
prepare, 41, 43, 45
prepare.multinomial_plan, 30, 31, 36, 41, 42
prepare.simple_plan, 16, 41, 43
prepare.treatmentplan, 6, 9–11, 13, 15, 28, 33, 34, 37, 38, 41, 44, 48, 49, 57, 59, 60, 62
print.multinomial_plan, 47
print.simple_plan, 47
print.treatmentplan, 48
print.vtreatment, 48
problemAppPlan, 49

regression_parameters, 49
rqdatatable_prepare, 51
rquery_prepare, 4, 50

solve_piecewise, 54
solve_piecewisec, 54
solveIsotone, 51
solveNonDecreasing, 52
solveNonIncreasing, 53
spline_variable, 55
spline_variablec, 55
square_window, 56
square_windowc, 56

track_values, 37, 42, 45, 57
unsupervised_parameters, 59
UnsupervisedTreatment, 58

value_variables_C, 59
value_variables_N, 61
variable_values, 63
vnames, 63
vorig, 64
vtreat, 64