Package ‘walker’

January 23, 2020

Type Package
Title Bayesian Regression with Time-Varying Coefficients
Version 0.3.1-1
Date 2020-01-23
Description Bayesian dynamic regression models where the regression coefficients can vary over time as random walks. Gaussian, Poisson, and binomial observations are supported. The Markov chain Monte Carlo computations are done using Hamiltonian Monte Carlo provided by Stan, using a state space representation of the model in order to marginalise over the coefficients for efficient sampling. For non-Gaussian models, walker uses the importance sampling type estimators based on approximate marginal MCMC as in Vihola, Helske, Franks (2017, <arXiv:1609.02541>).
License GPL (>= 3)
Suggests diagis, gridExtra, knitr (>= 1.11), rmarkdown (>= 0.8.1), testthat
Depends R (>= 3.4.0), Rcpp (>= 0.12.9), bayesplot, rstan (>= 2.18.1)
Imports dplyr, ggplot2, KFAS, methods
LinkingTo StanHeaders (>= 2.18.0), rstan (>= 2.18.1), BH (>= 1.66.0), Rcpp (>= 0.12.9), RcppArmadillo, RcppEigen (>= 0.3.3.3.0)
SystemRequirements C++14, GNU make
VignetteBuilder knitr
RoxygenNote 6.1.1
ByteCompile true
URL https://github.com/helske/walker
BugReports https://github.com/helske/walker/issues
Encoding UTF-8
NeedsCompilation yes
Author Jouni Helske [aut, cre](<https://orcid.org/0000-0001-7130-793X>)
Maintainer Jouni Helske <jouni.helske@iki.fi>
Repository CRAN
Date/Publication 2020-01-23 15:50:02 UTC
topics documented:

- coef.walker_fit
- fitted.walker_fit
- plot_coefs
- plot_fit
- plot_predict
- pp_check.walker_fit
- predict.walker_fit
- print.walker_fit
- rw1
- rw2
- walker
- walker_glm
- walker_rw1

Index

c coef.walker_fit Extract Coefficients of Walker Fit

Description

Returns the regression coefficients from output of walker or walker_glm.

Usage

```r
## S3 method for class 'walker_fit'
coef(object, summary = TRUE, transform = identity, ...
```

Arguments

- `object` Output of walker or walker_glm.
- `summary` If TRUE (default), return summary statistics. Otherwise returns samples.
- `transform` Optional vectorized function for transforming the coefficients (for example exp).
- `...` Ignored.

Value

Time series containing coefficients values.
fitted.walker_fit

Extract Fitted Values of Walker Fit

Description

Returns fitted values (posterior means) from output of `walker` or `walker_glm`.

Usage

```r
## S3 method for class 'walker_fit'
fitted(object, summary = TRUE, ...)
```

Arguments

- `object` Output of `walker` or `walker_glm`.
- `summary` If `TRUE` (default), return summary statistics. Otherwise returns samples.
- `...` Ignored.

Value

Time series containing fitted values.

plot_coefs

Posterior predictive check for walker object

Description

Plots sample quantiles from posterior predictive sample. See `ppc_ribbon` for details.

Usage

```r
plot_coefs(object, level = 0.05, alpha = 0.33, transform = identity, 
scales = "fixed", add_zero = TRUE)
```

Arguments

- `object` An output from `walker`.
- `level` Level for intervals. Default is 0.05, leading to 90% intervals.
- `alpha` Transparency level for `geom_ribbon`.
- `transform` Optional vectorized function for transforming the coefficients (for example `exp`).
- `scales` Should y-axis of the panels be "fixed" (default) or "free"?
- `add_zero` Logical, should a dashed line indicating a zero be included?
plot_fit
Plot the fitted values and sample quantiles for a walker object

Description
Plot the fitted values and sample quantiles for a walker object

Usage
plot_fit(object, level = 0.05, alpha = 0.33, ...)

Arguments
object An output from walker or walker_glm.
level Level for intervals. Default is 0.05, leading to 90% intervals.
alpha Transparency level for geom_ribbon.

plot_predict
Prediction intervals for walker object

Description
Plots sample quantiles from pre See ppc_ribbon for details.

Usage
plot_predict(object, level = 0.05, alpha = 0.33)

Arguments
object An output from predict.walker_fit.
level Level for intervals. Default is 0.05, leading to 90% intervals.
alpha Transparency level for geom_ribbon.

Examples
set.seed(1)
n <- 60
slope <- 0.0001 + cumsum(rnorm(n, 0, sd = 0.01))
beta <- numeric(n)
beta[1] <- 1
for(i in 2:n) beta[i] <- beta[i-1] + slope[i-1]
ts.plot(beta)
x <- rnorm(n, 1, 0.5)
```r
alpha <- 2
ts.plot(beta * x)

signal <- alpha + beta * x
y <- rnorm(n, signal, 0.25)
ysignal <- signal + beta * x
ysignal <- y
ysignal <- rnorm(n, ysignal, 0.25)
ysignal <- ts.plot(cbind(signal, y), col = 1:2)
data_old <- data.frame(y = y[1:(n-10)], x = x[1:(n-10)])
rw2_fit <- walker(y ~ 1 +
    rw2(~ -1 + x,
        beta_prior = c(0, 10),
        sigma_prior = c(0, 10),
        slope_prior = c(0, 10)),
    sigma_y_prior = c(0, 10),
    beta_prior = c(0, 10),
    iter = 400, chains = 1, data = data_old)
pred <- predict(rw2_fit, newdata = data.frame(x=x[(n-9):n]))
data_new <- data.frame(t = (n-9):n, y = y[(n-9):n])
plot_predict(pred) +
    geom_line(data=data_new, aes(t, y), linetype="dashed", colour = "red", inherit.aes = FALSE)
```

pp_check.walker_fit

Posterior predictive check for walker object

Description

Plots sample quantiles from posterior predictive sample. See *ppc_ribbon* for details.

Usage

```r
## S3 method for class 'walker_fit'
pp_check(object, ...)
```

Arguments

- `object` An output from *walker*.
- `...` Further parameters to *ppc_ribbon*.

predict.walker_fit

Predictions for walker object

Description

Given the new covariate data and output from *walker*, obtain samples from posterior predictive distribution.
Usage

```r
## S3 method for class 'walker_fit'
predict(object, newdata, u,
    type = ifelse(object$distribution == "gaussian", "response", "mean"),
    ...)```

Arguments

- `object`: An output from `walker` or `walker_glm`.
- `newdata`: A `data.frame` containing covariates used for prediction.
- `u`: For Poisson model, a vector of future exposures i.e. \( E(y) = u \times \exp(x \times \beta) \). For binomial, a vector containing the number of trials for future time points. Defaults 1.
- `type`: If "response" (default for Gaussian model), predictions are on the response level (e.g., 0/1 for Bernoulli case, and for Gaussian case the observational level noise is added to the mean predictions). If "mean" (default for non-Gaussian case), predict means (e.g., success probabilities in Binomial case).
- `...`: Ignored.

Value

A list containing samples from posterior predictive distribution.

See Also

- `plot_predict` for example.

---

**print.walker_fit Print Summary of walker_fit Object**

Description

Prints the summary information of time-invariant model parameters.

Usage

```r
S3 method for class 'walker_fit'
print(x, ...)
```

Arguments

- `x`: An output from `walker` or `walker_glm`.
- `...`: Additional arguments to `print.stanfit`.
**rw1**  
*Construct a first-order random walk component*

**Description**
Auxiliary function used inside of the formula of walker.

**Usage**
```
rw1(formula, data, beta_prior, sigma_prior, gamma = NULL)
```

**Arguments**
- **formula**: Formula for RW1 part of the model. Only right-hand-side is used.
- **data**: Optional data.frame.
- **beta_prior**: A length vector of length two which defines the prior mean and standard deviation of the Gaussian prior for coefficients at time 1.
- **sigma_prior**: A vector of length two, defining the truncated Gaussian prior for the coefficient level standard deviation.
- **gamma**: An optional vector defining a damping of the random walk noises. More specifically, the variance of the conditional distribution of state_t+1 given state is of form gamma_t * sigma.

---

**rw2**  
*Construct a second-order random walk component*

**Description**
Auxiliary function used inside of the formula of walker.

**Usage**
```
rw2(formula, data, beta_prior, sigma_prior, slope_prior, gamma = NULL)
```

**Arguments**
- **formula**: Formula for RW2 part of the model. Only right-hand-side is used.
- **data**: Optional data.frame.
- **beta_prior**: A vector of length two which defines the prior mean and standard deviation of the Gaussian prior for coefficients at time 1.
- **sigma_prior**: A vector of length two, defining the truncated Gaussian prior for the slope level standard deviation.
walker

Bayesian regression with random walk coefficients

Description

Function walker performs Bayesian inference of a linear regression model with time-varying, random walk regression coefficients, i.e. ordinary regression model where instead of constant coefficients the coefficients follow first or second order random walks. All Markov chain Monte Carlo computations are done using Hamiltonian Monte Carlo provided by Stan, using a state space representation of the model in order to marginalise over the coefficients for efficient sampling.

Usage

walker(formula, data, sigma_y_prior, beta_prior, init, chains, return_x_reg = FALSE, gamma_y = NULL, ...)

Arguments

- formula: An object of class {formula} with additional terms rw1 and/or rw2 e.g. $y \sim x1 + rw1(\sim -1 + x2)$. See details.
- data: An optional data.frame or object coercible to such, as in {lm}.
- sigma_y_prior: A vector of length two, defining the truncated Gaussian prior for the observation level standard deviation. Not used in walker_glm.
- beta_prior: A length vector of length two which defines the prior mean and standard deviation of the Gaussian prior for time-invariant coefficients.
- init: Initial value specification, see sampling. Note that compared to default in rstan, here the default is to sample from the priors.
- chains: Number of Markov chains. Default is 4.
- return_x_reg: If TRUE, does not perform sampling, but instead returns the matrix of predictors after processing the formula.
- gamma_y: An optional vector defining a damping of the observational level noise. More specifically, $\sigma_t = gamma_t \ast \sigma_y$.
- ...: Further arguments to sampling.

Details

The rw1 and rw2 functions used in the formula define new formulas for the first and second order random walks. In addition, these functions need to be supplied with priors for initial coefficients and the standard deviations. For second order random walk model, these sigma priors correspond to the standard deviation of slope disturbances. For rw2, also a prior for the initial slope needs to be defined. See examples.
Value
A list containing the stanfit object, observations y, and covariates xreg and xreg_new.

Note
Beware of overfitting and identifiability issues. In particular, be careful in not defining multiple intercept terms (only one should be present).

See Also
walker_glm for non-Gaussian models.

Examples

```r
note very low number of iterations for the CRAN checks
rw1_fit <- walker(Nile ~ -1 +
 rw1(~ 1,
 beta_prior = c(1000, 100),
 sigma_prior = c(0, 100)),
 sigma_y_prior = c(0, 100),
 iter = 200, chains = 1)

rw2_fit <- walker(Nile ~ -1 +
 rw2(~ 1,
 beta_prior = c(1000, 100),
 sigma_prior = c(0, 100),
 slope_prior = c(0, 100)),
 sigma_y_prior = c(0, 100),
 iter = 200, chains = 1)

g_y <- geom_point(data = data.frame(y = Nile, x = time(Nile)),
 aes(x, y, alpha = 0.5), inherit.aes = FALSE)
g_rw1 <- plot_coefs(rw1_fit) + g_y
g_rw2 <- plot_coefs(rw2_fit) + g_y
if(require("gridExtra")) {
 grid.arrange(g_rw1, g_rw2, ncol=2, top = "RW1 (left) versus RW2 (right)"
} else {
 g_rw1
 g_rw2
}
Not run:
y <- window(log10(UKgas), end = time(UKgas)[100])
n <- 100
cos_t <- cos(2 * pi * 1:n / 4)
sin_t <- sin(2 * pi * 1:n / 4)
dat <- data.frame(y, cos_t, sin_t)
fit <- walker(y ~ -1 +
 rw1(~ cos_t + sin_t, beta_prior = c(0, 10), sigma_prior = c(0, 2)),
 sigma_y_prior = c(0, 10), data = dat, chains = 1, iter = 500)
print(fit$stanfit, pars = c("sigma_y", "sigma_rw1"))
```
plot_coefs(fit)
# posterior predictive check:
pp_check(fit)

newdata <- data.frame(
  cos_t = cos(2 * pi * 101:108 / 4),
  sin_t = sin(2 * pi * 101:108 / 4))
pred <- predict(fit, newdata)
plot_predict(pred)

## End(Not run)

---

**walker_glm**

*Bayesian generalized linear regression with time-varying coefficients*

---

**Description**

Function `walker_glm` is a generalization of `walker` for non-Gaussian models. Compared to `walker`, the returned samples are based on Gaussian approximation, which can then be used for exact-approximate analysis by weighting the sample properly. These weights are also returned as a part of the stanfit (they are generated in the generated quantities block of Stan model). Note that plotting functions `pp_check`, `plot_coefs`, and `plot_predict` resample the posterior based on weights before plotting, leading to "exact" analysis.

**Usage**

```r
walker_glm(formula, data, beta_prior, init, chains, return_x_reg = FALSE,
 distribution, initial_mode = "kfas", u, mc_sim = 50, ...)
```

**Arguments**

- **formula**: An object of class `formula` with additional terms `rw1` and/or `rw2` e.g. `y ~ x1 + rw1(~ -1 + x2)`. See details.
- **data**: An optional data.frame or object coercible to such, as in `{lm}`.
- **beta_prior**: A length vector of length two which defines the prior mean and standard deviation of the Gaussian prior for time-invariant coefficients.
- **init**: Initial value specification, see `sampling`. Note that compared to default in `rstan`, here the default is a to sample from the priors.
- **chains**: Number of Markov chains. Default is 4.
- **return_x_reg**: If TRUE, does not perform sampling, but instead returns the matrix of predictors after processing the formula.
- **distribution**: Either "poisson" or "binomial".
initial_mode  The initial guess of the fitted values on log-scale. Defines the Gaussian approximation used in the MCMC. Either "obs" (corresponds to log(y+0.1) in Poisson case), "glm" (mode is obtained from time-invariant GLM), "mle" (default; mode is obtained from maximum likelihood estimate of the model), or numeric vector (custom guess).

u  For Poisson model, a vector of exposures i.e. $E(y) = u * \exp(x * beta)$. For binomial, a vector containing the number of trials. Defaults 1.

mc_sim  Number of samples used in importance sampling. Default is 50.

...  Further arguments to sampling.

Details

The underlying idea of walker_glm is based on Vihola M, Helske J and Franks J (2016), "Importance sampling type correction of Markov chain Monte Carlo and exact approximations", which is available at ArXiv.

This function is not fully tested yet, so please file an issue and/or pull request on Github if you encounter problems. The reason there might be problems in some cases is the use of global approximation (i.e. start of the MCMC) instead of more accurate but slower local approximation (where model is approximated at each iteration). However for these restricted models global approximation should be sufficient, assuming the the initial estimate of the conditional mode of $p(xbeta | y, sigma)$ not too far away from the true posterior. Therefore by default walker_glm first finds the maximum likelihood estimates of the standard deviation parameters (using KFAS) package, and constructs the approximation at that point, before running the Bayesian analysis.

Value

A list containing the stanfit object, observations y, covariates xreg_fixed, and xreg_rw.

See Also

Package diagis in CRAN, which provides functions for computing weighted summary statistics.

Examples

```r
Not run:
data("discoveries", package = "datasets")
out <- walker_glm(discoveries ~ -1 +
 rw2(~ 1, beta_prior = c(0, 10), sigma_prior = c(0, 2), slope_prior = c(0, 2)),
 distribution = "poisson", iter = 1000, chains = 1, refresh = 0)
plot_fit(out)

set.seed(1)
n <- 25
x <- rnorm(n, 1, 1)
```
beta <- cumsum(c(1, rnorm(n - 1, sd = 0.1)))

level <- -1
u <- sample(1:10, size = n, replace = TRUE)
y <- rpois(n, u * exp(level + beta * x))

out <- walker_glm(y ~ -1 + rw1(~ x, beta_prior = c(0, 10),
    sigma_prior = c(0, 10)), distribution = "poisson",
    iter = 1000, chains = 1, refresh = 0)

print(out$stanfit, pars = "sigma_rw1") ## approximate results
if (require("diags")) {
  weighted_mean(extract(out$stanfit, pars = "sigma_rw1")$sigma_rw1,
    extract(out$stanfit, pars = "weights")$weights)
}

plot_coefs(out)
pp_check(out)

## End(Not run)

---

**walker_rw1**

*Comparison of naive and state space implementation of RW1 regression model*

**Description**

This function is the first iteration of the function `walker`, which supports only time-varying model where all coefficients ~ rw1. This is kept as part of the package in order to compare "naive" and state space versions of the model in the vignette.

**Usage**

```r
walker_rw1(formula, data, beta_prior, sigma_prior, init, chains,
 naive = FALSE, return_x_reg = FALSE, ...)
```

**Arguments**

- `formula`: An object of class `formula`. See `lm` for details.
- `data`: An optional data.frame or object coercible to such, as in `lm`.
- `beta_prior`: A matrix with `k` rows and 2 columns, where first columns defines the prior means of the Gaussian priors of the corresponding `k` regression coefficients, and the second column defines the standard deviations of those prior distributions.
- `sigma_prior`: A matrix with `k + 1` rows and two columns with similar structure as `beta_prior`, with first row corresponding to the prior of the standard deviation of the observation level noise, and rest of the rows define the priors for the standard deviations of random walk noise terms. The prior distributions for all sigmas are Gaussians.
truncated to positive real axis. For non-Gaussian models, this should contain only k rows. For second order random walk model, these priors correspond to the slope level standard deviations.

**init**
Initial value specification, see `sampling`.

**chains**
Number of Markov chains. Default is 4.

**naive**
Only used for `walker` function. If TRUE, use "standard" approach which samples the joint posterior \( p(\beta, \sigma | y) \). If FALSE (the default), use marginalisation approach where we sample the marginal posterior \( p(\sigma | y) \) and generate the samples of \( p(\beta | \sigma, y) \) using state space modelling techniques (namely simulation smoother by Durbin and Koopman (2002)). Both methods give asymptotically identical results, but the latter approach is computationally much more efficient.

**return_x_reg**
If TRUE, does not perform sampling, but instead returns the matrix of predictors after processing the formula.

### Examples

```r
Not run:
Comparing the approaches, note that with such a small data
the differences aren't huge, but try same with n = 500 and/or more terms...
set.seed(123)
n <- 100
beta1 <- cumsum(c(0.5, rnorm(n - 1, 0, sd = 0.05)))
beta2 <- cumsum(c(-1, rnorm(n - 1, 0, sd = 0.15)))
x1 <- rnorm(n, 1)
x2 <- 0.25 * cos(1:n)
ts.plot(cbind(beta1 * x1, beta2 * x2), col = 1:2)
u <- cumsum(rnorm(n))
y <- rnorm(n, u + beta1 * x1 + beta2 * x2)
ts.plot(y)
lines(u + beta1 * x1 + beta2 * x2, col = 1)
kalman_walker <- walker_rw1(y ~ -1 + rw1(~ x1 + x2, beta_prior = c(0, 2), sigma_prior = c(0, 2)),
sigma_y_prior = c(0, 2), iter = 2000, chains = 1)
print(kalman_walker$stanfit, pars = c("sigma_y", "sigma_rw1"))
betas <- extract(kalman_walker$stanfit, "beta")[[1]]
ts.plot(cbind(u, beta1, beta2, apply(betas, 2, colMeans)),
col = 1:3, lty = rep(2:1, each = 3))
sum(get_elapsed_time(kalman_walker$stanfit))
naive_walker <- walker_rw1(y ~ x1 + x2, iter = 2000, chains = 1,
beta_prior = cbind(0, rep(2, 3)), sigma_prior = cbind(0, rep(2, 4)),
naive = TRUE)
print(naive_walker$stanfit, pars = c("sigma_y", "sigma_b"))
sum(get_elapsed_time(naive_walker$stanfit))

Larger problem, this takes some time with naive approach

set.seed(123)
n <- 500```

```
beta1 <- cumsum(c(1.5, rnorm(n - 1, 0, sd = 0.05)))
beta2 <- cumsum(c(-1, rnorm(n - 1, 0, sd = 0.5)))
beta3 <- cumsum(c(-1.5, rnorm(n - 1, 0, sd = 0.15)))
beta4 <- 2
x1 <- rnorm(n, 1)
x2 <- 0.25 * cos(1:n)
x3 <- runif(n, 1, 3)
ts.plot(cbind(beta1 * x1, beta2 * x2, beta3 * x3), col = 1:3)
a <- cumsum(rnorm(n))
signal <- a + beta1 * x1 + beta2 * x2 + beta3 * x3
y <- rnorm(n, signal)
ts.plot(y)
lines(signal, col = 2)
kalman_walker <- walker_rw1(y ~ x1 + x2 + x3, iter = 2000, chains = 1,
  beta_prior = cbind(0, rep(2, 4)), sigma_prior = cbind(0, rep(2, 5)))
print(kalman_walker$stanfit, pars = c(“sigma_y”, “sigma_b”))
betas <- extract(kalman_walker$stanfit, “beta”)[[1]]
ts.plot(cbind(u, beta1, beta2, beta3, apply(betas, 2, colMeans)),
  col = 1:4, lty = rep(2:1, each = 4))
sum(get_elapsed_time(kalman_walker$stanfit))
# need to increase adapt_delta in order to get rid of divergences
# and max_treedepth to get rid of related warnings
# and still we end up with low BFMI warning after hours of computation
naive_walker <- walker_rw1(y ~ x1 + x2 + x3, iter = 2000, chains = 1,
  beta_prior = cbind(0, rep(2, 4)), sigma_prior = cbind(0, rep(2, 5)),
  naive = TRUE, control = list(adapt_delta = 0.9, max_treedepth = 15))
print(naive_walker$stanfit, pars = c(“sigma_y”, “sigma_b”))
sum(get_elapsed_time(naive_walker$stanfit))

## End(Not run)
Index

c coef.walker_fit, 2
f fitted.walker_fit, 3
formula, 12
ge geom_ribbon, 4
KFAS, 11
lm, 12
plot_coefs, 3
plot_fit, 4
plot_predict, 4, 6
pp_check.walker_fit, 5
ppc_ribbon, 3–5
predict.walker_fit, 4, 5
print.stanfit, 6
print.walker_fit, 6
rw1, 7
rw2, 7
sampling, 8, 10, 11, 13
walker, 3–6, 8
walker_glm, 4, 6, 9, 10
walker_rw1, 12